1
|
Czechowicz P, Więch-Walów A, Sławski J, Collawn JF, Bartoszewski R. Old drugs, new challenges: reassigning drugs for cancer therapies. Cell Mol Biol Lett 2025; 30:27. [PMID: 40038587 PMCID: PMC11881393 DOI: 10.1186/s11658-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
The "War on Cancer" began with the National Cancer Act of 1971 and despite more than 50 years of effort and numerous successes, there still remains much more work to be done. The major challenge remains the complexity and intrinsic polygenicity of neoplastic diseases. Furthermore, the safety of the antitumor therapies still remains a concern given their often off-target effects. Although the amount of money invested in research and development required to introduce a novel FDA-approved drug has continuously increased, the likelihood for a new cancer drug's approval remains limited. One interesting alternative approach, however, is the idea of repurposing of old drugs, which is both faster and less costly than developing new drugs. Repurposed drugs have the potential to address the shortage of new drugs with the added benefit that the safety concerns are already established. That being said, their interactions with other new drugs in combination therapies, however, should be tested. In this review, we discuss the history of repurposed drugs, some successes and failures, as well as the multiple challenges and obstacles that need to be addressed in order to enhance repurposed drugs' potential for new cancer therapies.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Anna Więch-Walów
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland.
| |
Collapse
|
2
|
Kaczor A, Knutelska J, Kucwaj-Brysz K, Zygmunt M, Żesławska E, Siwek A, Bednarski M, Podlewska S, Jastrzębska-Więsek M, Nitek W, Sapa J, Handzlik J. The Subtype Selectivity in Search of Potent Hypotensive Agents among 5,5-Dimethylhydantoin Derived α 1-Adrenoceptors Antagonists. Int J Mol Sci 2023; 24:16609. [PMID: 38068933 PMCID: PMC10706087 DOI: 10.3390/ijms242316609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In order to find new hypotensive drugs possessing higher activity and better selectivity, a new series of fifteen 5,5-dimethylhydantoin derivatives (1-15) was designed. Three-step syntheses, consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Crystal structures were determined for compounds 7-9. All of the synthesized 5,5-dimethylhydantoins were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico methods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil but also a stronger effect than prazosin.
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Joanna Knutelska
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, University of the National Education Commision, Podchorążych 2, 30-084 Krakow, Poland;
| | - Agata Siwek
- Department of Pharmacobiology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, 31-343 Krakow, Poland;
| | | | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| |
Collapse
|
3
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
4
|
Levitre G, Granados A, Molander GA. Sustainable Photoinduced Decarboxylative Chlorination Mediated by Halogen Atom Transfer. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:560-565. [PMID: 37588672 PMCID: PMC10427136 DOI: 10.1039/d2gc04578h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Chlorinated organic backbones constitute important components in existing biologically active chemicals, and they are extraordinary useful intermediates in organic synthesis. Herein, an operationally simple and sustainable halodecarboxylation protocol via halogen-atom transfer (XAT) as a key step is presented. The method merges a metal-free photoredox system with (diacetoxyiodo)benzene (PIDA) as a hypervalent iodine reagent using 1,2-dihaloethanes as halogen sources to afford haloalkanes in an efficient manner. The sustainability of this protocol is highlighted by an important waste recovery protocol as well as by atom economy and carbon efficiency parameters.
