1
|
Xie Y, Fontenot L, Estrada AC, Nelson B, Bullock A, Faull KF, Feng H, Sun M, Koon HW. Genistein Inhibits Clostridioides difficile Infection via Estrogen Receptors and Lysine-Deficient Protein Kinase 1. J Infect Dis 2023; 227:806-819. [PMID: 36628948 PMCID: PMC10226758 DOI: 10.1093/infdis/jiad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is a debilitating nosocomial disease. Postmenopausal women may have an increased risk of CDI, suggesting estrogen influence. Soybean products contain a representative estrogenic isoflavone, genistein. METHODS The anti-inflammatory and antiapoptotic effects of genistein were determined using primary human cells and fresh colonic tissues. The effects of oral genistein therapy among mice and hamsters were evaluated. RESULTS Within 10 days of CDI, female c57BL/6J mice in a standard environment (regular diet) had a 50% survival rate, while those with estrogen depletion and in an isoflavone-free environment (soy-free diet) had a 25% survival rate. Oral genistein improved their 10-day survival rate to 100% on a regular diet and 75% in an isoflavone-free environment. Genistein reduced macrophage inflammatory protein-1α (MIP-1α) secretion in fresh human colonic tissues exposed to toxins. Genistein inhibited MIP-1α secretion in primary human peripheral blood mononuclear cells, abolished apoptosis and BCL-2-associated X (BAX) expression in human colonic epithelial cells, and activated lysine-deficient protein kinase 1 (WNK1) phosphorylation in both cell types. The anti-inflammatory and antiapoptotic effects of genistein were abolished by inhibiting estrogen receptors and WNK1. CONCLUSIONS Genistein reduces CDI disease activity by inhibiting proinflammatory cytokine expression and apoptosis via the estrogen receptor/G-protein estrogen receptor/WNK1 pathways.
Collapse
Affiliation(s)
- Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Lindsey Fontenot
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Andrea Chupina Estrada
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Becca Nelson
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Ashlen Bullock
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Maryland, Baltimore, USA
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Xie Y, Chupina Estrada A, Nelson B, Feng H, Pothoulakis C, Chesnel L, Koon HW. ADS024, a Bacillus velezensis strain, protects human colonic epithelial cells against C. difficile toxin-mediated apoptosis. Front Microbiol 2023; 13:1072534. [PMID: 36704560 PMCID: PMC9873417 DOI: 10.3389/fmicb.2022.1072534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) causes intestinal injury. Toxin A and toxin B cause intestinal injury by inducing colonic epithelial cell apoptosis. ADS024 is a Bacillus velezensis strain in development as a single-strain live biotherapeutic product (SS-LBP) to prevent the recurrence of CDI following the completion of standard antibiotic treatment. We evaluated the protective effects of the sterile filtrate and ethyl acetate extract of conditioned media from ADS024 and DSM7 (control strain) against mucosal epithelial injury in toxin-treated human colonic tissues and apoptosis in toxin-treated human colonic epithelial cells. Ethyl acetate extracts were generated from conditioned culture media from DSM7 and ADS024. Toxin A and toxin B exposure caused epithelial injury in fresh human colonic explants. The sterile filtrate of ADS024, but not DSM7, prevented toxin B-mediated epithelial injury in fresh human colonic explants. Both sterile filtrate and ethyl acetate extract of ADS024 prevented toxin-mediated apoptosis in human colonic epithelial cells. The anti-apoptotic effects of ADS024 filtrate and ethyl acetate extract were dependent on the inhibition of caspase 3 cleavage. The sterile filtrate, but not ethyl acetate extract, of ADS024 partially degraded toxin B. ADS024 inhibits toxin B-mediated apoptosis in human colonic epithelial cells and colonic explants.
