1
|
Li S, Yu X, Li Y, Zhang T. Conductive polypyrrole-coated electrospun chitosan nanoparticles/poly(D,L-lactide) fibrous mat: influence of drug delivery and Schwann cells proliferation. Biomed Phys Eng Express 2022; 8. [PMID: 35168214 DOI: 10.1088/2057-1976/ac5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
For nerve tissue engineering (NTE), scaffolds with the ability to release drugs under control and support the rapid proliferation of cells are very important for the repair of nerve defects. This study aimed to fabricate a conductive drug-loaded fiber mat by electrospinning and assess its potential as a scaffold for Schwann cells proliferation. The conductive polypyrrole (PPy) was coated on an electrospun poly (D, L-lactide) (PLA) fibrous mat, which was simultaneously embedded with protein-loaded chitosan nanoparticles and ibuprofen as a model small molecule drug. The fibrous mat shows suitable conductivity, mechanical properties, and hydrophilicity for NTE. For drug release and degradation studies, the fibrous mat can achieve sustained release of bovine serum albumin (BSA) and ibuprofen, and the PPy coating can increase the surface wettability and conductivity while slowing down the degradation of the fibrous mat. The application of electrical stimulation (ES) to the fibrous mat can accelerate the release of ibuprofen, but there was no significant effect on the release rate of the protein. The fibrous mat showed no cytotoxicityin vitro, and Schwann cells (SCs) can adhere, grow, and proliferate well on mats. At the 120th hour of culturein vitro, the relative growth rate of SCs on the conductive drug-loaded fibrous mat reached 198.22 ± 2.34%, which was an increase of 37.93% compared to the SCs on the drug-loaded fibrous mat with ES. The density and elongation of SCs on the conductive drug-loaded fibrous mat were greater than those on the PLA fibrous mat, indicating that the conductive polypyrrole-coated electrospun chitosan nanoparticles/PLA fibrous mat has good potential for application in nerve regeneration.
Collapse
Affiliation(s)
- Siqi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China.,State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
2
|
Moharrami Kasmaie F, Zamani F, Sayad-Fathi S, Zaminy A. Promotion of nerve regeneration by biodegradable nanofibrous scaffold following sciatic nerve transection in rats. Prog Biomater 2021; 10:53-64. [PMID: 33683651 DOI: 10.1007/s40204-021-00151-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/26/2021] [Indexed: 10/22/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are one of the common causes of morbidity and disability worldwide. Autograft is considered the gold standard treatment for PNIs. However, due to the complications associated with autografts, other sources are considered as alternatives. Recently, electrospun nanofibrous scaffolds have received wide attention in the field of tissue engineering. Exogenous tubular constructs with uniaxially aligned topographical cues to enhance the axonal re-growth are needed to bridge large nerve gaps between proximal and distal ends. Although several studies have used PLGA/PCL, but few studies have been conducted on developing a two-layer scaffold with aligned fibers properly orientated along the axis direction of the sciatic nerve to meet the physical properties required for suturing, transplantation, and nerve regeneration. In this study, we sought to design and develop PLGA-PCL-aligned nanofibers. Following the conventional examinations, we implanted the scaffolds into 7-mm sciatic nerve gaps in a rat model of nerve injury. Our in vivo evaluations did not show any adverse effects, and after eight weeks, an acceptable improvement was noted in the electrophysiological, functional, and histological analyses. Thus, it can be concluded that nanofiber scaffolds can be used as a reliable approach for repairing PNIs. However, further research is warranted.
Collapse
Affiliation(s)
| | | | - Sara Sayad-Fathi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Zaminy
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Schizas N, Rojas R, Kootala S, Andersson B, Pettersson J, Hilborn J, Hailer NP. Hyaluronic acid-based hydrogel enhances neuronal survival in spinal cord slice cultures from postnatal mice. J Biomater Appl 2013; 28:825-36. [DOI: 10.1177/0885328213483636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Numerous biomaterials based on extracellular matrix-components have been developed. It was our aim to investigate whether a hyaluronic acid–based hydrogel improves neuronal survival and tissue preservation in organotypic spinal cord slice cultures. Organotypic spinal cord slice cultures were cultured for 4 days in vitro (div), either on hyaluronic acid–based hydrogel (hyaluronic acid–gel group), collagen gel (collagen group), directly on polyethylene terephthalate membrane inserts (control group), or in the presence of soluble hyaluronic acid (soluble hyaluronic acid group). Cultures were immunohistochemically stained against neuronal antigen NeuN and analyzed by confocal laser scanning microscopy. Histochemistry for choline acetyltransferance, glial fibrillary acidic protein, and Griffonia simplicifolia isolectin B4 followed by quantitative analysis was performed to assess motorneurons and different glial populations. Confocal microscopic analysis showed a 4-fold increase in the number of NeuN-positive neurons in the hyaluronic acid–gel group compared to both collagen ( p < 0.001) and control groups ( p < 0.001). Compared to controls, organotypic spinal cord slice cultures maintained on hyaluronic acid–based hydrogel showed 5.9-fold increased survival of choline acetyltransferance-positive motorneurons ( p = 0.008), 2-fold more numerous resting microglial cells in the white matter ( p = 0.031), and a 61.4% reduction in the number of activated microglial cells within the grey matter ( p = 0.05). Hyaluronic acid–based hydrogel had a shear modulus (G′) of ≈1200 Pascals (Pa), which was considerably higher than the ≈25 Pa measured for collagen gel. Soluble hyaluronic acid failed to improve tissue preservation. In conclusion, hyaluronic acid–based hydrogel improves neuronal and – most notably – motorneuron survival in organotypic spinal cord slice cultures and microglial activation is limited. The positive effects of hyaluronic acid–based hydrogel may at least in part be due to its mechanical properties.