Collapse
Affiliation(s)
- Guillaume Levitre
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| | - Albert Granados
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| |
Collapse
|
5
|
Wang Y, Qian S, Zhao F, Wang Y, Li J. Terazosin Analogs Targeting Pgk1 as Neuroprotective Agents: Design, Synthesis, and Evaluation. Front Chem 2022; 10:906974. [PMID: 35958233 PMCID: PMC9360532 DOI: 10.3389/fchem.2022.906974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Nitrogen-containing heterocyclic compounds have shown promising therapeutic effects in a variety of inflammatory and neurodegenerative diseases. Recently, terazosin (TZ), a heterocyclic compound with a quinazoline core, was found to combine with phosphoglycerol kinase 1 (Pgk1) and protect neurons by enhancing Pgk1 activity and promoting glycolysis, thereby slowing, or preventing the neurodegeneration of PD. These findings indicated that terazosin analogs have bright prospects for the development of PD therapeutics. In this study, a series of terazosin analogs were designed and synthesized for neuroprotective effects by targeting Pgk1. Among them, compound 12b was obtained with the best Pgk1 agonistic activity and neuroprotective activity. Further study indicates that it can increase intracellular ATP content and reduce ROS levels by stimulating the activity of Pgk1, thereby playing a role in protecting nerve cells. In conclusion, this study provides a new strategy and reference for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Yang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
| | - Shihu Qian
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
| | - Fang Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
| | - Yujie Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
- *Correspondence: Jiaming Li,
| |
Collapse
|
6
|
Motoyama M, Doan TH, Hibner-Kulicka P, Otake R, Lukarska M, Lohier JF, Ozawa K, Nanbu S, Alayrac C, Suzuki Y, Witulski B. Synthesis and Structure-Photophysics Evaluation of 2-N-Amino-quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chem Asian J 2021; 16:2087-2099. [PMID: 34107175 DOI: 10.1002/asia.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Indexed: 11/12/2022]
Abstract
2-N-aminoquinazolines were prepared by consecutive SN Ar functionalization. X-ray structures display the nitrogen lone pair of the 2-N-morpholino group in conjugation with the electron deficient quinazoline core and thus representing electronic push-pull systems. 2-N-aminoquinazolines show a positive solvatochromism and are fluorescent in solution and in solid state with quantum yields up to 0.73. Increase in electron donor strength of the 2-amino substituent causes a red-shift of the intramolecular charge transfer (ICT) band (300-400 nm); whereas the photoluminescence emission maxima (350-450 nm) is also red-shifted significantly along with an enhancement in photoluminescence efficiency. HOMO-LUMO energies were estimated by a combination of electrochemical and photophysical methods and correlate well to those obtained by computational methods. ICT properties are theoretically attributed to an excitation to Rydberg-MO in SAC-CI method, which can be interpreted as n-π* excitation. 7-Amino-2-N-morpholino-4-methoxyquinazoline responds to acidic conditions with significant increases in photoluminescence intensity revealing a new turn-on/off fluorescence probe.
Collapse
Affiliation(s)
- Miho Motoyama
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Thu-Hong Doan
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Paulina Hibner-Kulicka
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Ryo Otake
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Malgorzata Lukarska
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Jean-Francois Lohier
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Kota Ozawa
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Shinkoh Nanbu
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Yumiko Suzuki
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| |
Collapse
|
7
|
Damian DB, Ghiță AM, Istrate S, Coman IC. Experimental research in rats on the reactivity of new corneal blood vessels to adrenaline. Rom J Ophthalmol 2021; 65:64-69. [PMID: 33817436 PMCID: PMC7995500 DOI: 10.22336/rjo.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Aim: The purpose of this experimental study was to evaluate the existence of adrenergic receptors in ketamine-induced corneal blood vessels in rat pups. Methods: The study of corneal neovascularization motricity was performed on 45-day-old Wistar rats in which, starting from the 15th day of life, corneal blood vessels were obtained by injecting intraperitoneal ketamine at a dose of 150 mg/ kg body weight, a total of 5 successive doses. The examination of the neovascularization was done with the help of a Nikon stereomicroscope connected to a video camera and a computer, the total magnification being 400X. The reactivity of the new corneal blood vessels to the administration in conjunctival instillations of a 1.5 mmol/L adrenaline solution was tested. The parameters followed were represented by variations in the caliber of corneal blood vessels. The data were analyzed using Microsoft Office Excel. Results: Administration of distilled water did not produce statistically significant changes in corneal blood vessels, while adrenaline produced a statistically significant constriction of vascular diameter (p=0.01 at T9, p=0.004 at T10, p=0.019 at time T11 of examinations). Conclusions: The results showed that adrenaline produces vasoconstriction in the new corneal blood vessels, which allows us to assume that they contain α-adrenergic receptors. However, we cannot say that corneal pathological vessels do not contain β2-type adrenergic receptors, because the effect of adrenaline may be an algebraic sum between vasoconstriction produced by stimulating α-adrenergic receptors and vasodilation produced by stimulating β2-adrenergic receptors, but in which the vasodilating effect may be masked by the vasoconstrictor effect given by a higher density of α-adrenergic receptors. Abbreviations: A= adrenaline, DNM = non-measurable diameter, NA= noradrenaline, Std.Er.= Standard error.
Collapse
Affiliation(s)
- Daniela Bianca Damian
- Department of Ophthalmology, “Dr. Alexandru Popescu” Military Emergency Hospital Focșani, Focșani, Vrancea, Romania
| | - Aurelian Mihai Ghiță
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Sânziana Istrate
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Ioana Cristina Coman
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Heravi MM, Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv 2020; 10:44247-44311. [PMID: 35557843 PMCID: PMC9092475 DOI: 10.1039/d0ra09198g] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Heteroatoms as well as heterocyclic scaffolds are frequently present as the common cores in a plethora of active pharmaceuticals natural products. Statistically, more than 85% of all biologically active compounds are heterocycles or comprise a heterocycle and most frequently, nitrogen heterocycles as a backbone in their complex structures. These facts disclose and emphasize the vital role of heterocycles in modern drug design and drug discovery. In this review, we try to present a comprehensive overview of top prescribed drugs containing nitrogen heterocycles, describing their pharmacological properties, medical applications and their selected synthetic pathways. It is worth mentioning that the reported examples are actually limited to current top selling drugs, being or containing N-heterocycles and their synthetic information has been extracted from both scientific journals and the wider patent literature.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
9
|
Li Z, Lin Y, Song H, Qin X, Yu Z, Zhang Z, Dong G, Li X, Shi X, Du L, Zhao W, Li M. First small-molecule PROTACs for G protein-coupled receptors: inducing α 1A-adrenergic receptor degradation. Acta Pharm Sin B 2020; 10:1669-1679. [PMID: 33088687 PMCID: PMC7563999 DOI: 10.1016/j.apsb.2020.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.
Collapse
Key Words
- BPH, benign prostatic hyperplasia
- CRBN, cereblon
- DCM, dichloromethane
- DMF, dimethylformamide
- DMSO, dimethylsulfoxide
- Degradation
- GPCR, G-protein-coupled receptor
- HPLC, high-performance liquid chromatography
- LUTS, lower urinary tract symptoms
- PROTACs, proteolysis targeting chimeras
- Prostate cancer
- Small-molecule PROTACs
- TEA, triethylamine
- THF, tetrahydrofuran
- Ubiquitylation
- hPCE, human prostate cancer epithelial
- α1-ARs, α1-adrenergic receptors
- α1A-AR, α1A-adrenergic receptor
- α1A-Adrenergic receptor
- α1B-AR, α1B-adrenergic receptor
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Hui Song
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Corresponding author. Tel./fax: +86 531 88382076.
| |
Collapse
|
10
|
Zhang J, Fan J. Prazosin inhibits the proliferation, migration and invasion, but promotes the apoptosis of U251 and U87 cells via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2020; 20:1145-1152. [PMID: 32765662 DOI: 10.3892/etm.2020.8772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Prazosin, an α-adrenergic receptor antagonist, is used to treat mild to moderate hypertension. It has recently been discovered that α-adrenergic receptors may have potential antitumor properties. Therefore, in the present study, the effect of prazosin on human glioblastoma and the underlying mechanism were investigated. Human glioblastoma U251 and U87 cells were treated with different concentrations of prazosin, and a Cell Counting Kit-8 assay was performed to investigate the effects of prazosin on cell proliferation. Transwell migration and invasion assays were used to assess the effects of prazosin on cell migration and invasion. Prazosin-induced apoptosis in U251 and U87 cells was detected by flow cytometry, and the protein expression levels of anti-apoptotic proteins and proteins related to the PI3K/AKT/mTOR signaling pathway were detected by western blotting. The results suggested that following treatment with prazosin, the proliferation, migration and invasion of U251 and U81 cells were decreased. By contrast, U251 and U81 cell apoptosis, as well as the protein expression levels of Bax and active Caspase-3 were increased after prazosin treatment (P<0.05). Bcl-2 levels were also decreased after prazosin treatment (P<0.05). Additionally, the expression of phosphorylated (p)-AKT and p-mTOR, P70 and cyclin D1 were decreased in U251 and U81 cells following prazosin treatment (P<0.05). The present study suggested that prazosin may suppress glioblastoma progression by downregulating the activity of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, P.R. China
| | - Jiye Fan
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, P.R. China.,College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P.R. China
| |
Collapse
|
11
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
12
|
Ghorai S, Lin Y, Xia Y, Wink DJ, Lee D. Silver-Catalyzed Annulation of Arynes with Nitriles for Synthesis of Structurally Diverse Quinazolines. Org Lett 2019; 22:626-630. [PMID: 31887054 DOI: 10.1021/acs.orglett.9b04395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sourav Ghorai
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Yongjia Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Donald J. Wink
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
13
|
Wade CA, Goodwin J, Preston D, Kyprianou N. Impact of α-adrenoceptor antagonists on prostate cancer development, progression and prevention. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:46-60. [PMID: 30906804 PMCID: PMC6420703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Two decades following the discovery that α1-adrenoceptor antagonists suppress prostate tumor growth at the molecular and cellular level, the impact of α-blockade as re-purposed treatment strategy in the medical management of prostate cancer is gradually being recognized. Prostate cancer is the second most common cause of cancer deaths among males in the United States, yet the disease maintains inconsistent recommendations for prevention and screening. The functional relationship between α-adrenergic signaling and smooth muscle cells in the stroma of the prostate gland and the bladder neck empowered the use of α-adrenoceptor antagonists for the relief of urethral obstruction and clinical symptoms associated with benign prostatic hyperplasia (BPH). Adrenoceptors are G-protein-coupled receptors (GCPRs) that are functionally bound by catecholamines: epinephrine (ER) and norepinephrine (NE). The α1A adrenoceptor subtype is primarily responsible for smooth muscle contraction in the bladder neck and prostate gland. α1-adrenoceptor antagonists are clinically indicated as first-line therapies for the relief of BPH, hypertension, and post-traumatic stress disorder (PTSD). Compelling evidence from cellular and pre-clinical models have identified additional effects of α1-adrenoceptor antagonists regarding their ability to induce apoptosis-mediated suppression of prostate tumor growth and metastasis. Additionally, early epidemiologic data suggest that they may serve as a safe treatment to reduce the risk of prostate cancer. Optimization of quinazoline based compounds (doxazosin) to exploit pharmacologic targeting of tumor growth and vascularization revealed high efficacy of the lead novel compound DZ-50 against prostate tumors. This review discusses the experimental and pre-clinical evidence on the impact of α-blockade on prostate cancer.
Collapse
Affiliation(s)
- Cameron A Wade
- Department of Urology, University of Kentucky College of MedicineLexington, Kentucky 40536, USA
| | - Jeffrey Goodwin
- Department of Urology, University of Kentucky College of MedicineLexington, Kentucky 40536, USA
| | - David Preston
- Department of Urology, University of Kentucky College of MedicineLexington, Kentucky 40536, USA
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky College of MedicineLexington, Kentucky 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of MedicineLexington, Kentucky 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of MedicineLexington, Kentucky 40536, USA
| |
Collapse
|
14
|
Blacker AJ, Moran-Malagon G, Powell L, Reynolds W, Stones R, Chapman MR. Development of an S NAr Reaction: A Practical and Scalable Strategy To Sequester and Remove HF. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. John Blacker
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gabriel Moran-Malagon
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lyn Powell
- Chemical Development, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - William Reynolds
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca Stones
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michael R. Chapman
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
15
|
The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers. Int J Mol Sci 2016; 17:ijms17081339. [PMID: 27537875 PMCID: PMC5000736 DOI: 10.3390/ijms17081339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa). Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists) induce apoptosis, decrease cell growth, and proliferation in PC-3, LNCaP and DU-145 cell lines. Similarly, the piperazine based naftopidil induced cell cycle arrest and death in LNCaP-E9 cell lines. In contrast, sulphonamide based tamsulosin did not exhibit these effects. In vivo data was consistent with in vitro findings as the quinazoline based α-antagonists prevented angiogenesis and decreased tumour mass in mice models of PCa. Mechanistically the cytotoxic and antitumor effects of the α-antagonists appear largely independent of α 1-blockade. The proposed targets include: VEGF, EGFR, HER2/Neu, caspase 8/3, topoisomerase 1 and other mitochondrial apoptotic inducing factors. These cytotoxic effects could not be evaluated in human studies as prospective trial data is lacking. However, retrospective studies show a decreased incidence of PCa in males exposed to α-antagonists. As human data evaluating the use of α-antagonists as treatments are lacking; well designed, prospective clinical trials are needed to conclusively demonstrate the anticancer properties of quinazoline based α-antagonists in PCa and other cancers.
Collapse
|
16
|
Assad Kahn S, Costa SL, Gholamin S, Nitta RT, Dubois LG, Fève M, Zeniou M, Coelho PLC, El-Habr E, Cadusseau J, Varlet P, Mitra SS, Devaux B, Kilhoffer MC, Cheshier SH, Moura-Neto V, Haiech J, Junier MP, Chneiweiss H. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol Med 2016; 8:511-26. [PMID: 27138566 PMCID: PMC5130115 DOI: 10.15252/emmm.201505421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.
Collapse
Affiliation(s)
- Suzana Assad Kahn
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Silvia Lima Costa
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Neurochemistry and Cell Biology Laboratory Universidade Federal da Bahia, Salvador-Bahia, Brazil
| | - Sharareh Gholamin
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Ryan T Nitta
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Luiz Gustavo Dubois
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Marie Fève
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Paulo Lucas Cerqueira Coelho
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Neurochemistry and Cell Biology Laboratory Universidade Federal da Bahia, Salvador-Bahia, Brazil
| | - Elias El-Habr
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| | - Josette Cadusseau
- UMR INSERM 955-Team 10, Faculté des Sciences et Technologies UPEC, Créteil, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France Paris Descartes University, Paris, France
| | - Siddhartha S Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Bertrand Devaux
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Paris Descartes University, Paris, France Department of Neurosurgery, Sainte-Anne Hospital, Paris, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Samuel H Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | | | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Marie-Pierre Junier
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| | - Hervé Chneiweiss
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| |
Collapse
|
17
|
Abstract
Neuroendocrine tumors which have the potential to secrete catecholamines are either associated with sympathetic adrenal (pheochromocytoma) or nonadrenal (paraganglioma) tissue. Surgical removal of these tumors is always indicated to cure and prevent cardiovascular and other organ system complications associated with catecholamine excess. Some of these tumors have malignant potential as well. The diagnosis, localization and anatomical delineation of these tumors involve measurement of catecholamines and their metabolic end products in plasma and urine, 123I-metaiodobenzylguanidine scintigraphy, computed tomography, and/or magnetic resonance imaging. Before surgical removal of the tumors, the optimization of blood pressure, as well as intravascular volume, is an important measure to avoid and suppress perioperative adverse hemodynamic events. Preoperative preparation includes the use of alpha-adrenergic antagonists, beta-adrenergic antagonists with or without other antihypertensive agents, fluid therapy as well as insulin therapy for hyperglycemia if required. Due attention should be given to type and dose of alpha-receptor antagonists to be used and the duration of this therapy to achieve an optimal level of preoperative "alpha-blockade." Despite this preoperative preparation, many patients will have hypertensive crises intraoperatively which need to be promptly and carefully managed by the anesthesia team which requires intensive and advanced monitoring techniques. The most common complication after tumor removal is hypotension which may require fluid therapy and vasopressor support for a few hours. With advancement in surgical and anesthetic techniques, the incidence of severe morbidity and mortality associated with the surgery is low in high volume centers.
Collapse
Affiliation(s)
- Rashmi Ramachandran
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Vimi Rewari
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Fuchs R, Stracke A, Ebner N, