1
|
Salarvandian S, Digaleh H, Khodagholi F, Javadpour P, Asadi S, Zaman AAO, Dargahi L. Harmonic activity of glutamate dehydrogenase and neuroplasticity: The impact on aging, cognitive dysfunction, and neurodegeneration. Behav Brain Res 2025; 480:115399. [PMID: 39675635 DOI: 10.1016/j.bbr.2024.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
In recent years, glutamate has attracted significant attention for its roles in various brain processes. However, one of its key regulators, glutamate dehydrogenase (GDH), remains understudied despite its pivotal role in several biochemical pathways. Dysfunction or dysregulation of GDH has been implicated in aging and various neurological disorders, such as Alzheimer's disease and Parkinson's disease. In this review, the impact of GDH on aging, cognitive impairment, and neurodegenerative conditions, as exemplars of the phenomena that may affected by neuroplasticity, has been reviewed. Despite extensive research on synaptic plasticity, the precise influence of GDH on brain structure and function remains undiscovered. This review of existing literature on GDH and neuroplasticity reveals diverse and occasionally conflicting effects. Future research endeavors should aim to describe the precise mechanisms by which GDH influences neuroplasticity (eg. synaptic plasticity and neurogenesis), particularly in the context of human aging and disease progression. Studies on GDH activity have been limited by factors such as insufficient sample sizes and varying experimental conditions. Researchers should focus on investigating the molecular mechanisms by which GDH modulates neuroplasticity, utilizing various animal strains and species, ages, sexes, GDH isoforms, brain regions, and cell types. Understanding GDH's role in neuroplasticity may offer innovative therapeutic strategies for neurodegenerative and psychiatric diseases, potentially slowing the aging process and promoting brain regeneration.
Collapse
Affiliation(s)
- Shakiba Salarvandian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Orang Zaman
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pandey K, Srivastava P, Pandey SK, Johari S, Bhatnagar P, Sonane M, Mishra A. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Curr Mol Med 2025; 25:146-166. [PMID: 39318206 DOI: 10.2174/0115665240334785240913071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by loss of the neurons, excessive accumulation of misfolded Aβ and Tau proteins, and degeneration of neural synapses, primarily occurring in the neocortex and the hippocampus regions of the brain. AD Progression is marked by cognitive deterioration, memory decline, disorientation, and loss of problem-solving skills, as well as language. Due to limited comprehension of the factors contributing to AD and its severity due to neuronal loss, even today, the medications approved by the U.S. Food and Drug Administration (FDA) are not precisely efficient and curative. Stem cells possess great potential in aiding AD due to their self-renewal, proliferation, and differentiation properties. Stem cell therapy can aid by replacing the lost neurons, enhancing neurogenesis, and providing an enriched environment to the pre-existing neural cells. Stem cell therapy has provided us with promising results in regard to the animal AD models, and even pre-clinical studies have shown rather positive results. Cell replacement therapies are potential curative means to treat AD, and there are a number of undergoing human clinical trials to make Stem Cell therapy accessible for AD patients. In this review, we aim to discuss the AD pathophysiology and varied stem cell types and their application.
Collapse
Affiliation(s)
- Kratika Pandey
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Bhatnagar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, Delhi, 110029, India
| | - Madhavi Sonane
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| |
Collapse
|
3
|
Puranik N, Song M. Glutamate: Molecular Mechanisms and Signaling Pathway in Alzheimer's Disease, a Potential Therapeutic Target. Molecules 2024; 29:5744. [PMID: 39683904 DOI: 10.3390/molecules29235744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Gamma-glutamate is an important excitatory neurotransmitter in the central nervous system (CNS), which plays an important role in transmitting synapses, plasticity, and other brain activities. Nevertheless, alterations in the glutamatergic signaling pathway are now accepted as a central element in Alzheimer's disease (AD) pathophysiology. One of the most prevalent types of dementia in older adults is AD, a progressive neurodegenerative illness brought on by a persistent decline in cognitive function. Since AD has been shown to be multifactorial, a variety of pharmaceutical targets may be used to treat the condition. N-methyl-D-aspartic acid receptor (NMDAR) antagonists and acetylcholinesterase inhibitors (AChEIs) are two drug classes that the Food and Drug Administration has authorized for the treatment of AD. The AChEIs approved to treat AD are galantamine, donepezil, and rivastigmine. However, memantine is the only non-competitive NMDAR antagonist that has been authorized for the treatment of AD. This review aims to outline the involvement of glutamate (GLU) at the molecular level and the signaling pathways that are associated with AD to demonstrate the drug target therapeutic potential of glutamate and its receptor. We will also consider the opinion of the leading authorities working in this area, the drawback of the existing therapeutic strategies, and the direction for the further investigation.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Briceno Silva G, Arvelaez Pascucci J, Karim H, Kaur G, Olivas Lerma R, Mann AK, Gnanasekaran S, Thomas Garcia KD. Influence of the Onset of Menopause on the Risk of Developing Alzheimer's Disease. Cureus 2024; 16:e69124. [PMID: 39262936 PMCID: PMC11387275 DOI: 10.7759/cureus.69124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Abstract
Menopause is a natural phase marked by the permanent cessation of menstrual cycles, occurring when the production of reproductive hormones from the ovaries stops for at least 12 consecutive months. Studies have suggested a potential connection between menopause and a heightened risk of developing Alzheimer's disease (AD), underscoring the significant role of reduced estrogen levels in the development of AD. Estrogen plays a crucial role in brain metabolism, influencing energy metabolism, synaptic plasticity, and cognitive functions. The cognitive benefits associated with hormone replacement therapy (HRT) are believed to be linked to estrogen's neuroprotective effects, either through direct action on the brain or indirectly by improving cardiovascular health. Extensive literature supports the positive impact of estrogen on brain cells. While the physiological effects of estrogen on the brain have not been consistently replicated in clinical trials, further research is crucial to provide more definitive recommendations to menopausal patients regarding the influence of HRT on AD. This review aims to comprehensively explore the interplay between menopause and AD, as well as the potential of HRT to mitigate cognitive decline in post-menopausal individuals.
Collapse
Affiliation(s)
| | | | - Hajira Karim
- Internal Medicine, Istanbul Medipol University, Istanbul, TUR
| | - Gurpreet Kaur
- Neurosurgery, Institute of Human Behaviour and Allied Sciences, New Delhi, IND
| | | | | | - Sulochana Gnanasekaran
- Internal Medicine, New York Medical College, St. Mary's and St. Clare's Hospital, Passaic, USA
| | | |
Collapse
|
5
|
Al Khashali H, Ray R, Darweesh B, Wozniak C, Haddad B, Goel S, Seidu I, Khalil J, Lopo B, Murshed N, Guthrie J, Heyl D, Evans HG. Amyloid Beta Leads to Decreased Acetylcholine Levels and Non-Small Cell Lung Cancer Cell Survival via a Mechanism That Involves p38 Mitogen-Activated Protein Kinase and Protein Kinase C in a p53-Dependent and -Independent Manner. Int J Mol Sci 2024; 25:5033. [PMID: 38732252 PMCID: PMC11084752 DOI: 10.3390/ijms25095033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aβ), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aβ or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aβ 1-42, Aβ 1-40, Aβ 1-28, and Aβ 25-35. AChE and p53 activities increased upon A549 cell treatment with Aβ, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aβ effects. Aβ increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aβ on those activities. Moreover, the negative effect of Aβ on cell viability was diminished by cell co-treatment with ACh.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (H.A.K.); (R.R.); (B.D.); (C.W.); (B.H.); (S.G.); (I.S.); (J.K.); (B.L.); (N.M.); (J.G.); (D.H.)
| |
Collapse
|
6
|
Vejandla B, Savani S, Appalaneni R, Veeravalli RS, Gude SS. Alzheimer's Disease: The Past, Present, and Future of a Globally Progressive Disease. Cureus 2024; 16:e51705. [PMID: 38313929 PMCID: PMC10838557 DOI: 10.7759/cureus.51705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a significant 21st-century public health challenge. This article delves into AD's neurodegenerative complexities, highlighting cognitive decline, memory impairment, and societal burdens. Mechanistically, protein misfolding, amyloid-beta (Aβ) pathway abnormalities, and genetic/environmental factors are discussed. The pivotal amyloid hypothesis is dissected, focusing on Aβ aggregation's role in synaptic dysfunction and neurodegeneration. The review showcases promising therapeutic strategies, including anti-amyloid antibodies and β/γ-secretase inhibitors targeting Aβ production. Notably, the FDA-approved Lecanemab signifies a breakthrough, slowing disease progression. Anti-Tau therapies' emergence is highlighted, addressing late-stage intervention. Tau aggregation blockers and anti-Tau antibodies offer potential against intracellular tau pathology. The review underscores collaborative efforts to uncover AD's secrets and pave the way for memory preservation.