Collapse
Affiliation(s)
- Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States,Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Andrea Chupina Estrada
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Becca Nelson
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, College Park, College Park, MD, United States
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | | | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States,*Correspondence: Hon Wai Koon,
| |
Collapse
|
3
|
Oral Vancomycin Prophylaxis for Primary and Secondary Prevention of Clostridioides difficile Infection in Patients Treated with Systemic Antibiotic Therapy: A Systematic Review, Meta-Analysis and Trial Sequential Analysis. Antibiotics (Basel) 2022; 11:antibiotics11020183. [PMID: 35203786 PMCID: PMC8868369 DOI: 10.3390/antibiotics11020183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Clostridioides difficile infection (CDI) is associated with substantial morbidity and mortality as well as high propensity of recurrence. Systemic antibiotic therapy (SAT) represents the top inciting factor of CDI, both primary and recurrent (rCDI). Among the many strategies aimed to prevent CDI in high-risk subjects undergoing SAT, oral vancomycin prophylaxis (OVP) appears promising under a cost-effectiveness perspective. Methods: A systematic review with meta-analysis and trial sequential analysis (TSA) of studies assessing the efficacy and the safety of OVP to prevent primary CDI and rCDI in persons undergoing SAT was carried out. PubMed and EMBASE were searched until 30 September 2021. The protocol was pre-registered on PROSPERO (CRD42019145543). Results: Eleven studies met the inclusion criteria, only one being a randomized controlled trial (RCT). Overall, 929 subjects received OVP and 2011 represented the comparator group (no active prophylaxis). OVP exerted a strong protective effect for CDI occurrence: odds ratio 0.14, 95% confidence interval 0.04–0.38. Moderate heterogeneity was observed: I2 54%. This effect was confirmed throughout several subgroup analyses, including prevention of primary CDI versus rCDI. TSA results pointed at the conclusive nature of the evidence. Results were robust to a variety of sensitivity and quantitative bias analyses, although the underlying evidence was deemed as low quality. No differences between the two groups were highlighted regarding the onset of vancomycin-resistant Enterococcus infections. Conclusions: OVP appears to be an efficacious option for prevention of CDI in high-risk subjects undergoing SAT. Nevertheless, additional data from RCTs are needed to establish OVP as good clinical practice and define optimal dosage and duration.
Collapse
|
4
|
Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2018; 30:1309-1317. [PMID: 30138161 DOI: 10.1097/meg.0000000000001243] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of fecal microbiota transplantation (FMT) as a treatment option for recurrent Clostridium difficile infection (rCDI) is well established. Various studies have used different forms and administration routes for FMT. We performed a systemic review and meta-analysis to update the clinical knowledge about different FMT modalities for curing rCDI compared with medical treatment (MT). PATIENTS AND METHODS We searched PubMed and Medline from inception through 10 May 2018 for randomized control trials (RCTs) comparing FMT (fresh or frozen) versus MT. We used Cochrane Collaboration's Risk of Bias tool to assess bias in the RCTs. We estimated odds ratio (OR) with 95% confidence interval (CI) for each outcome using a random effects model. P values of less than 0.05 were considered significant. RESULTS We included seven RCTs comprising a total of 543 patients with recurrent CDI. There was a nonsignificant trend toward resolution of diarrhea following a single fresh FMT infusion compared with frozen FMT and MT (OR=2.45, 95% CI=0.78-7.71, P=0.12, I=69%). Subgroup analysis of fresh FMT vs. frozen FMT showed no difference between the two groups (OR=2.13, 95% CI=0.22-20.41, P=0.51, I=61%). Frozen FMT infusion through upper route versus lower route showed no difference (OR=0.62, 95% CI=0.15-2.54, P=0.51, I=0%). There was a nonsignificant trend favoring multiple treatments with FMT versus multiple courses of MT (OR=3.68, 95% CI=0.74-18.22, P=0.11, I=0%). CONCLUSION FMT is a promising treatment modality for rCDI compared with MT alone. Different forms and routes of FMT administration seem to be equally efficacious. In future, more well-designed RCTs directed at homogenous FMT preparation and delivery methods are required to validate these findings.