Collapse
Affiliation(s)
- Nikos Schizas
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Ramiro Rojas
- Division of Polymer Chemistry, Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sujit Kootala
- Division of Polymer Chemistry, Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Brittmarie Andersson
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Jennie Pettersson
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Jons Hilborn
- Division of Polymer Chemistry, Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils P Hailer
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Hwang JY, Shin US, Jang WC, Hyun JK, Wall IB, Kim HW. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. NANOSCALE 2013; 5:487-97. [PMID: 23223857 DOI: 10.1039/c2nr31581e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Carbon nanotubes (CNTs) have become an intriguing and promising biomaterial platform for the regeneration and functional recovery of damaged nerve tissues. The unique electrical, structural and mechanical properties, diversity of available surface chemistry and cell-penetrating ability of CNTs have made them useful implantable matrices or carriers for the delivery of therapeutic molecules. Although there are still challenges being faced in the clinical applications of CNTs mainly due to their toxicity, many studies to overcome this issue have been published. Modification of CNTs with chemical groups to ensure their dissolution in aqueous media is one possible solution. Functionalization of CNTs with biologically relevant and effective molecules (biofunctionalization) is also a promising strategy to provide better biocompatibility and selectivity for neural regeneration. Here, we review recent advances in the use of CNTs to promote neural regeneration.
Collapse
Affiliation(s)
- Ji-Young Hwang
- Institute of Tissue Regeneration and Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Wong DY, Leveque JC, Brumblay H, Krebsbach PH, Hollister SJ, Lamarca F. Macro-architectures in spinal cord scaffold implants influence regeneration. J Neurotrauma 2008; 25:1027-37. [PMID: 18721107 DOI: 10.1089/neu.2007.0473] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Biomaterial scaffold architecture has not been investigated as a tunable source of influence on spinal cord regeneration. This study compared regeneration in a transected spinal cord within various designed-macro-architecture scaffolds to determine if these architectures alone could enhance regeneration. Three-dimensional (3-D) designs were created and molds were built on a 3-D printer. Salt-leached porous poly(epsilon-caprolactone) was cast in five different macro-architectures: cylinder, tube, channel, open-path with core, and open-path without core. The two open-path designs were created in this experiment to compare different supportive aspects of architecture provided by scaffolds and their influence on regeneration. Rats received T8 transections and implanted scaffolds for 1 and 3 months. Overall morphology and orientation of sections were characterized by H&E, luxol fast blue, and cresyl violet staining. Borders between intact gray matter and non-regenerated defect were observed from GFAP immunolabeling. Nerve fibers and regenerating axons were identified with Tuj-1 immunolabeling. The open-path designs allowed extension of myelinated fibers along the length of the defect both exterior to and inside the scaffolds and maintained their original defect length up to 3 months. In contrast, the cylinder, tube, and channel implants had a doubling of defect length from secondary damage and large scar and cyst formation with no neural tissue bridging. The open-path scaffold architectures enhanced spinal cord regeneration compared to the three other designs without the use of biological factors.
Collapse
Affiliation(s)
- Darice Y Wong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2106, USA
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
|
8
|
Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 2008; 8:39. [PMID: 18405347 PMCID: PMC2358889 DOI: 10.1186/1472-6750-8-39] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 04/11/2008] [Indexed: 12/22/2022] Open
Abstract
Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL) to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group) and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They can be knitted in meshes and various frames depending on the cytoarchitecture of the tissue to be regenerated. The versatility of this technique gives room for further scaffold improvements, like tuning the mechanical properties of the tubular structure or providing biomimetic functionalization. Moreover, these guidance conduits can be loaded with various fillers like collagen, fibrin, or self-assembling peptide gels or loaded with neurotrophic factors and seeded with cells. Electrospun scaffolds can also be synthesized in different micro-architectures to regenerate lesions in other tissues like skin and bone.
Collapse
Affiliation(s)
- Silvia Panseri
- Bioscience and Biotechnology Department, University of Milan-Bicocca, Piazza della Scienza 2, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li W, Guo Y, Wang H, Shi D, Liang C, Ye Z, Qing F, Gong J. Electrospun nanofibers immobilized with collagen for neural stem cells culture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:847-54. [PMID: 17665116 DOI: 10.1007/s10856-007-3087-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Accepted: 05/02/2007] [Indexed: 05/16/2023]
Abstract
Fibrous mats via electrospinning have been widely applied in tissue engineering. In this work, nanofibers were prepared via electrospinning from polymer with different content of carboxyl groups. A natural material, collagen, was then immobilized onto the nanofiber surface by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/N-Hydroxysuccinimide (NHS) activation process. It was found that the immobilization degree of collagen could be facilely modulated. The obtained collagen-modified nanofibers were used for neural stem cells culture, and unmodified nanofibers were used as a control. Results indicated that the modification of collagen could enhance the attachment and viability of the cultured neural stem cells.
Collapse
Affiliation(s)
- Wensheng Li
- Department of Neurosurgery, 3rd Affiliated Hospital of SUN YAT-SEN University, Guangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|