Collapse
Affiliation(s)
| | - Sarah Savani
- Medicine, Loyola University Chicago Stritch School of Medicine, Chicago, USA
| | | | | | - Sai Sravya Gude
- Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, USA
| |
Collapse
|
7
|
Ikrin AN, Moskalenko AM, Mukhamadeev RR, de Abreu MS, Kolesnikova TO, Kalueff AV. The emerging complexity of molecular pathways implicated in mouse self-grooming behavior. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110840. [PMID: 37580009 DOI: 10.1016/j.pnpbp.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rodent self-grooming is an important complex behavior, and its deficits are translationally relevant to a wide range of neuropsychiatric disorders. Here, we analyzed a comprehensive dataset of 227 genes whose mutations are known to evoke aberrant self-grooming in mice. Using these genes, we constructed the network of their established protein-protein interactions (PPI), yielding several distinct molecular clusters related to postsynaptic density, the Wnt signaling, transcription factors, neuronal cell cycle, NOS neurotransmission, microtubule regulation, neuronal differentiation/trafficking, neurodevelopment and mitochondrial function. Utilizing further bioinformatics analyses, we also identified novel central ('hub') proteins within these clusters, whose genes may also be implicated in aberrant self-grooming and other repetitive behaviors in general. Untangling complex molecular pathways of this important behavior using in silico approaches contributes to our understanding of related neurological disorders, and may suggest novel potential targets for their pharmacological or gene therapy.
Collapse
Affiliation(s)
- Aleksey N Ikrin
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anastasia M Moskalenko
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Radmir R Mukhamadeev
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Murilo S de Abreu
- Moscow Institute of Science and Technology, Dolgoprudny 197028, Russia.
| | - Tatiana O Kolesnikova
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Allan V Kalueff
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 194021, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia; Neuroscience Group, Ural Federal University, Ekaterinburg 620002, Russia; Laboratory of Translational Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia.
| |
Collapse
|
8
|
Regulation of the Soluble Amyloid Precursor Protein α (sAPPα) Levels by Acetylcholinesterase and Brain-Derived Neurotrophic Factor in Lung Cancer Cell Media. Int J Mol Sci 2022; 23:ijms231810746. [PMID: 36142659 PMCID: PMC9500850 DOI: 10.3390/ijms231810746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In comparing two human lung cancer cells, we previously found lower levels of acetylcholinesterase (AChE) and intact amyloid-β40/42 (Aβ), and higher levels of mature brain-derived neurotrophic factor (mBDNF) in the media of H1299 cells as compared to A549 cell media. In this study, we hypothesized that the levels of soluble amyloid precursor protein α (sAPPα) are regulated by AChE and mBDNF in A549 and H1299 cell media. The levels of sAPPα were higher in the media of H1299 cells. Knockdown of AChE led to increased sAPPα and mBDNF levels and correlated with decreased levels of intact Aβ40/42 in A549 cell media. AChE and mBDNF had opposite effects on the levels of Aβ and sAPPα and were found to operate through a mechanism involving α-secretase activity. Treatment with AChE decreased sAPPα levels and simultaneously increased the levels of intact Aβ40/42 suggesting a role of the protein in shifting APP processing away from the non-amyloidogenic pathway and toward the amyloidogenic pathway, whereas treatment with mBDNF led to opposite effects on those levels. We also show that the levels of sAPPα are regulated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)1/2, phosphoinositide 3 Kinase (PI3K), but not by protein kinase A (PKA).
Collapse
|
9
|
Ahmad F, Sachdeva P. A consolidated review on stem cell therapy for treatment and management of Alzheimer's disease. Aging Med (Milton) 2022; 5:182-190. [PMID: 36247342 PMCID: PMC9549310 DOI: 10.1002/agm2.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and affects around 50 million people around the globe. AD is diagnosed mainly through imaging techniques and to date only five drugs are approved for management of AD but no promising treatment is available for AD. So in this review, we are focusing on stem cell therapy for AD. This review will cover all stem cells like mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and neural stem cells. Clinical trials of AD have also been discussed. Finally, limitations of stem cells are discussed with ongoing clinical trials, and in the future stem cell therapy can be used for treatment of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
10
|
Bhat A, Dalvi H, Jain H, Rangaraj N, Singh SB, Srivastava S. Perspective insights of repurposing the pleiotropic efficacy of statins in neurodegenerative disorders: An expository appraisal. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100012. [PMID: 34909647 PMCID: PMC8663947 DOI: 10.1016/j.crphar.2020.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 10/26/2022] Open
Abstract
Neurodegenerative disorders which affects a larger population pose a great clinical challenge. These disorders impact the quality of life of an individual by damaging the neurons, which are the unit cells of the brain. Clinicians are faced with the grave challenge of inhibiting the progression of these diseases as available treatment options fail to meet the clinical demand. Thus, treating the disease/disorder symptomatically is the Hobson's choice. The goal of the researchers is to introduce newer therapies in this segment and introducing a new molecule will take long years of development. Hence, drug repurposing/repositioning can be a better substitute in comparison to time consuming and expensive drug discovery and development cycle. Presently, a paradigm shift towards the re-purposing of drugs can be witnessed. Statins which have been previously approved as anti-hyperlipidemic agents are in the limelight of research for re-purposed drugs. Owing to their anti-inflammatory and antioxidant nature, statins act as neuroprotective in several brain disorders. Further they attenuate the amyloid plaques and protein aggregation which are the triggering factors in the Alzheimer's and Parkinson's respectively. In case of Huntington disease and Multiple sclerosis they help in improving the psychomotor symptoms and stimulate remyelination thus acting as neuroprotective. This article reviews the potential of statins in treating neurodegenerative disorders along with a brief discussion on the safety concerns associated with use of statins and human clinical trial data linked with re-tasking statins for neurodegenerative disorders along with the regulatory perspectives involved with the drug repositioning.
Collapse
Affiliation(s)
- Aditi Bhat
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Harshita Dalvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Harsha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
11
|
Dorandish S, Williams A, Atali S, Sendo S, Price D, Thompson C, Guthrie J, Heyl D, Evans HG. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep 2021; 11:9708. [PMID: 33958632 PMCID: PMC8102533 DOI: 10.1038/s41598-021-88574-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we set out to identify regulators of intact amyloid-β40/42 (Aβ) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aβ levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aβ levels in the media. However, increased Aβ levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aβ levels in the media. Differences in Aβ levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aβ levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aβ levels in the media, however, MMP2 knockdown led to Aβ levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aβ immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aβ in lung cancer cells.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sophia Sendo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Colton Thompson
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
12
|
Atali S, Dorandish S, Devos J, Williams A, Price D, Taylor J, Guthrie J, Heyl D, Evans HG. Interaction of amyloid beta with humanin and acetylcholinesterase is modulated by ATP. FEBS Open Bio 2020; 10:2805-2823. [PMID: 33145964 PMCID: PMC7714071 DOI: 10.1002/2211-5463.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Humanin (HN) is known to bind amyloid beta (Aβ)‐inducing cytoprotective effects, while binding of acetylcholinesterase (AChE) to Aβ increases its aggregation and cytotoxicity. Previously, we showed that binding of HN to Aβ blocks aggregation induced by AChE and that HN decreases but does not abolish Aβ‐AChE interactions in A549 cell media. Here, we set out to shed light on factors that modulate the interactions of Aβ with HN and AChE. We found that binding of either HN or AChE to Aβ is not affected by heparan sulfate, while ATP, thought to reduce misfolding of Aβ, weakened interactions between AChE and Aβ but strengthened those between Aβ and HN. Using media from either A549 or H1299 lung cancer cells, we observed that more HN was bound to Aβ upon addition of ATP, while levels of AChE in a complex with Aβ were decreased by ATP addition to A549 cell media. Exogenous addition of ATP to either A549 or H1299 cell media increased interactions of endogenous HN with Aβ to a comparable extent despite differences in AChE expression in the two cell lines, and this was correlated with decreased binding of exogenously added HN to Aβ. Treatment with exogenous ATP had no effect on cell viability under all conditions examined. Exogenously added ATP did not affect viability of cells treated with AChE‐immunodepleted media, and there was no apparent protection against the cytotoxicity resulting from immunodepletion of HN. Moreover, exogenously added ATP had no effect on the relative abundance of oligomer versus total Aβ in either cell line.
