1
|
Xu Y, Qiu Z, Chen J, Huang L, Zhang J, Lin J. LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathway in vitro and in vivo. Drug Deliv Transl Res 2024; 14:2003-2018. [PMID: 38161194 DOI: 10.1007/s13346-023-01505-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to participate in neuroblastoma cisplatin resistance and tumorigenesis. LncRNA LINC00460 was previously reported to play a critical regulatory role in many cancer development. Nevertheless, its role in modulating neuroblastoma cisplatin resistance has not been explored till now. Cisplatin-resistant neuroblastoma cell lines were established by exposing neuroblastoma cell lines to progressively increasing concentrations of cisplatin for 6 months. LINC00460, microRNA (miR)-149-5p, and delta-like ligand 1 (DLL1) mRNA expression was measured through RT-qPCR. The protein levels of DLL1, epithelial-to-mesenchymal transition (EMT) markers, and the Notch signaling-related molecules were measured via western blotting. The IC50 value for cisplatin, cell growth, metastasis and apoptosis were analyzed in cisplatin-resistant neuroblastoma cells. The binding between LINC00460 (or DLL1) and miR-149-5p was validated through dual-luciferase reporter assay. The murine xenograft model was established to perform in vivo assays. LINC00460 and DLL1 levels were elevated, while miR-149-5p level was reduced in cisplatin-resistant neuroblastoma cells. LINC00460 depletion attenuated IC50 values for cisplatin, weakened cell growth, metastasis, and EMT, and enhanced apoptosis in cisplatin-resistant neuroblastoma cells. Mechanically, LINC00460 sponged miR-338-3p to increase DLL1 level, thereby activating Notch signaling pathway. DLL1 overexpression antagonized LINC00460 silencing-induced suppression on neuroblastoma cell cisplatin resistance and malignant behaviors, while such effects were further reversed by treatment with DAPT, the inhibitor of Notch pathway. Additionally, LINC00460 knockdown further augmented cisplatin-induced impairment on tumor growth in vivo. LINC00460 contributes to neuroblastoma cisplatin resistance and tumorigenesis through miR-149-5p/DLL1/Notch pathway, providing new directions to improve the therapeutic efficacy of chemotherapy drugs applied in patients with neuroblastoma.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Zhixin Qiu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Jinwen Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Lihong Huang
- The First Clinical Medical School, Fujian Medical University, Fuzhou, 350005, China
| | - Jiaqi Zhang
- The First Clinical Medical School, Fujian Medical University, Fuzhou, 350005, China
| | - Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
3
|
Chen Y, Tsai HW, Tsai YH, Tseng SH. VS-5584, a PI3K/mTOR dual inhibitor, exerts antitumor effects on neuroblastomas in vitro and in vivo. J Pediatr Surg 2021; 56:1441-1448. [PMID: 33189297 DOI: 10.1016/j.jpedsurg.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is closely related to oncogenesis. PI3K/mTOR inhibitors are considered capable of counteracting the feedback mechanisms within the pathway. In this study, we investigated the antitumor effects of VS-5584, an orally administered PI3K/mTOR dual inhibitor, on neuroblastomas. METHODS The effects of VS-5584 on proliferation, cell cycle distribution, and related signaling molecules were examined in neuroblastoma cells using the (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide)-based colorimetric assay, flow cytometry, and western blotting, respectively. Nude mice were subcutaneously inoculated with human neuroblastoma cells, followed by VS-5584 treatment for two weeks. Tumor growth was tracked and tumor tissues were subjected to immunohistochemical investigations. RESULTS In neuroblastoma cells, VS-5584 significantly inhibited proliferation and induced G0/G1 cell cycle arrest. Additionally, VS-5584 decreased the expression of phospho-S6 kinase 1 (p-S6K1), p-retinoblastoma protein, p-cyclin-dependent kinase 2, and cyclin E1, and increased the expression of p21 and p27 in neuroblastoma cells. In mice, VS-5584 significantly suppressed tumor growth in neuroblastomas and downregulated the expression of p-mTOR and p-S6K1 in tumor tissues. CONCLUSIONS VS-5584 blocks the PI3K/mTOR pathway, induces a G0/G1 cell cycle arrest, and exerts antitumor effects on neuroblastomas both in vitro and in vivo.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Graduate Institute of Medicine and Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Huang-Wen Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Graduate Institute of Medicine and Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan.