Collapse
|
5
|
Zheng W, Wang K, Sun Y, Kuo SM. Dietary or supplemental fermentable fiber intake reduces the presence of Clostridium XI in mouse intestinal microbiota: The importance of higher fecal bacterial load and density. PLoS One 2018; 13:e0205055. [PMID: 30278071 PMCID: PMC6168175 DOI: 10.1371/journal.pone.0205055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Clostridium difficile infection is a public health concern. C. difficile was found in healthy human intestine as a member of Clostridium XI. Because soluble fermentable fiber ingestion affects intestinal microbiota, we used fiber-containing diets to determine the intestinal microbial condition that could reduce the presence of Clostridium XI. METHODS Newly weaned male mice were assigned to three published diets: Control AIN-93G purified diet with only poorly fermented cellulose; Control plus 5% purified fermentable fiber inulin; Chow with wheat, soybean and corn that provide a mixture of unpurified dietary fibers. Methods were developed to quantify 24-hour fecal microbial load and microbial DNA density. The relative abundance of bacterial genera and the bacterial diversity were determined through 16S rRNA sequence-based fecal microbiota analysis. RESULTS Mice adjusted food intake to maintain the same energy intake and body weight under these three moderate-fat (7% w:w) diets. Chow-feeding led to higher food intake but also higher 24-h fecal output. Chow-feeding and 1-8 wk ingestion of inulin-supplemented diet increased daily fecal microbial load and density along with lowering the prevalence of Clostridium XI to undetectable. Clostridium XI remained undetectable until 4 weeks after the termination of inulin-supplemented diet. Fermentable fiber intake did not consistently increase probiotic genera such as Bifidobacterium or Lactobacillus. Chow feeding, but not inulin supplementation, increased the bacterial diversity. CONCLUSIONS Increase fecal microbial load/density upon fermentable fiber ingestion is associated with a lower and eventually undetectable presence of Clostridium XI. Higher bacterial diversity or abundance of particular genera is not apparently essential. Future studies are needed to see whether this observation can be translated into the reduction of C. difficile at the species level in at-risk populations.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America
| | - Kairui Wang
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Yijun Sun
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States of America
- Department of Biostatistics, University at Buffalo, Buffalo, NY, United States of America
| | - Shiu-Ming Kuo
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
6
|
Puri BK, Derham A, Monro JA. Prevention of Infection in Adults Receiving Intravenous Antibiotic Treatment via Indwelling Central Venous Access Devices. Rev Recent Clin Trials 2018; 14:47-49. [PMID: 30117400 DOI: 10.2174/1574887113666180817125036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of indwelling Central Venous Access Devices (CVADs) is associated with the development of bloodstream infections. When CVADs are used to administer systemic antibiotics, particularly second- or higher-generation cephalosporins, there is a particular risk of developing Clostridium difficile infection. The overall bloodstream infection rate is estimated to be around 1.74 per 1000 Central Venous Catheter (CVC)-days. OBJECTIVE We hypothesised that daily oral administration of the anion-binding resin colestyramine (cholestyramine) would help prevent infections in those receiving intravenous antibiotic treatment via CVADs. METHOD A small case series is described of adult patients who received regular intravenous antibiotic treatment (ceftriaxone, daptomycin or vancomycin) for up to 40 weeks via indwelling CVADs; this represented a total of 357 CVC-days. In addition to following well-established strategies to prevent C. difficile infection, during the course of the intravenous antibiotic treatment the patients also received daily oral supplementation with 4 g colestyramine. RESULTS There were no untoward infectious events. In particular, none of the patients developed any symptoms or signs of C. difficile infection, whereas approximately one case of a bloodstream infection would have been expected. CONCLUSION It is suggested that oral colestyramine supplementation may help prevent such infection through its ability to bind C. difficile toxin A (TcdA) and C. difficile toxin B (TcdB); these toxins are able to gain entry into host cells through receptor-mediated endocytosis, while anti-toxin antibody responses to TcdA and TcdB have been shown to induce protection against C. difficile infection sequelae.