Collapse
Affiliation(s)
- Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jonathan Devos
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jaylen Taylor
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| |
Collapse
|
13
|
Price D, Dorandish S, Williams A, Iwaniec B, Stephens A, Marshall K, Guthrie J, Heyl D, Evans HG. Humanin Blocks the Aggregation of Amyloid-β Induced by Acetylcholinesterase, an Effect Abolished in the Presence of IGFBP-3. Biochemistry 2020; 59:1981-2002. [PMID: 32383868 PMCID: PMC8193794 DOI: 10.1021/acs.biochem.0c00274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is known that the humanin (HN) peptide binding to amyloid-β (Aβ) protects against its cytotoxic effects, while acetylcholinesterase (AChE) binding to Aβ increases its aggregation and cytotoxicity. HN is also known to bind the insulin-like growth factor binding protein-3 (IGFBP-3). Here, we examined the regulation of Aβ conformations by HN, AChE, and IGFBP-3 both in vitro and in the conditioned media from A549 and H1299 lung cancer cells. Our in vitro results showed the following: IGFBP-3 binds HN and blocks it from binding Aβ in the absence or presence of AChE; HN and AChE can simultaneously bind Aβ but not when in the presence of IGFBP-3; HN is unable to reduce the aggregation of Aβ in the presence of IGFBP-3; and HN abolishes the aggregation of Aβ induced by the addition of AChE in the absence of IGFBP-3. In the media, AChE and HN can simultaneously bind Aβ. While both AChE and HN are detected when using 6E10 Aβ antibodies, only AChE is detected when using the Aβ 17-24 antibody 4G8, the anti-oligomer A11, and the anti-amyloid fibril LOC antibodies. No signal was observed for IGFBP-3 with any of the anti-amyloid antibodies used. Exogenously added IGFBP-3 reduced the amount of HN found in a complex when using 6E10 antibodies and correlated with a concomitant increase in the amyloid oligomers. Immunodepletion of HN from the media of the A549 and H1299 cells increased the relative abundance of the oligomer vs the total amount of Aβ, the A11-positive prefibrillar oligomers, and to a lesser extent the LOC-positive fibrillar oligomers, and was also correlated with diminished cell viability and increased apoptosis.
Collapse
Affiliation(s)
- Deanna Price
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Sadaf Dorandish
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Asana Williams
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Brandon Iwaniec
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Alexis Stephens
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Keyan Marshall
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Jeffrey Guthrie
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Deborah Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Hedeel Guy Evans
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
14
|
Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7039138. [PMID: 32411333 PMCID: PMC7206886 DOI: 10.1155/2020/7039138] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older people, and the prevalence of this disease is estimated to rise quickly in the upcoming years. Unfortunately, almost all of the drug candidates tested for AD until now have failed to exhibit any efficacy. Henceforth, there is an increased necessity to avert and/or slow down the advancement of AD. It is known that one of the major pathological characteristics of AD is the presence of senile plaques (SPs) in the brain. These SPs are composed of aggregated amyloid beta (Aβ), derived from the amyloid precursor protein (APP). Pharmaceutical companies have conducted a number of studies in order to identify safe and effective anti-Aβ drugs to combat AD. It is known that α-, β-, and γ-secretases are the three proteases that are involved in APP processing. Furthermore, there is a growing interest in these proteases, as they have a contribution to the modulation and production of Aβ. It has been observed that small compounds can be used to target these important proteases. Indeed, these compounds must satisfy the common strict requirements of a drug candidate targeted for brain penetration and selectivity toward different proteases. In this article, we have focused on the auspicious molecules which are under development for targeting APP-processing enzymes. We have also presented several anti-AD molecules targeting Aβ accumulation and phosphorylation signaling in APP processing. This review highlights the structure-activity relationship and other physicochemical features of several pharmacological candidates in order to successfully develop new anti-AD drugs.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
15
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
16
|
Chauhan NB. MicroRNA silencing: A promising therapy for Alzheimer's disease. THE NEUROSCIENCE CHRONICLES 2020; 1:11-15. [PMID: 35991586 PMCID: PMC9389881 DOI: 10.46439/neuroscience.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a global health crisis currently afflicting ~6 million Americans (and ~40 million people worldwide). By the middle of the century, these numbers will stagger by ~16 million Americans (and ~152 million people worldwide) suffering from AD, if breakthrough disease-modifying treatments are not discovered. Currently, there are no treatments to prevent, halt or cure the disease. Multiple independent studies on brain gene expression patterns have indicated that in AD about 1/3rd of the genes are upregulated while the rest 2/3rd of the genes are downregulated. In that regard, AD therapeutics focused on antagomiR-mediated silencing of"upregulated"microRNAs (miRs) may be more feasible since upregulated miRs in AD continue to increase with the disease progression, as opposed to agomiR-mediated overexpression of down-regulated miRs with unpredictable reduced presence and relative short-life of 1-3h under pathological conditions in AD brain. Studies reported thus far indicate that most of the upregulated pathogenic genes in AD are regulated by pro-inflammatory microRNAs (miRs). Given the precedence of chronic neuroinflammation in triggering AD-like neurodegeneration and multifactorial nature of AD, silencing inflammation-specific micro-RNAs using antisense-microRNAs may be an effective adjuvant therapeutic strategy to prevent, halt or cure AD.
Collapse
Affiliation(s)
- Neelima B. Chauhan
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, United States
| |
Collapse
|
17
|
Fan L, Qiu XX, Zhu ZY, Lv JL, Lu J, Mao F, Zhu J, Wang JY, Guan XW, Chen J, Ren J, Ye JM, Zhao YH, Li J, Shen X. Nitazoxanide, an anti-parasitic drug, efficiently ameliorates learning and memory impairments in AD model mice. Acta Pharmacol Sin 2019; 40:1279-1291. [PMID: 31000769 PMCID: PMC6786387 DOI: 10.1038/s41401-019-0220-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is characterized by both accumulation of β-amyloid (Aβ) plaque and formation of neurofibrillary tangles in the brain. Recent evidence shows that autophagy activation may potently promote intracellular Aβ clearance. Thus targeting autophagy becomes a promising strategy for discovery of drug leads against AD. In the present study, we established a platform to discover autophagy stimulator and screened the lab in-house FDA-approved drug library. We found that anti-parasitic drug nitazoxanide (NTZ) was an autophagy activator and could efficiently improve learning and memory impairments in APP/PS1 transgenic mice. In BV2 cells and primary cortical astrocytes, NTZ stimulated autophagy and promoted Aβ clearance by inhibiting both PI3K/AKT/mTOR/ULK1 and NQO1/mTOR/ULK1 signaling pathways; NTZ treatment attenuated LPS-induced inflammation by inhibiting PI3K/AKT/IκB/NFκB signaling. In SH-SY5Y cells and primary cortical neurons, NTZ treatment restrained tau hyperphosphorylation through inhibition of PI3K/AKT/GSK3β pathway. The beneficial effects and related signaling mechanisms from the in vitro studies were also observed in APP/PS1 transgenic mice following administration of NTZ (90 mg·kg-1·d-1, ig) for 100 days. Furthermore, NTZ administration decreased Aβ level and senile plaque formation in the hippocampus and cerebral cortex of APP/PS1 transgenic mice, and improved learning and memory impairments in Morris water maze assay. In conclusion, our results highlight the potential of NTZ in the treatment of AD.
Collapse
Affiliation(s)
- Lei Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xia Qiu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhi-Yuan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Lu Lv
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jia-Ying Wang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Wei Guan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Ming Ye
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, VIC, 3083, Australia
| | - Yong-Hua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xu Shen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
18
|
Uddin MS, Kabir MT. Emerging Signal Regulating Potential of Genistein Against Alzheimer's Disease: A Promising Molecule of Interest. Front Cell Dev Biol 2019; 7:197. [PMID: 31620438 PMCID: PMC6763641 DOI: 10.3389/fcell.2019.00197] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/02/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, irreversible brain disorder characterized by pathological aggregation of the amyloid-β peptide (Aβ) and tau protein; both of these are toxic to neurons. Currently, natural products are regarded as an alternative approach to discover novel multipotent drugs against AD. Dietary soy isoflavone genistein is one of the examples of such agents that occurs naturally and is known to exert a number of beneficial health effects. It has been observed that genistein has the capacity to improve the impairments triggered by Aβ and also it possesses the antioxidant potential to scavenge the AD-mediated generation of free radicals. Furthermore, genistein can interact directly with the targeted signaling proteins and also can stabilize their activity to combat AD. In order to advance the development of AD treatment, a better comprehension of the direct interactions of target proteins and genistein might prove beneficial. Therefore, this article focuses on the therapeutic effects and molecular targets of genistein, which has been found to target directly the Aβ and tau to control the intracellular signaling pathways responsible for neurons death in the AD brain.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | |
Collapse
|
19
|
Avenanthramide-C Restores Impaired Plasticity and Cognition in Alzheimer's Disease Model Mice. Mol Neurobiol 2019; 57:315-330. [PMID: 31332763 DOI: 10.1007/s12035-019-01707-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and dementia with no effective treatment. Here, we investigated a novel compound from oats named avenanthramide-C (Avn-C), on AD-related memory impairment and behavioral deficits in transgenic mouse models. Acute hippocampal slices of wild-type or AD transgenic mice were treated with Avn-C in the presence or absence of oligomeric Aβ42. LTP analyses and immunoblotting were performed to assess the effect of Avn-C on Aβ-induced memory impairment. To further investigate the effect of Avn-C on impaired memory and Aβ pathology, two different AD transgenic mice (Tg2576 and 5XFAD) models were orally treated with either Avn-C or vehicle for 2 weeks. They were then assessed for the effect of the treatment on neuropathologies and behavioral impairments. Avn-C reversed impaired LTP in both ex vivo- and in vivo-treated AD mice hippocampus. Oral administration (6 mg/kg per day) for 2 weeks in AD mice leads to improved recognition and spatial memory, reduced caspase-3 cleavage, reversed neuroinflammation, and to accelerated glycogen synthase kinase-3β (pS9GSK-3β) and interleukin (IL-10) levels. Avn-C exerts its beneficial effects by binding to α1A adrenergic receptors to stimulate adenosine monophosphate-activated kinase (AMPK). All of the beneficial effects of Avn-C on LTP retrieval could be blocked by prazosin hydrochloride, a specific inhibitor of α1A adrenergic receptors. Our findings provide evidence, for the first time, that oats' Avn-C reverses the AD-related memory and behavioral impairments, and establish it as a potential candidate for Alzheimer's disease drug development.