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Liquid biomarkers for the management of paediatric neuroblastoma: an approach to personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396920000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground:Neuroblastoma is the most common extracranial solid tumour of infancy and accounts for about 6–10% of paediatric cancers. It has a biologically and clinically heterogeneous behaviour that ranges from spontaneous regression to cases of highly aggressive metastatic disease that could be unresponsive to standard therapy. In recent years, there have been several investigations into the development of various diagnostic, predictive and prognostic biomarkers towards personalised and targeted management of the disease.Materials and Methods:This paper reports on the review of current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, prognostication and monitoring of the response of treatment of neuroblastoma in paediatric patients.Conclusions:Tumour markers can significantly improve diagnosis; however, the invasive, unpleasant and inconvenient nature of current tissue biopsies limits their applications, especially in paediatric patients. Therefore, the development of a non-invasive, reliable high accurate and personalised diagnostic tool capable of early detection and rapid response is the most promising step towards advanced cancer management from tumour diagnosis, therapy to patient monitoring and represents an important step towards the promise of precision, personalised and targeted medicine. Liquid biopsy assay with wide ranges of clinical applications is emerging to hold incredible potential for advancing cancer treatment and has greater promise for diagnostic purposes, identification and tracking of tumour-specific alterations during the course of the disease and to guide therapeutic decisions.
Collapse
|
5
|
Zhang Q, Chen Z, Yuan W, Tang YQ, Zhu J, Wu W, Ren H, Wang H, Zheng W, Zhang Z, Kong E. Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis. Curr Mol Med 2021; 20:723-732. [PMID: 32271693 DOI: 10.2174/1566524020666200409124258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies. METHODS Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo. RESULTS Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo. CONCLUSION Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Collapse
Affiliation(s)
- Qiuxia Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhenshuai Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Wei Yuan
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yu-Qing Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jiangli Zhu
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Wentao Wu
- Tianjin Ocelean Pharma, Tianjin, China
| | | | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang, China
| | - Weiyi Zheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Potential anti-neuroblastoma agents from Juniperus oblonga. Biochem Biophys Res Commun 2019; 516:733-738. [PMID: 31255282 DOI: 10.1016/j.bbrc.2019.06.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022]
Abstract
Neuroblastoma (NB) is a neuroendocrine tumor derived from neural crest cells. Approximately 90% of cases occur in children less than 5 years old. The amplification of MYCN correlates with high-risk neuroblastoma and patients with MYCN amplified showed poorer prognosis than those without MYCN amplification. In this study, three compounds isolated from Juniperus oblonga showed anti-proliferative activity against NB cell lines with and without tetracycline inducible MYCN over-expression which were identified as (-)-deoxypodophyllotoxin (1), (-)-matairesinol (2) and (+)-isocupressic acid (3). The effects of compounds 2 and 3 in NB cells included a decrease in NB cell viability and induction of apoptosis. Compound 1 was more effective in NB cells over-expressing MycN. Compound 1 also showed almost 2-fold induction of intracellular free calcium levels in M2(+) cells, which may indicate a different mechanism of action for this compound. Cytotoxicity studies against the human embryonic kidney cell (HEK-293) showed compounds 1, 2 and 3 were ineffective in the non-cancer cells at concentrations approximating their IC50 against the NB cell lines. These results may lead to safer and more effective treatment options for NB patients especially for those with high-risk NB.
Collapse
|
7
|
Kong E, Zhu J, Wu W, Ren H, Jiao X, Wang H, Zhang Z. Nifurtimox Inhibits the Progression of Neuroblastoma in vivo. J Cancer 2019; 10:2194-2204. [PMID: 31258723 PMCID: PMC6584410 DOI: 10.7150/jca.27851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/14/2019] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma was one of the most life-threatening cancer developed in children, yet the conventional therapies currently used leave an unmet gap for clinical requirements. Temozolomide is the first line of drug in the treatment of neuroblastorma nowadays. Giving the fact that temozolomide treatment offered limited healing effect and patients responded divergently, an alternative beneficial path is urgently requested. Nifurtimox, a drug against Trypanosoma cruzi, was happened to find competent in treating a patient who carried aggressive neuroblastoma. Although in vitro studies demonstrated that nifurtimox has cytotoxic features against tumor cells, a systematic investigation in vivo is generally inadequate. Here we exhibited that nifurtimox could suppress the progression of neuroblastoma in vivo, while maintain the health condition to a great extent. Importantly, as comparing to temozolomide, nifurtimox presented a stronger effect on inhibiting tumor development, strongly suggesting that nifurtimox is a preferential alternative drug in treating neuroblastoma. Additionally, it was shown that Akt-GSK3β signaling cascade was involved in tumor arrest induced by nifurtimox.
Collapse
Affiliation(s)
- Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Wentao Wu
- Tianjin Ocelean Pharma, Tianjin, China
| | | | - Xuemiao Jiao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, and.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Chen J, Xing C, Yan L, Wang Y, Wang H, Zhang Z, Yu D, Li J, Li H, Li J, Cai Y. Transcriptome profiling reveals the role of ZBTB38 knock-down in human neuroblastoma. PeerJ 2019; 7:e6352. [PMID: 30697495 PMCID: PMC6348090 DOI: 10.7717/peerj.6352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
ZBTB38 belongs to the zinc finger protein family and contains the typical BTB domains. As a transcription factor, ZBTB38 is involved in cell regulation, proliferation and apoptosis, whereas, functional deficiency of ZBTB38 induces the human neuroblastoma (NB) cell death potentially. To have some insight into the role of ZBTB38 in NB development, high throughput RNA sequencing was performed using the human NB cell line SH-SY5Y with the deletion of ZBTB38. In the present study, 2,438 differentially expressed genes (DEGs) in ZBTB38−/− SH-SY5Y cells were obtained, 83.5% of which was down-regulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the neurotrophin TRK receptor signaling pathway, including PI3K/Akt and MAPK signaling pathway. we also observed that ZBTB38 affects expression of CDK4/6, Cyclin E, MDM2, ATM, ATR, PTEN, Gadd45, and PIGs in the p53 signaling pathway. In addition, ZBTB38 knockdown significantly suppresses the expression of autophagy-related key genes including PIK3C2A and RB1CC1. The present meeting provides evidence to molecular mechanism of ZBTB38 modulating NB development and targeted anti-tumor therapies.
Collapse
Affiliation(s)
- Jie Chen
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,The Secondary Hospital of Wuhu, WuHu, China
| | - Chaofeng Xing
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, China
| | - Yabing Wang
- The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | | | - Zongmeng Zhang
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Daolun Yu
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Jie Li
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta State University, Augusta, GA, USA
| | - Jun Li
- College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, WuHu, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Subramanian C, White PT, Kuai R, Kalidindi A, Castle VP, Moon JJ, Timmermann BN, Schwendeman A, Cohen MS. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal. Surgery 2018; 164:S0039-6060(18)30080-1. [PMID: 29753460 PMCID: PMC6814450 DOI: 10.1016/j.surg.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. METHODS Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. RESULTS qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. CONCLUSION Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo.
Collapse
Affiliation(s)
| | - Peter T White
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | | | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | | | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
10
|
Subramanian C, Grogan PT, Opipari VP, Timmermann BN, Cohen MS. Novel natural withanolides induce apoptosis and inhibit migration of neuroblastoma cells through down regulation of N-myc and suppression of Akt/mTOR/NF-κB activation. Oncotarget 2018; 9:14509-14523. [PMID: 29581860 PMCID: PMC5865686 DOI: 10.18632/oncotarget.24429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in intensive chemotherapy treatments, long-term success is achieved in less than 30% of children with high-risk neuroblastoma (NB). Key regulatory pathways including the PI3K/Akt, mTOR and NF-κB are implicated in the pathogenesis of NB. Although drugs targeting these individual pathways are in clinical trials, they are not effective due to the activation of compensatory mechanisms. We have previously reported that natural novel withanolides from Physalis longifolia can potently inhibit these key regulatory pathways simultaneously. In the present study, we examined the efficacy and mechanisms through which novel withanolides and their acetate derivatives (WGA-TA and WGB-DA) from P.longifolia kill NB cells. The results from the study demonstrated that our novel acetate derivatives are highly effective in inhibiting the proliferation, shifting the cell cycle and inducing apoptosis in a dose dependent manner. Analysis of oncogenic pathway proteins targeted by withanolides indicated induction of heat shock response due to oxidative stress. Dose dependent decrease in clients of HSP90 chaperone function due to suppression of Akt, mTOR, and NF-κB pathways led to decrease in the expressions of target genes such as cyclin D1, N-myc and Survivin. Additionally, there was a dose dependent attenuation of the migration and invasion of NB cells. Furthermore, the lead compound WGA-TA showed significant reduction in tumor growth of NB xenografts. Taken together, these results suggest that withanolides are an effective therapeutic option against NBs.
Collapse
Affiliation(s)
| | - Patrick T Grogan
- Department of Internal Medicine, University of Wisconsin, Madison, WI, USA
| | - Valerie P Opipari
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells. Oncotarget 2017; 7:33220-8. [PMID: 27121208 PMCID: PMC5078088 DOI: 10.18632/oncotarget.8903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.
Collapse
|
12
|
Han Z, Li B, Wang J, Zhang X, Li Z, Dai L, Cao M, Jiang J. Norcantharidin Inhibits SK-N-SH Neuroblastoma Cell Growth by Induction of Autophagy and Apoptosis. Technol Cancer Res Treat 2017; 16:33-44. [PMID: 26755751 PMCID: PMC5616112 DOI: 10.1177/1533034615624583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/01/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
Abstract
Norcantharidin, a low-toxic analog of the active anticancer compound cantharidin in Mylabris, can inhibit proliferation and induce apoptosis of multiple types of cancer cells. However, the anticancer activities of norcantharidin with respect to neuroblastoma, and its underlying mechanisms, have not been investigated. Therefore, our study was designed to determine the efficacy of norcantharidin on SK-N-SH neuroblastoma cell death and to elucidate detailed mechanisms of activity. In the present study, norcantharidin suppressed the proliferation and cloning ability of SK-N-SH cells in a dose-dependent manner, apparently by reducing the mitochondrial membrane potential and arresting SK-N-SH cells at the G2/M stage, accompanied by elevated expressions of p21 and decreased expressions of cyclin B1 and cell division control 2. Treatment by norcantharidin induced significant mitophagy and autophagy, as demonstrated by a decrease in Translocase Of Outer Mitochondrial Membrane 20 (TOM20), increased beclin1 and LC3-II protein expression, reduced protein SQSTM1/p62 expression, and accumulation of punctate LC3 in the cytoplasm of SK-N-SH cells. In addition, norcantharidin induced apoptosis through regulating the expression of B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 and B-cell lymphoma 2-associated X protein/myeloid cell leukemia 1 and activating caspase-3 and caspase-9-dependent endogenous mitochondrial pathways. We also observed an increase in phosphor-AMP-activated protein kinase accompanied with a decrease in phosphor-protein kinase B and mammalian target of rapamycin expression after treatment with norcantharidin. Subsequent studies indicated that norcantharidin participates in cellular autophagy and apoptosis via activation of the c-Jun NH2-terminal kinases/c-Jun pathway. In conclusion, our results demonstrate that norcantharidin can reduce the mitochondrial membrane potential, induce mitophagy, and subsequently arouse cellular autophagy and apoptosis; the AMP-activated protein kinase, protein kinase B/mammalian target of rapamycin, and c-Jun NH2-terminal kinases/c-Jun signaling pathways are widely involved in these processes. Thus, the traditional Chinese medicine norcantharidin could be a novel therapeutic strategy for treating neuroblastoma.
Collapse
Affiliation(s)
- Zeping Han
- Department of Laboratory, Central Hospital of Panyu, Guangzhou, China
| | - Baoxia Li
- State Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juanjuan Wang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Xiangqiang Zhang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Zhenhua Li
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Liting Dai
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of General Surgery, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianwei Jiang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Chen Y, Tsai YH, Tseng BJ, Pan HY, Tseng SH. Suppression of miR-19b enhanced the cytotoxic effects of mTOR inhibitors in human neuroblastoma cells. J Pediatr Surg 2016; 51:1818-1825. [PMID: 27492819 DOI: 10.1016/j.jpedsurg.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) inhibitors exert significant antitumor effects on several cancer cell types. In this study, we investigated the effects of mTOR inhibitors, in particular the regulation of the microRNA, in neuroblastoma cells. METHODS AZD8055 (a new mTOR inhibitor)- or rapamycin-induced cytotoxic effects on neuroblastoma cells were studied. Western blotting was used to investigate the expression of various proteins in the mTOR pathway. MicroRNA precursors and antagomirs were transfected into cells to manipulate the expression of target microRNA. RESULTS AZD8055 exerted stronger cytotoxic effects than rapamycin in neuroblastoma cells (p<0.03). In addition, AZD8055 suppressed the mTOR pathway and increased the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in the neuroblastoma cells. AZD8055 significantly decreased miR-19b expression (p<0.005); in contrast, rapamycin increased miR-19b expression (p<0.05). Transfection of miR-19b antagomir into the neuroblastoma cells mimicked the effects of AZD8055 treatment, whereas miR-19b overexpression reversed the effects of AZD8055. Combination of miR-19b knockdown and rapamycin treatment significantly improved the sensitivity of neuroblastoma cells to rapamycin (p<0.02). CONCLUSION Suppression of miR-19b may enhance the cytotoxic effects of mTOR inhibitors in neuroblastoma cells.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan.
| | - Bor-Jiun Tseng
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan
| | - Hsin-Yen Pan
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
14
|
de Boisvilliers M, Perrin F, Hebache S, Balandre AC, Bensalma S, Garnier A, Vaudry D, Fournier A, Festy F, Muller JM, Chadéneau C. VIP and PACAP analogs regulate therapeutic targets in high-risk neuroblastoma cells. Peptides 2016; 78:30-41. [PMID: 26826611 DOI: 10.1016/j.peptides.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/30/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp(2)]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mutation
- N-Myc Proto-Oncogene Protein/genetics
- N-Myc Proto-Oncogene Protein/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Organ Specificity
- Pituitary Adenylate Cyclase-Activating Polypeptide/chemical synthesis
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Signal Transduction
- Structure-Activity Relationship
- Vasoactive Intestinal Peptide/chemical synthesis
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Madryssa de Boisvilliers
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Florian Perrin
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Salima Hebache
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Annie-Claire Balandre
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Souheyla Bensalma
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Agnès Garnier
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - David Vaudry
- Université de Rouen, INSERM U982, Equipe Neuropeptides, survie neuronale et plasticité cellulaire, IRIB, UFR Sciences et Techniques, Place E. Blondel, 76821 Mont-Saint-Aignan, France
| | - Alain Fournier
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Franck Festy
- Université de la Réunion, Stemcis c/o CYROI, 2, rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Jean-Marc Muller
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Corinne Chadéneau
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France.
| |
Collapse
|
15
|
Gheytanchi E, Mehrazma M, Madjd Z. Expression of Ki-67, p53 and VEGF in pediatric neuroblastoma. Asian Pac J Cancer Prev 2015; 15:3065-70. [PMID: 24815448 DOI: 10.7314/apjcp.2014.15.7.3065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB), is a neuroectodermal tumor derived from neural crest cells, and it is the second most common pediatric malignant tumor. The biological and clinical behavior of NB is very heterogeneous. This study was conducted to evaluate the expression of Ki-67, p53 and VEGF markers in tissues obtained from NB patients with different histologic types and stage. MATERIALS AND METHODS Tissue microarray (TMA) blocks were constructed from paraffin blocks of the NB tissues. Immunohistochemical staining was performed on TMA sections to detect the expression of Ki-67, p53 and VEGF markers. The association between the expression of these markers and clinicopathological parameters were then analyzed. RESULTS We had 18 patients with NB, one patient with ganglioneuroblastoma (GNB) and one with ganglioneuroma. Ki-67 was expressed in 13 (65%) tumors, and negatively correlated with age, prognosis, histologic type and stage of NB (all p<0.05). High and moderate expression of VEGF was found in 5% (1/20) and 65% (13/20) of the tumors, respectively; and it was positively correlated with age, prognosis and histologic types (all p<0.05) and negatively correlated with MKI (mitosis-karyorrhexis index). p53 expression was observed in 10% (2/20) of the tumors, which showed a relative correlation with MKI (p value=0.07). CONCLUSIONS VEGF as a candidate for anti-angiogenic targeted therapy was correlated with the development and progression of NB; therefore, VEGF along with Ki-67 can serve as a valuable marker for the prognosis of this tumor type.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | |
Collapse
|
16
|
Tundo GR, Sbardella D, De Pascali SA, Ciaccio C, Coletta M, Fanizzi FP, Marini S. Novel Platinum(II) compounds modulate insulin-degrading enzyme activity and induce cell death in neuroblastoma cells. J Biol Inorg Chem 2015; 20:101-108. [PMID: 25450414 DOI: 10.1007/s00775-014-1217-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/02/2014] [Indexed: 01/12/2023]
Abstract
The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i = 0.95 ± 0.21 μM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 μM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 μM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Sandra A De Pascali
- CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.,Department of Environmental Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Francesco P Fanizzi
- CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.,Department of Environmental Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.
| |
Collapse
|
17
|
Abstract
Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Neuroblastoma is the primary cause of death from pediatric cancer for children between the ages of one and five years and accounts for ∼13% of all pediatric cancer mortality. Its clinical impact and unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas. Novel targeted therapeutic approaches include small-molecule inhibitors as well as epigenetic, noncoding-RNA, and cell-based immunologic therapies. In this review, recent insights regarding the pathogenesis and biology of neuroblastoma are placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy.
Collapse
Affiliation(s)
- Chrystal U Louis
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas 77030; ,
| | | |
Collapse
|
18
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
19
|
Romano G. The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. SCIENTIFICA 2013; 2013:317186. [PMID: 24381788 PMCID: PMC3870877 DOI: 10.1155/2013/317186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 06/01/2023]
Abstract
Akt serine/threonine kinases, or PKB, are key players in the regulation of a wide variety of cellular activities, such as growth, proliferation, protection from apoptotic injuries, control of DNA damage responses and genome stability, metabolism, migration, and angiogenesis. The Akt-related pathway responds to the stimulation mediated by growth factors, cytokines, hormones, and several nutrients. Akt is present in three isoforms: Akt1, Akt2, and Akt3, which may be alternatively named PKB α , PKB β , and PKB γ , respectively. The Akt isoforms are encoded on three diverse chromosomes and their biological functions are predominantly distinct. Deregulations in the Akt-related pathway were observed in many human maladies, including cancer, cardiopathies, neurological diseases, and type-2 diabetes. This review discusses the significance of the abnormal activities of the Akt axis in promoting and sustaining malignancies, along with the development of tumor cell populations that exhibit enhanced resistance to chemo- and/or radiotherapy. This occurrence may be responsible for the relapse of the disease, which is unfortunately very often related to fatal consequences in patients.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
20
|
Oberthuer A. Genomic markers for neuroblastoma risk estimation: superseding tumor stage, age and MYCN? Biomark Med 2013; 7:905-8. [PMID: 24266822 DOI: 10.2217/bmm.13.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- André Oberthuer
- University of Cologne Children's Hospital, Department of Pediatric Oncology & Hematology, Germany, Kerpener Strasse 62, D-50931 Köln, Germany.
| |
Collapse
|