Collapse
Affiliation(s)
- Basant K Puri
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Anne Derham
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, United Kingdom
| | - Jean A Monro
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, United Kingdom
| |
Collapse
|
7
|
Wang J, Ghali S, Xu C, Mussatto CC, Ortiz C, Lee EC, Tran DH, Jacobs JP, Lagishetty V, Faull KF, Moller T, Rossetti M, Chen X, Koon HW. Ceragenin CSA13 Reduces Clostridium difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Gastroenterology 2018; 154:1737-1750. [PMID: 29360463 PMCID: PMC5927842 DOI: 10.1053/j.gastro.2018.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Clostridium difficile induces intestinal inflammation by releasing toxins A and B. The antimicrobial compound cationic steroid antimicrobial 13 (CSA13) has been developed for treating gastrointestinal infections. The CSA13-Eudragit formulation can be given orally and releases CSA13 in the terminal ileum and colon. We investigated whether this form of CSA13 reduces C difficile infection (CDI) in mice. METHODS C57BL/6J mice were infected with C difficile on day 0, followed by subcutaneous administration of pure CSA13 or oral administration of CSA13-Eudragit (10 mg/kg/d for 10 days). Some mice were given intraperitoneal vancomycin (50 mg/kg daily) on days 0-4 and relapse was measured after antibiotic withdrawal. The mice were monitored until day 20; colon and fecal samples were collected on day 3 for analysis. Blood samples were collected for flow cytometry analyses. Fecal pellets were collected each day from mice injected with CSA13 and analyzed by high-performance liquid chromatography or 16S sequencing; feces were also homogenized in phosphate-buffered saline and fed to mice with CDI via gavage. RESULTS CDI of mice caused 60% mortality, significant bodyweight loss, and colonic damage 3 days after infection; these events were prevented by subcutaneous injection of CSA13 or oral administration CSA13-Eudragit. There was reduced relapse of CDI after administration of CSA13 was stopped. Levels of CSA13 in feces from mice given CSA13-Eudragit were significantly higher than those of mice given subcutaneous CSA13. Subcutaneous and oral CSA13 each significantly increased the abundance of Peptostreptococcaceae bacteria and reduced the abundance of C difficile in fecal samples of mice. When feces from mice with CDI and given CSA13 were fed to mice with CDI that had not received CSA13, the recipient mice had significantly increased rates of survival. CSA13 reduced fecal levels of inflammatory metabolites (endocannabinoids) and increased fecal levels of 4 protective metabolites (ie, citrulline, 3-aminoisobutyric acid, retinol, and ursodeoxycholic acid) in mice with CDI. Oral administration of these CSA13-dependent protective metabolites reduced the severity of CDI. CONCLUSIONS In studies of mice, we found the CSA13-Eudragit formulation to be effective in eradicating CDI by modulating the intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Jiani Wang
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Sally Ghali
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Chunlan Xu
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095,The Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xian, Shaanxi Province, China
| | - Caroline C. Mussatto
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Christina Ortiz
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Elaine C. Lee
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Diana H. Tran
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Jonathan P. Jacobs
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Venu Lagishetty
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Travis Moller
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Maura Rossetti
- Immunogenetics Center, Department of Pathology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Hon Wai Koon
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
8
|
Gentile I, Maraolo AE, Borgia G. What is the role of the new β-lactam/β-lactamase inhibitors ceftolozane/tazobactam and ceftazidime/avibactam? Expert Rev Anti Infect Ther 2018; 14:875-8. [PMID: 27599088 DOI: 10.1080/14787210.2016.1233060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ivan Gentile