Collapse
|
20
|
Specific keratinase derived designer peptides potently inhibit Aβ aggregation resulting in reduced neuronal toxicity and apoptosis. Biochem J 2019; 476:1817-1841. [DOI: 10.1042/bcj20190183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Compelling evidence implicates self-assembly of amyloid-β (Aβ1–42) peptides into soluble oligomers and fibrils as a major underlying event in Alzheimer's disease (AD) pathogenesis. Herein, we employed amyloid-degrading keratinase (kerA) enzyme as a key Aβ1–42-binding scaffold to identify five keratinase-guided peptides (KgPs) capable of interacting with and altering amyloidogenic conversion of Aβ1–42. The KgPs showed micromolar affinities with Aβ1–42 and abolished its sigmoidal amyloidogenic transition, resulting in abrogation of fibrillogenesis. Comprehensive assessment using dynamic light scattering (DLS), atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy showed that KgPs induced the formation of off-pathway oligomers comparatively larger than the native Aβ1–42 oligomers but with a significantly reduced cross-β signature. These off-pathway oligomers exhibited low immunoreactivity against oligomer-specific (A11) and fibril-specific (OC) antibodies and rescued neuronal cells from Aβ1–42 oligomer toxicity as well as neuronal apoptosis. Structural analysis using molecular docking and molecular dynamics (MD) simulations showed two preferred KgP binding sites (Lys16–Phe20 and Leu28–Val39) on the NMR ensembles of monomeric and fibrillar Aβ1–42, indicating an interruption of crucial hydrophobic and aromatic interactions. Overall, our results demonstrate a new approach for designing potential anti-amyloid molecules that could pave way for developing effective therapeutics against AD and other amyloid diseases.
Collapse
|
21
|
Tsoy A, Saliev T, Abzhanova E, Turgambayeva A, Kaiyrlykyzy A, Akishev M, Saparbayev S, Umbayev B, Askarova S. The Effects of Mobile Phone Radiofrequency Electromagnetic Fields on β-Amyloid-Induced Oxidative Stress in Human and Rat Primary Astrocytes. Neuroscience 2019; 408:46-57. [PMID: 30953670 DOI: 10.1016/j.neuroscience.2019.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022]
Abstract
Amyloid beta peptide (Aβ) is implicated in the development of pathological reactions associated with Alzheimer's disease (AD), such as oxidative stress, neuro-inflammation and death of brain cells. Current pharmacological approaches to treat AD are not able to control the deposition of Aβ and suppression of Aβ-induced cellular response. There is a growing body of evidence that exposure to radiofrequency electromagnetic field (RF-EMF) causes a decrease of beta-amyloid deposition in the brains and provides cognitive benefits to Alzheimer's Tg mice. Herein, we investigated the effects of mobile phone radiofrequency EMF of 918 MHz on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), activity of NADPH-oxidase, and phosphorylation of p38MAPK and ERK1/2 kinases in human and rat primary astrocytes in the presence of Aβ42 and H2O2. Our data demonstrate that EMF is able to reduce Aβ42- and H2O2-induced cellular ROS, abrogate Aβ₄₂-induced production of mitochondrial ROS and the co-localization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase, while increasing MMP, and inhibiting H2O2-induced phosphorylation of p38MAPK and ERK1/2 in primary astrocytes. Yet, EMF was not able to modulate alterations in the phosphorylation state of the MAPKs triggered by Aβ42. Our findings provide an insight into the mechanisms of cellular and molecular responses of astrocytes on RF-EMF exposure and indicate the therapeutic potential of RF-EMF for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Timur Saliev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan; S.D. Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty, 050000, Kazakhstan
| | - Elvira Abzhanova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Anel Turgambayeva
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Aiym Kaiyrlykyzy
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Mars Akishev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Samat Saparbayev
- National Scientific Medical Center, 42 Abylai Khan Ave, Astana, 010000, Kazakhstan, 010009
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| |
Collapse
|
22
|
Jeon SG, Song EJ, Lee D, Park J, Nam Y, Kim JI, Moon M. Traditional Oriental Medicines and Alzheimer's Disease. Aging Dis 2019; 10:307-328. [PMID: 31435482 PMCID: PMC6667206 DOI: 10.14336/ad.2018.0328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD), which is the most major cause of dementia, is a progressive neurodegenerative disease that affects cognitive functions. Even though the prevalence of AD is continuously increasing, few drugs including cholinesterase inhibitors and N-methyl D-aspartate-receptor antagonists were approved to treat AD. Because the clinical trials of AD drugs with single targets, such as β-amyloid and tau, have failed, the development of multi-target drugs that ameliorate many of the symptoms of AD is needed. Thus, recent studies have investigated the effects and underlying mechanisms of herbal formulae consisting of various herb combinations used to treat AD. This review discusses the results of clinical and nonclinical studies of the therapeutic efficacy in AD and underlying mechanisms of the herbal formulae of traditional Oriental medicines and bioactive compounds of medicinal plants.
Collapse
Affiliation(s)
- Seong Gak Jeon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun Ji Song
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dongje Lee
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Junyong Park
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- 2Center for Organic Devices and Advanced Materials, Kyungsung University, Busan 48434, Republic of Korea
| | - Jin-Il Kim
- 3Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
23
|
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg Chem 2018; 84:363-371. [PMID: 30530107 DOI: 10.1016/j.bioorg.2018.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder with diverse underlying pathological processes. Several lines of evidence suggest that BACE1 is a key enzyme in the pathogenesis of AD and its inhibition is of particular importance in AD treatment. Ten new 3-hydrazinyl-1,2,4-triazines bearing pendant aryl phenoxy methyl-1,2,3-triazole were synthesized as multifunctional ligands against AD. We show that compounds containing Cl and NO2 groups at the para position of the phenyl ring, namely compounds 7c (IC50 = 8.55 ± 3.37 µM) and 7d (IC50 = 11.42 ± 2.01 µM), possess promising BACE1 inhibitory potential. Furthermore, we assessed the neuroprotective activities of 7c and 7d derivatives in PC12 neuronal cell line, which showed moderate protection against amyloid β peptide toxicity. In addition, compound 7d demonstrated metal chelating activity and moderate antioxidant potential (IC50 = 44.42 ± 7.33 µM). Molecular docking studies of these molecules revealed high-affinity binding to several amino acids of BACE1, which are essential for efficient inhibition. These results demonstrate that 1,2,4-triazine derivatives bearing an aryl phenoxy methyl-1,2,3-triazole have promising properties as therapeutic agents for AD.
Collapse
Affiliation(s)
- Mahnaz Yazdani
- Department of Chemistry, Khozestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran; Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Rashid Badri
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Velasco-Estevez M, Mampay M, Boutin H, Chaney A, Warn P, Sharp A, Burgess E, Moeendarbary E, Dev KK, Sheridan GK. Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes. Front Aging Neurosci 2018; 10:332. [PMID: 30405400 PMCID: PMC6204357 DOI: 10.3389/fnagi.2018.00332] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023] Open
Abstract
A defining pathophysiological hallmark of Alzheimer's disease (AD) is the amyloid plaque; an extracellular deposit of aggregated fibrillar Aβ1-42 peptides. Amyloid plaques are hard, brittle structures scattered throughout the hippocampus and cerebral cortex and are thought to cause hyperphosphorylation of tau, neurofibrillary tangles, and progressive neurodegeneration. Reactive astrocytes and microglia envelop the exterior of amyloid plaques and infiltrate their inner core. Glia are highly mechanosensitive cells and can almost certainly sense the mismatch between the normally soft mechanical environment of the brain and very stiff amyloid plaques via mechanosensing ion channels. Piezo1, a non-selective cation channel, can translate extracellular mechanical forces to intracellular molecular signaling cascades through a process known as mechanotransduction. Here, we utilized an aging transgenic rat model of AD (TgF344-AD) to study expression of mechanosensing Piezo1 ion channels in amyloid plaque-reactive astrocytes. We found that Piezo1 is upregulated with age in the hippocampus and cortex of 18-month old wild-type rats. However, more striking increases in Piezo1 were measured in the hippocampus of TgF344-AD rats compared to age-matched wild-type controls. Interestingly, repeated urinary tract infections with Escherichia coli bacteria, a common comorbidity in elderly people with dementia, caused further elevations in Piezo1 channel expression in the hippocampus and cortex of TgF344-AD rats. Taken together, we report that aging and peripheral infection augment amyloid plaque-induced upregulation of mechanoresponsive ion channels, such as Piezo1, in astrocytes. Further research is required to investigate the role of astrocytic Piezo1 in the Alzheimer's brain, whether modulating channel opening will protect or exacerbate the disease state, and most importantly, if Piezo1 could prove to be a novel drug target for age-related dementia.
Collapse
Affiliation(s)
- María Velasco-Estevez
- Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Myrthe Mampay
- Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
| | - Aisling Chaney
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Peter Warn
- Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom
| | - Andrew Sharp
- Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom
| | - Ellie Burgess
- Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Kumlesh K. Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Graham K. Sheridan
- Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
25
|
Yadav K, Singh D, Singh MR. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol 2018; 118:1796-1810. [PMID: 30017989 DOI: 10.1016/j.ijbiomac.2018.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is defined as a long-lasting multifactorial inflammatory autoimmune skin condition precisely characterized by delimited, erythematic papules with adherent shiny scales. The conditions are led by hyperproliferative responses of epidermis due to hyperactivation and immature keratinocytes production. The psoriatic skin consists of the thickened epidermal layer, in concurrence with inflammatory exudates in the dermis mainly of dendritic cells, neutrophils, T cells, and macrophages, contributing to the distinct manifestation of psoriatic lesions. It consents to multifaceted and discrete pathology due to the genetic and immunological alteration resulting from abnormal expression of various regulatory and structural proteins. These proteins are associated with various cellular and sub-cellular activities. Therefore, the presence of protein in a pathological cellular environment in the psoriatic lesions as well as in serum could be a great avenue for the insight of pathomechanism, anticipation and diagnosis of psoriasis. Research of protein biomarker in psoriasis is yet a developing realm to be explored by both fundamental and clinical researchers. This review is an attempt to assimilate the current discoveries and revelations of different proteins as a biomarker and their importance in pathogenesis, diagnosis, treatment, and anticipation of both the inflammatory and other dermatological aspects of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
26
|
Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M. Rhamnolipids, Microbial Virulence Factors, in Alzheimer's Disease. J Alzheimers Dis 2018; 59:209-222. [PMID: 28598837 DOI: 10.3233/jad-161020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) has been attributed to chronic bacterial infections. The recognition of human microbiota as a substantial contributor to health and disease is relatively recent and growing. During evolution, mammals live in a symbiotic state with myriads of microorganisms that survive at a diversity of tissue micro-surroundings. Microbes produce a plethora of secretory products [amyloids, lipopolysaccharides, virulence factors rhamnolipids (RLs), toxins, and a great number of neuroactive compounds]. The contribution of infectious microbial components to the pathophysiology of the human central nervous system including AD is considered potentially substantial, but the involvement of the RLs has never been reported. Here, RLs were isolated from serum and identified through various conventional methods including the colorimetric orcinol method, thin-layer chromatography, attenuated total reflection Fourier transform infrared (ATR-FTIR), and dot blot using antibodies against RLs. Dot blot demonstrated elevated RL levels in sera of AD patients compared to controls (p = 0.014). Moreover, ELISA showed similarly elevated RL levels in cerebrospinal fluid of both AD (0.188 versus 0.080) (p = 0.04) and mild cognitive impairment (0.188 versus 0.129) (p = 0.088) patients compared to healthy, and are well-correlated with the AD stages severity assessed using the Mini-Mental State Examination. These results provide conclusive evidence for the newly-reported implication of RLs in AD, adding it to the list of bacterial components, opening new avenues for AD investigation. Moreover, they strengthen and vindicate the divergence of research toward the exploration of bacterial involvement in AD generation and progression.
Collapse
Affiliation(s)
- Eleni Andreadou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Makrina Daniilidou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magda Tsolaki
- 3rd Department of Neurology, "G. Papanikolaou" General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
27
|
Ross SP, Baker KE, Fisher A, Hoff L, Pak ES, Murashov AK. miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer's Disease by Silencing Kremen1. Front Cell Neurosci 2018; 12:87. [PMID: 29643768 PMCID: PMC5883862 DOI: 10.3389/fncel.2018.00087] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 12/22/2022] Open
Abstract
Synapse loss is well regarded as the underlying cause for the progressive decline of memory function over the course of Alzheimer's disease (AD) development. Recent observations suggest that the accumulation of the Wnt antagonist Dickkopf-1 (Dkk1) in the AD brain plays a critical role in triggering synaptic degeneration. Mechanistically, Dkk1 cooperates with Kremen1 (Krm1), its transmembrane receptor, to block the Wnt/β-catenin signaling pathway. Here, we show that silencing Krm1 with miR-431 prevents amyloid-β-mediated synapse loss in cortico-hippocampal cultures isolated from triple transgenic 3xTg-AD mice. Exposure to AβDDL (an amyloid-β derived diffusive ligand) or Dkk1 reduced the number of pre- and post-synaptic puncta in primary neuronal cultures, while treatment with miR-431 prevented synapse loss. In addition, treatment with miR-431 also prevented neurite degeneration. Our findings demonstrate that miR-431 protects synapses and neurites from Aβ-toxicity in an AD cell culture model and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Sean P Ross
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kelly E Baker
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Amanda Fisher
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Lee Hoff
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Elena S Pak
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Alexander K Murashov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
28
|
Huang TY, Zhao Y, Jiang LL, Li X, Liu Y, Sun Y, Piña-Crespo JC, Zhu B, Masliah E, Willnow TE, Pasquale EB, Xu H. SORLA attenuates EphA4 signaling and amyloid β-induced neurodegeneration. J Exp Med 2017; 214:3669-3685. [PMID: 29114064 PMCID: PMC5716044 DOI: 10.1084/jem.20171413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 11/04/2022] Open
Abstract
Sortilin-related receptor with LDLR class A repeats (SORLA, SORL1, or LR11) is a genetic risk factor associated with Alzheimer's disease (AD). Although SORLA is known to regulate trafficking of the amyloid β (Aβ) precursor protein to decrease levels of proteotoxic Aβ oligomers, whether SORLA can counteract synaptic dysfunction induced by Aβ oligomers remains unclear. Here, we show that SORLA interacts with the EphA4 receptor tyrosine kinase and attenuates ephrinA1 ligand-induced EphA4 clustering and activation to limit downstream effects of EphA4 signaling in neurons. Consistent with these findings, SORLA transgenic mice, compared with WT mice, exhibit decreased EphA4 activation and redistribution to postsynaptic densities, with milder deficits in long-term potentiation and memory induced by Aβ oligomers. Importantly, we detected elevated levels of active EphA4 in human AD brains, where EphA4 activation is inversely correlated with SORLA/EphA4 association. These results demonstrate a novel role for SORLA as a physiological and pathological EphA4 modulator, which attenuates synaptotoxic EphA4 activation and cognitive impairment associated with Aβ-induced neurodegeneration in AD.
Collapse
Affiliation(s)
- Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Xiaoguang Li
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Yan Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Yu Sun
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Juan C Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bing Zhu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA
| | | | - Elena B Pasquale
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.,Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA .,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Wang CN, Wang YJ, Wang H, Song L, Chen Y, Wang JL, Ye Y, Jiang B. The Anti-dementia Effects of Donepezil Involve miR-206-3p in the Hippocampus and Cortex. Biol Pharm Bull 2017; 40:465-472. [PMID: 28123152 DOI: 10.1248/bpb.b16-00898] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a most serious age-related neurodegenerative disorder accompanied with significant memory impairments in this world. Recently, microRNAs (miRNAs) have been reported to be invlolved in the pathophysiology of AD. Previous studies have shown that miRNA-206 (miR-206) is implicated in the pathogenesis of AD via suppressing the expression of brain-derived neurotrophic factor (BDNF) in the brain. Here, we examined the miR-206-3p and miR-206-5p expression in the hippocampus and cortex of Abeta precursor protein (APP)/presenilin-1 (PS1) transgenic mice treated with donepezil, a drug approved for treating AD in clinic. We found that the expression of miR-206-3p was significantly up-regulated in the hippocampus and cortex of APP/PS1 mice, while donepezil administration significantly reversed this dysfunction. In addition, enhancing the miR-206-3p level by the usage of AgomiR-206-3p significantly attenuated the anti-dementia effects of donepezil in APP/PS1 mice. Together, these results suggested that miR-206-3p is involved in the anti-dementia effects of donepezil, and could be a novel pharmacological target for treating AD.