- a Section of Infectious Diseases, Department of Clinical Medicine and Surgery , University of Naples 'Federico II' , Naples , Italy
| | - Alberto Enrico Maraolo
- a Section of Infectious Diseases, Department of Clinical Medicine and Surgery , University of Naples 'Federico II' , Naples , Italy
| | - Guglielmo Borgia
- a Section of Infectious Diseases, Department of Clinical Medicine and Surgery , University of Naples 'Federico II' , Naples , Italy
| |
Collapse
|
9
|
Duarte-Chavez R, Wojda TR, Zanders TB, Geme B, Fioravanti G, Stawicki SP. Early Results of Fecal Microbial Transplantation Protocol Implementation at a Community-based University Hospital. J Glob Infect Dis 2018; 10:47-57. [PMID: 29910564 PMCID: PMC5987372 DOI: 10.4103/jgid.jgid_145_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Clostridium difficile (CD) is a serious and increasingly prevalent healthcare-associated infection. The pathogenesis of CD infection (CDI) involves the acquisition of CD with a concurrent disruption of the native gut flora. Antibiotics are a major risk although other contributing factors have also been identified. Clinical management combines discontinuation of the offending antibiotic, initiation of CD-specific antibiotic therapy, probiotic agent use, fecal microbiota transplantation (FMT), and surgery as the “last resort” option. The aim of this study is to review short-term clinical results following the implementation of FMT protocol (FMTP) at our community-based university hospital. Methods: After obtaining Institutional Review Board and Infection Control Committee approvals, we implemented an institution-wide FMTP for patients diagnosed with CDI. Prospective tracking of all patients receiving FMT between July 1, 2015, and February 1, 2017, was conducted using REDCap™ electronic data capture system. According to the FMTP, indications for FMT included (a) three or more CDI recurrences, (b) two or more hospital admissions with severe CDI, or (c) first episode of complicated CDI (CCDI). Risk factors for initial infection and for treatment failure were assessed. Patients were followed for at least 3 months to monitor for cure/failure, relapse, and side effects. Frozen 250 mL FMT samples were acquired from OpenBiome (Somerville, MA, USA). After 4 h of thawing, the liquid suspension was applied using colonoscopy, beginning with terminal ileum and proceeding distally toward mid-transverse colon. Monitored clinical parameters included disease severity (Hines VA CDI Severity Score or HVCSS), concomitant medications, number of FMT treatments, non-FMT therapies, cure rates, and mortality. Descriptive statistics were utilized to outline the study results. Results: A total of 35 patients (mean age 58.5 years, 69% female) were analyzed, with FMT-attributable primary cure achieved in 30/35 (86%) cases. Within this subgroup, 2/30 (6.7%) patients recurred and were subsequently cured with long-term oral vancomycin. Among five primary FMT failures (14% total sample), 3 (60%) achieved medical cure with long-term oral vancomycin therapy and 2 (40%) required colectomy. For the seven patients who either failed FMT or recurred, long-term vancomycin therapy was curative in all but two cases. For patients with severe CDI (HVCSS ≥3), primary and overall cure rates were 6/10 (60%) and 8/10 (80%), respectively. Patients with CCDI (n = 4) had higher HVCSS (4 vs. 3) and a mortality of 25%. Characteristics of patients who failed initial FMT included older age (70 vs. 57 years), female sex (80% vs. 67%), severe CDI (80% vs. 13%), and active opioid use during the initial infection (60% vs. 37%) and at the time of FMT (60% vs. 27%). The most commonly reported side effect of FMT was loose stools. Conclusions: This pilot study supports the efficacy and safety of FMT administration for CDI in the setting of a community-based university hospital. Following FMTP implementation, primary (86%) and overall (94%) nonsurgical cure rates were similar to those reported in other studies. The potential role of opioids as a modulator of CDI warrants further clinical investigation.
Collapse
Affiliation(s)
- Rodrigo Duarte-Chavez
- Department of Internal Medicine, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Thomas R Wojda
- Department of Family Medicine, Warren Hospital, St. Luke's University Health Network, Phillipsburg, NJ, USA
| | - Thomas B Zanders
- Division of Pulmonary/Critical Care Medicine, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Berhanu Geme
- Division of Gastroenterology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Gloria Fioravanti
- Department of Internal Medicine, St. Luke's University Health Network, Bethlehem, PA, USA
| | | |
Collapse
|
10
|
Lee H, Ko G. New perspectives regarding the antiviral effect of vitamin A on norovirus using modulation of gut microbiota. Gut Microbes 2017; 8:616-620. [PMID: 28727498 PMCID: PMC5730389 DOI: 10.1080/19490976.2017.1353842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gut microbiota has been revealed to play an important role in various health conditions, and recent studies have suggested the modulation of gut microbiota as a therapeutic strategy. There is no effective treatment of norovirus infection, though vitamin A has been suggested to have an antiviral effect in an epidemiological study. We demonstrated that vitamin A significantly inhibited murine norovirus replication. Vitamin A supplementation significantly increased the abundance of Lactobacillus sp. during norovirus infection, which played a crucial role in antiviral efficacy, inhibiting murine norovirus. Therefore, we elaborated the antiviral effect of vitamin A via modulation of gut microbiota. Furthermore, we suggest a novel strategy, using potential probiotics, as having a protective and therapeutic effect on noroviral infection.
Collapse
Affiliation(s)
- Heetae Lee
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | - GwangPyo Ko
- Center for Human and Environmental Microbiome, Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea,CONTACT GwangPyo Ko School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
11
|
Liu YW, Chen YH, Chen JW, Tsai PJ, Huang IH. Immunization with Recombinant TcdB-Encapsulated Nanocomplex Induces Protection against Clostridium difficile Challenge in a Mouse Model. Front Microbiol 2017; 8:1411. [PMID: 28790999 PMCID: PMC5525027 DOI: 10.3389/fmicb.2017.01411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is considered to be one of the major cause of infectious diarrhea in healthcare systems worldwide. Symptoms of C. difficile infection are caused largely by the production of two cytotoxins: toxin A (TcdA) and toxin B (TcdB). Vaccine development is considered desirable as it would decrease the mounting medical costs and mortality associated with C. difficile infections. Biodegradable nanoparticles composed of poly-γ-glutamic acid (γ-PGA) and chitosan have proven to be a safe and effective antigen delivery system for many viral vaccines. However, few studies have used this efficient antigen carrier for bacterial vaccine development. In this study, we eliminated the toxin activity domain of toxin B by constructing a recombinant protein rTcdB consists of residues 1852-2363 of TcdB receptor binding domain. The rTcdB was encapsulated in nanoparticles composed of γ-PGA and chitosan. Three rounds of intraperitoneal vaccination led to high anti-TcdB antibody responses and afforded mice full protection mice from lethal dose of C. difficile spore challenge. Protection was associated with high levels of toxin-neutralizing antibodies, and the rTcdB-encapsulated NPs elicited a longer-lasting antibody titers than antigen with the conventional adjuvant, aluminum hydroxide. Significant reductions in the level of proinflammatory cytokines and chemokines were observed in vaccinated mouse. These results suggested that polymeric nanocomplex-based vaccine design can be useful in developing vaccine against C. difficile infections.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yu-Hung Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
12
|
Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J Gastroenterol 2016; 22:7186-202. [PMID: 27621567 PMCID: PMC4997632 DOI: 10.3748/wjg.v22.i32.7186] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/23/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using terms microbiota, intestinal flora, probiotics, prebiotics, fecal transplantation. More than three hundred articles published up to 2015 were selected and reviewed. Randomized placebo-controlled trials and meta-analysis were firstly included, mainly for probiotics. A meta-analysis was not performed because of the heterogeneity of these studies. Most of relevant data derived from studies on probiotics, reporting some efficacy in ulcerative colitis and in pouchitis, while disappointing results are available for Crohn's disease. Probiotic supplementation may significantly reduce rates of rotavirus diarrhea. Efficacy of probiotics in NSAID enteropathy and irritable bowel syndrome is still controversial. Finally, FMT has been recently recognized as an efficacious treatment for recurrent Clostridium difficile infection. Modulation of intestinal flora represents a very interesting therapeutic target, although it still deserves some doubts and limitations. Future studies should be encouraged to provide new understanding about its therapeutical role.
Collapse
|
13
|
Hemsworth GR, Thompson AJ, Stepper J, Sobala ŁF, Coyle T, Larsbrink J, Spadiut O, Goddard-Borger ED, Stubbs KA, Brumer H, Davies GJ. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut. Open Biol 2016; 6:160142. [PMID: 27466444 PMCID: PMC4967831 DOI: 10.1098/rsob.160142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Andrew J Thompson
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Judith Stepper
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Łukasz F Sobala
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Travis Coyle
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Johan Larsbrink
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Oliver Spadiut
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Keith A Stubbs
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
14
|
Choi HH, Cho YS. Fecal Microbiota Transplantation: Current Applications, Effectiveness, and Future Perspectives. Clin Endosc 2016; 49:257-65. [PMID: 26956193 PMCID: PMC4895930 DOI: 10.5946/ce.2015.117] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is the infusion of liquid filtrate feces from a healthy donor into the gut of a recipient to cure a specific disease. A fecal suspension can be administered by nasogastric or nasoduodenal tube, colonoscope, enema, or capsule. The high success rate and safety in the short term reported for recurrent Clostridium difficile infection has elevated FMT as an emerging treatment for a wide range of disorders, including Parkinson's disease, fibromyalgia, chronic fatigue syndrome, myoclonus dystopia, multiple sclerosis, obesity, insulin resistance, metabolic syndrome, and autism. There are many unanswered questions regarding FMT, including donor selection and screening, standardized protocols, long-term safety, and regulatory issues. This article reviews the efficacy and safety of FMT used in treating a variety of diseases, methodology, criteria for donor selection and screening, and various concerns regarding FMT.
Collapse
Affiliation(s)
- Hyun Ho Choi
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Seok Cho
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Ünal CM, Steinert M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets 2015; 20:269-85. [PMID: 26565670 DOI: 10.1517/14728222.2016.1090428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, Clostridium difficile has become the primary cause of antibiotic-associated diarrhea and pseudomembranous colitis, resulting in long and complicated hospital stays that represent a serious burden for patients as well as health care systems. Currently, conservative treatment of C. difficile infection (CDI) relies on the antibiotics vancomycin, metronidazole or fidaxomicin, or in case of multiple recurrences, fecal microbiota transplantation (FMT). AREAS COVERED The fast-spreading, epidemic nature of this pathogen urgently necessitates the search for alternative treatment strategies as well as antibiotic targets. Accordingly, in this review, we highlight the recent findings regarding virulence associated traits of C. difficile, evaluate their potential as alternative drug targets, and present current efforts in designing inhibitory compounds, with the aim of pointing out possibilities for future treatment strategies. EXPERT OPINION Increased attention on systematic analysis of the virulence mechanisms of C. difficile has already led to the identification of several alternative drug targets. In the future, applying state of the art 'omics' and the development of novel infection models that mimic the human gut, a highly complex ecological niche, will unveil the genomic and metabolic plasticity of this pathogen and will certainly help dealing with future challenges.
Collapse
Affiliation(s)
- Can M Ünal
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,b 2 Türk-Alman Üniversitesi, Fen Fakültesi , Şahinkaya Cad. 86, 34820, Istanbul, Turkey
| | - Michael Steinert
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,c 3 Helmholtz Centre for Infection Research , Mascheroder Weg 1, 38124, Braunschweig, Germany
| |
Collapse
|