Collapse
Affiliation(s)
- Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hosseini R, Moosavi F, Rajaian H, Silva T, Magalhães e Silva D, Soares P, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016; 88:926-937. [DOI: 10.1111/cbdd.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Hamid Rajaian
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Diogo Magalhães e Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”; Sapienza University of Rome; Rome Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
31
|
MH84: A Novel γ-Secretase Modulator/PPARγ Agonist—Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer’s Disease. Neurochem Res 2015; 41:231-42. [DOI: 10.1007/s11064-015-1765-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
|
32
|
Hagl S, Berressem D, Bruns B, Sus N, Frank J, Eckert GP. Beneficial Effects of Ethanolic and Hexanic Rice Bran Extract on Mitochondrial Function in PC12 Cells and the Search for Bioactive Components. Molecules 2015; 20:16524-39. [PMID: 26378512 PMCID: PMC6331980 DOI: 10.3390/molecules200916524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are involved in the aging processes that ultimately lead to neurodegeneration and the development of Alzheimer’s disease (AD). A healthy lifestyle, including a diet rich in antioxidants and polyphenols, represents one strategy to protect the brain and to prevent neurodegeneration. We recently reported that a stabilized hexanic rice bran extract (RBE) rich in vitamin E and polyphenols (but unsuitable for human consumption) has beneficial effects on mitochondrial function in vitro and in vivo (doi:10.1016/j.phrs.2013.06.008, 10.3233/JAD-132084). To enable the use of RBE as food additive, a stabilized ethanolic extract has been produced. Here, we compare the vitamin E profiles of both extracts and their effects on mitochondrial function (ATP concentrations, mitochondrial membrane potential, mitochondrial respiration and mitochondrial biogenesis) in PC12 cells. We found that vitamin E contents and the effects of both RBE on mitochondrial function were similar. Furthermore, we aimed to identify components responsible for the mitochondria-protective effects of RBE, but could not achieve a conclusive result. α-Tocotrienol and possibly also γ-tocotrienol, α-tocopherol and δ-tocopherol might be involved, but hitherto unknown components of RBE or a synergistic effect of various components might also play a role in mediating RBE’s beneficial effects on mitochondrial function.
Collapse
Affiliation(s)
- Stephanie Hagl
- Department of Pharmacology, Biocenter Campus Riedberg, Goethe-University of Frankfurt, Frankfurt 60438, Germany.
| | - Dirk Berressem
- Department of Pharmacology, Biocenter Campus Riedberg, Goethe-University of Frankfurt, Frankfurt 60438, Germany.
| | - Bastian Bruns
- Department of Pharmacology, Biocenter Campus Riedberg, Goethe-University of Frankfurt, Frankfurt 60438, Germany.
| | - Nadine Sus
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart 70599, Germany.
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart 70599, Germany.
| | - Gunter P Eckert
- Department of Pharmacology, Biocenter Campus Riedberg, Goethe-University of Frankfurt, Frankfurt 60438, Germany.
| |
Collapse
|
33
|
Zhao Y, Bhattacharjee S, Jones BM, Hill JM, Clement C, Sambamurti K, Dua P, Lukiw WJ. Beta-Amyloid Precursor Protein (βAPP) Processing in Alzheimer's Disease (AD) and Age-Related Macular Degeneration (AMD). Mol Neurobiol 2015; 52:533-44. [PMID: 25204496 PMCID: PMC4362880 DOI: 10.1007/s12035-014-8886-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/27/2014] [Indexed: 01/18/2023]
Abstract
Amyloid is a generic term for insoluble, often intensely hydrophobic, fibrous protein aggregates that arise from inappropriately folded versions of naturally-occurring polypeptides. The abnormal generation and accumulation of amyloid, often referred to as amyloidogenesis, has been associated with the immune and pro-inflammatory pathology of several progressive age-related diseases of the human central nervous system (CNS) including Alzheimer's disease (AD) and age-related macular degeneration (AMD). This 'research perspective' paper reviews some of the research history, biophysics, molecular-genetics and environmental factors concerning the contribution of amyloid beta (Aβ) peptides, derived from beta-amyloid precursor protein (βAPP), to AD and AMD that suggests an extensive similarity in immune and inflammatory degenerative mechanisms between these two CNS diseases.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - Brandon M. Jones
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - James M. Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Microbiology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Pharmacology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - Christian Clement
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans, New Orleans, LA 70126 USA
| | | | - Prerna Dua
- Department of Health Information Management, Louisiana State University, Ruston, LA 71272 USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Microbiology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans, New Orleans, LA 70126 USA
| |
Collapse
|
34
|
Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer's disease (AD). JOURNAL OF NATURE AND SCIENCE 2015; 1:e138. [PMID: 26097896 PMCID: PMC4469284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
According to the 'amyloid cascade hypothesis of Alzheimer's disease' first proposed about 16 years ago, the accumulation of Aβ peptides in the human central nervous system (CNS) is the primary influence driving Alzheimer's disease (AD) pathogenesis, and Aβ peptide accretion is the result of an imbalance between Aβ peptide production and clearance. In the last 18 months multiple laboratories have reported two particularly important observations: (i) that because the microbes of the human microbiome naturally secrete large amounts of amyloid, lipopolysaccharides (LPS) and other related pro-inflammatory pathogenic signals, these may contribute to both the systemic and CNS amyloid burden in aging humans; and (ii) that the clearance of Aβ peptides appears to be intrinsically impaired by deficits in the microglial plasma-membrane enriched triggering receptor expressed in microglial/myeloid-2 cells (TREM2). This brief general commentary-perspective paper: (i) will highlight some of these very recent findings on microbiome-secreted amyloids and LPS and the potential contribution of these microbial-derived pro-inflammatory and neurotoxic exudates to age-related inflammatory and AD-type neurodegeneration in the host; and (ii) will discuss the contribution of a defective microglial-based TREM2 transmembrane sensor-receptor system to amyloidogenesis in AD that is in contrast to the normal, homeostatic clearance of Aβ peptides from the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| |
Collapse
|
35
|
Zhao Y, Dua P, Lukiw WJ. Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer's Disease (AD). JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2015; 5:177. [PMID: 25977840 PMCID: PMC4428612 DOI: 10.4172/2161-0460.1000177] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the inception of the human microbiome project (HMP) by the US National Institutes of Health (NIH) in 2007 there has been a keen resurgence in our recognition of the human microbiome and its contribution to development, immunity, neurophysiology, metabolic and nutritive support to central nervous system (CNS) health and disease. What is not generally appreciated is that (i) the ~1014 microbial cells that comprise the human microbiome outnumber human host cells by approximately one hundred-to-one; (ii) together the microbial genes of the microbiome outnumber human host genes by about one hundred-and-fifty to one; (iii) collectively these microbes constitute the largest 'diffuse organ system' in the human body, more metabolically active than the liver; strongly influencing host nutritive-, innate-immune, neuroinflammatory-, neuromodulatory- and neurotransmission-functions; and (iv) that these microbes actively secrete highly complex, immunogenic mixtures of lipopolysaccharide (LPS) and amyloid from their outer membranes into their immediate environment. While secreted LPS and amyloids are generally quite soluble as monomers over time they form into highly insoluble fibrous protein aggregates that are implicated in the progressive degenerative neuropathology of several common, age-related disorders of the human CNS including Alzheimer's disease (AD). This general commentary-perspective paper will highlight some recent findings on microbial-derived secreted LPS and amyloids and the potential contribution of these neurotoxic and proinflammatory microbial exudates to age-related inflammatory amyloidogenesis and neurodegeneration, with specific reference to AD wherever possible.
Collapse
Affiliation(s)
- Y Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans LA 70112 USA ; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans LA 70112 USA
| | - P Dua
- Department of Health Information Management, Louisiana State University Ruston LA 71270 USA
| | - W J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans LA 70112 USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans LA 70112 USA ; Department of Neurology, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans LA 70112 USA
| |
Collapse
|
36
|
Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci 2015; 7:9. [PMID: 25713531 PMCID: PMC4322713 DOI: 10.3389/fnagi.2015.00009] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/21/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- James M Hill
- Louisiana State University Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Departments of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Microbiology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Pharmacology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Walter J Lukiw
- Louisiana State University Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Departments of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
37
|
Zhao Y, Hill JM, Bhattacharjee S, Percy ME, Pogue AID, Lukiw WJ. Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer's disease. Front Neurol 2014; 5:167. [PMID: 25250012 PMCID: PMC4155793 DOI: 10.3389/fneur.2014.00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/20/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | - James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Microbiology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | - Maire E Percy
- Department of Physiology, University of Toronto , Toronto, ON , Canada ; Department of Obstetrics and Gynaecology, University of Toronto , Toronto, ON , Canada ; Neurogenetics Laboratory, Surrey Place Centre , Toronto, ON , Canada
| | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Alchem Biotech , Toronto, ON , Canada ; Department of Neurology, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| |
Collapse
|
38
|
Xu J, Kong X, Qiu L, Geng X, Hu Y, Wang Y. Research and development of anti-Alzheimer's drugs: an analysis based on technology flows measured by patent citations. Expert Opin Ther Pat 2014; 24:791-800. [PMID: 24798577 DOI: 10.1517/13543776.2014.915943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a serious illness with dramatically increasing incidence. Tremendous worldwide efforts have been exerted to find better ways to treat the disease, delay its onset and prevent it from progressing. In order to discover future anti-AD medicines more rationally, it is crucial to understand the evolving process of existing related technologies from the perspective of technology flow. AREAS COVERED Patent citation has been used broadly as a powerful tool to capture technology flows. This study collects patent data from IMS Health databases on anti-AD drugs, both marketed and in the research and development (R&D) pipeline. In all, 329 US patents from 1978 through 2013 and citations between them are analyzed, in addition to patents related to marketed drugs. EXPERT OPINION To discover effective agents for AD treatment, one promising strategy is to integrate various technology clusters related to anti-AD drugs in terms of the extremely dispersed patent citation network in this area. In this context, governments should pay more attention to encourage basic research, especially to focus on cross-mechanism anti-AD agents. New theories and targets for AD, such as the tau protein hypothesis, are worthy of researcher note. Drugs targeting β-amyloid peptide theory show promise for investors.
Collapse
Affiliation(s)
- Jiachen Xu
- University of Macau, Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine , Macao , China ;
| | | | | | | | | | | |
Collapse
|
39
|
Singh SK, Gaur R, Kumar A, Fatima R, Mishra L, Srikrishna S. The flavonoid derivative 2-(4' Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic Drosophila: insights from in silico and in vivo studies. Neurotox Res 2014; 26:331-50. [PMID: 24706035 DOI: 10.1007/s12640-014-9466-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 03/15/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
In the pathogenesis of Alzheimer's disease (AD), it is well established that the self-association of Aβ peptides into amyloid fibrils and/or plaque like aggregates causes neurotoxicity. As there is no cure for AD till date, identification of specific compounds that either inhibit the formation of Aβ-fibrils or help in the dissolution of already formed amyloid plaques makes an appealing therapeutic and preventive strategy in the development of drugs. In the present study, four synthetic flavonoid derivatives (1, 2, 3 and 4) were examined for docking studies with Amyloid beta (PDB Code: 1IYT) and Amyloid fibril (PDB Code: 2BEG). Of these, compound 1 and 4 were found to be potential inhibitors, as supported by computational molecular docking studies with adequate pharmacokinetic properties. Compound 1 was further tested in vivo in transgenic AD model of Drosophila. The disease causing human Aβ42 peptide was expressed in the compound eye by driving UAS-Aβ42 with ey-GAL4, which caused severe degeneration in eye tissues ranging from loss of bristles, ommatidial holes to severe ommatidial disruption as revealed by digital camera imaging and scanning electron microscopy. When the Aβ42 expressing larvae were grown in medium containing Compound 1, ~70 % rescue of the rough eye phenotype was observed at 75 and 100 μM concentrations. This is further corroborated by significant reduction in amyloid plaques in eye imaginal disks of compound 1 treated larvae as revealed by immuno-confocal imaging studies. Further, rescue of locomotor deficit and improved life span in compound 1 treated Aβ flies also confirm the neuroprotective activity of this compound. Thus, our results support the neuroprotective efficacy of compound 1 in preventing Aβ42-induced neurotoxicity in vivo and identify it as a future therapeutic agent against AD.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221 005, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
40
|
Lee EO, Yang JH, Chang KA, Suh YH, Chong YH. Amyloid-β peptide-induced extracellular S100A9 depletion is associated with decrease of antimicrobial peptide activity in human THP-1 monocytes. J Neuroinflammation 2013; 10:68. [PMID: 23721320 PMCID: PMC3693929 DOI: 10.1186/1742-2094-10-68] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background S100A9 protein (myeloid-related protein MRP14, also referred to as calgranulin B) is a reliable marker of inflammation, an important proinflammatory factor of innate immunity and acts as an additional antimicrobial peptide in the innate immune system. Evidence indicates that S100A9 contributes to Alzheimer’s disease (AD) pathology, although the precise mechanisms are not clear. Methods We were interested to study the mechanisms of S100A9 release upon Aβ1-42 stimulation, the potential roles of extracellular S100A9 depletion in Aβ-induced cytotoxicity, and the interaction with innate immune response in THP-1 monocytic cells that have been challenged with mostly Aβ1-42 monomers instead of oligomers. We used protein preparation, Ca2+ influx fluorescence imaging, MTT assay, siRNA knockdown, colony forming units (CFUs) assay and western blotting techniques to perform our study. Results Aβ1-42 monomers elicited a marked decrease of S100A9 release into the cell culture supernatant in a dose-dependent manner in human THP-1 monocytes. This reduction of S100A9 release was accompanied by an increase of intracellular Ca2+ level. Aβ1-42-mediated decrease of S100A9 release was not associated with Aβ1-42-induced cytotoxicity as measured by MTT reduction assay. This observation was confirmed with the recombinant S100A9, which had little effect on Aβ1-42-induced cytotoxicity. Moreover, depletion of S100A9 with siRNA did not significantly evoke the cell toxicity. On the other hand, Aβ1-42-induced extracellular S100A9 depletion resulted in decreased antimicrobial activity of the culture supernatant after Aβ1-42 stimulation. Immunodepletion of S100A9 with anti-S100A9 also decreased the antimicrobial peptide activity of the vehicle treated culture supernatant. Consistently, the recombinant S100A9 clearly elicited the antimicrobial peptide activity in vitro, confirming the observed antimicrobial activity of S100A9 in the culture supernatant. Conclusion Collectively, our findings suggest that the mostly monomeric form of Aβ1-42 negatively regulates the innate immune system by down-regulating the secretion of S100A9, which is likely a main mediator of antimicrobial activity in the conditioned media of human THP-1 monocytes.
Collapse
Affiliation(s)
- Eun Ok Lee
- Department of Microbiology, School of Medicine, Ewha Medical Research Institute, Ewha Womans University, 911-1, Mok-6-dong, Yangcheonku, Seoul 158-710, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Lukiw WJ. Antagonism of NF-κB-up-regulated micro RNAs (miRNAs) in sporadic Alzheimer's disease (AD)-anti-NF-κB vs. anti-miRNA strategies. Front Genet 2013; 4:77. [PMID: 23641256 PMCID: PMC3640190 DOI: 10.3389/fgene.2013.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Walter J Lukiw
- Department of Neuroscience and Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
42
|
Lukiw WJ. Alzheimer's disease (AD) as a disorder of the plasma membrane. Front Physiol 2013; 4:24. [PMID: 23424582 PMCID: PMC3573332 DOI: 10.3389/fphys.2013.00024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
43
|
Lukiw WJ, Andreeva TV, Grigorenko AP, Rogaev EI. Studying micro RNA Function and Dysfunction in Alzheimer's Disease. Front Genet 2013; 3:327. [PMID: 23390425 PMCID: PMC3565163 DOI: 10.3389/fgene.2012.00327] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/28/2012] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is a tragic, progressive, age-related neurological dysfunction, representing one of the most prevalent neurodegenerative disorders in industrialized societies. Globally, 5 million new cases of AD are diagnosed annually, with one new AD case being reported every 7 s. Most recently there has been a surge in the study of the regulatory mechanisms of the AD process, and the particular significance of small non-coding ∼22 ribonucleotide RNAs called micro RNAs (miRNAs). Abundant data have profiled miRNA patterns in healthy, aging brain, in mild cognitive impairment (MCI), and in the moderate- and late-stages of AD. The major mode of action of miRNA is to interact, via base-pair complementarity, with ribonucleotides located within the 3′ untranslated region (3′-UTR) of multiple target messenger RNAs (mRNAs), and in doing so decrease the capability of that specific mRNA to be expressed. Many miRNAs are highly cell- and tissue-specific. The human brain appears to use only a highly specific fraction of all known human miRNAs, whose speciation and complexity are defined as a discrete subset of all known small non-coding RNAs (sncRNAs) in the brain. In general, in contrast to normally, aging human brain, in AD a family of pathogenically up-regulated miRNAs appear to be down-regulating the expression certain brain-essential mRNA targets, including key regulatory genes involved interactively in neuroinflammation, synaptogenesis, neurotrophic functions, and amyloidogenesis. These up-regulated, NF-kB-sensitive miRNAs, involved in the innate immune and inflammatory response and synaptic, neurotrophic, and amyloidogenic functions include miRNA-9, miRNA-125b, miRNA-146a, and miRNA-155. Other miRNAs of the miRNA-15/107 family, miRNA-153 and miRNA-190, and others, will be discussed. Overall, this manuscript will review the known contribution of miRNAs to aging brain function and the role they appear to play in the incidence and progression of AD.
Collapse
Affiliation(s)
- Walter J Lukiw
- Department of Neurology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | | | | | |
Collapse
|
44
|
Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:365-73. [PMID: 23301201 PMCID: PMC3533883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Human cerebrospinal fluid (CSF), produced by the choroid plexus and secreted into the brain ventricles and subarachnoid space, plays critical roles in intra-cerebral transport and the biophysical and immune protection of the brain. CSF composition provides valuable insight into soluble pathogenic bio-markers that may be diagnostic for brain disease. In these experiments we analyzed amyloid beta (Aβ) peptide and micro RNA (miRNA) abundance in CSF and in short post-mortem interval (PMI <2.1 hr) brain tissue-derived extracellular fluid (ECF) from Alzheimer's disease (AD) and age-matched control neocortex. There was a trend for decreased abundance of Aβ42 in the CSF and ECF in AD but it did not reach statistical significance (mean age ~72 yr; N=12; p~0.06, ANOVA). The most abundant nucleic acids in AD CSF and ECF were miRNAs, and their speciation and inducibility were studied further. Fluorescent miRNA-array-based analysis indicated significant increases in miRNA-9, miRNA-125b, miRNA-146a, miRNA-155 in AD CSF and ECF (N=12; p<0.01, ANOVA). Primary human neuronal-glial (HNG) cell co-cultures stressed with AD-derived ECF also displayed an up-regulation of these miRNAs, an effect that was quenched using the anti-NF-кB agents caffeic acid phenethyl ester (CAPE) or 1-fluoro-2-[2-(4-methoxy-phenyl)-ethenyl]-benzene (CAY10512). Increases in miRNAs were confirmed independently using a highly sensitive LED-Northern dot-blot assay. Several of these NF-кB-sensitive miRNAs are known to be up-regulated in AD brain, and associate with the progressive spreading of inflammatory neurodegeneration. The results indicate that miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 are CSF- and ECF-abundant, NF-кB-sensitive pro-inflammatory miRNAs, and their enrichment in circulating CSF and ECF suggest that they may be involved in the modulation or proliferation of miRNA-triggered pathogenic signaling throughout the brain and central nervous system (CNS).
Collapse
|
45
|
Hardenacke K, Kuhn J, Lenartz D, Maarouf M, Mai JK, Bartsch C, Freund HJ, Sturm V. Stimulate or degenerate: deep brain stimulation of the nucleus basalis Meynert in Alzheimer dementia. World Neurosurg 2012; 80:S27.e35-43. [PMID: 23246738 DOI: 10.1016/j.wneu.2012.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/16/2012] [Accepted: 12/07/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a therapeutically effective neurosurgical method originally applied in movement disorders. Over time, the application of DBS has increasingly been considered as a therapeutic option for several neuropsychiatric disorders, including Gilles de la Tourette syndrome, obsessive compulsive disorder, major depression and addiction. Latest research suggests beneficial effects of DBS in Alzheimer dementia (AD). Because of the high prevalence and the considerable burden of the disease, we endeavored to discuss and reveal the challenges of DBS in AD. METHODS Recent literature on the pathophysiology of AD, including translational data and human studies, has been studied to generate a fundamental hypothesis regarding the effects of electrical stimulation on cognition and to facilitate our ongoing pilot study regarding DBS of the nucleus basalis Meynert (NBM) in patients with AD. RESULTS It is hypothesized that DBS in the nucleus basalis Meynert could probably improve or at least stabilize memory and cognitive functioning in patients with AD by facilitating neural oscillations and by enhancing the synthesis of nerve growth factors. CONCLUSIONS Considering the large number of patients suffering from AD, there is a great need for novel and effective treatment methods. Our research provides insights into the theoretical background of DBS in AD. Providing that our hypothesis will be validated by our ongoing pilot study, DBS could be an opportunity in the treatment of AD.
Collapse
Affiliation(s)
- Katja Hardenacke
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Abundant neurochemical, neuropathological, and genetic evidence suggests that a critical number of proinflammatory and innate immune system-associated factors are involved in the underlying pathological pathways that drive the sporadic Alzheimer's disease (AD) process. Most recently, a series of epigenetic factors - including a select family of inducible, proinflammatory, NF-κB-regulated small noncoding RNAs called miRNAs - have been shown to be significantly elevated in abundance in AD brain. These upregulated miRNAs appear to be instrumental in reshaping the human brain transcriptome. This reorganization of mRNA speciation and complexity in turn drives proinflammatory and pathogenic gene expression programs. The ensuing, progressively altered immune and inflammatory signaling patterns in AD brain support immunopathogenetic events and proinflammatory features of the AD phenotype. This report will briefly review what is known concerning NF-κB-inducible miRNAs that are significantly upregulated in AD-targeted anatomical regions of degenerating human brain cells and tissues. Quenching of NF-κB-sensitive inflammatory miRNA signaling using NF-κB-inhibitors such as the polyphenolic resveratrol analog trans-3,5,4'-trihydroxystilbene (CAY10512) may have some therapeutic value in reducing inflammatory neurodegeneration. Antagonism of NF-κB-inducing, and hence proinflammatory, epigenetic and environmental factors, such as the neurotrophic herpes simplex virus-1 and exposure to the potent neurotoxin aluminum, are briefly discussed. Early reports further indicate that miRNA neutralization employing anti-miRNA (antagomir) strategies may hold future promise in the clinical management of this insidious neurological disorder and expanding healthcare concern.
Collapse
Affiliation(s)
- Walter J Lukiw
- Professor of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Vanderstichele H, Stoops E, Vanmechelen E, Jeromin A. Potential sources of interference on Abeta immunoassays in biological samples. ALZHEIMERS RESEARCH & THERAPY 2012; 4:39. [PMID: 23082750 PMCID: PMC3580396 DOI: 10.1186/alzrt142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Therapeutic products that depend on the use of an in vitro diagnostic biomarker test to confirm their effectiveness are increasingly being developed. Use of biomarkers is particularly meaningful in the context of selecting the patient population where the therapeutic treatment is believed to be efficacious (patient enrichment). Currently available 'research-use-only' assays for Alzheimer's disease diagnosis all suffer from non-analyte and analyte-specific interferences. The impact of these interferences on the outcome of the assays is not well understood. The confounding factors are hampering correct value determination in biological samples and are intrinsic to the assay concept, the assay design, the presence in the sample of heterophilic antibodies and auto-antibodies, or might be the result of the therapeutic approach. This review focuses on the importance of assay interferences and considers how these might be minimized with the final aim of making the assays more acceptable as in vitro diagnostic biomarker tests for theranostic use.
Collapse
Affiliation(s)
| | - Erik Stoops
- ADxNeurosciences, Technologiepark 4, 9052, Gent, Belgium
| | | | | |
Collapse
|
48
|
Devalle S, Sartore RC, Paulsen BS, Borges HL, Martins RAP, Rehen SK. Implications of aneuploidy for stem cell biology and brain therapeutics. Front Cell Neurosci 2012; 6:36. [PMID: 22973193 PMCID: PMC3433681 DOI: 10.3389/fncel.2012.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/18/2012] [Indexed: 12/29/2022] Open
Abstract
Understanding the cellular basis of neurological disorders have advanced at a slow pace, especially due to the extreme invasiveness of brain biopsying and limitations of cell lines and animal models that have been used. Since the derivation of pluripotent stem cells (PSCs), a novel source of cells for regenerative medicine and disease modeling has become available, holding great potential for the neurology field. However, safety for therapy and accurateness for modeling have been a matter of intense debate, considering that genomic instability, including the gain and loss of chromosomes (aneuploidy), has been repeatedly observed in those cells. Despite the fact that recent reports have described some degree of aneuploidy as being normal during neuronal differentiation and present in healthy human brains, this phenomenon is particularly controversial since it has traditionally been associated with cancer and disabling syndromes. It is therefore necessary to appreciate, to which extent, aneuploid pluripotent stem cells are suitable for regenerative medicine and neurological modeling and also the limits that separate constitutive from disease-related aneuploidy. In this review, recent findings regarding chromosomal instability in PSCs and within the brain will be discussed.
Collapse
Affiliation(s)
- Sylvie Devalle
- National Laboratory for Embryonic Stem Cells, Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|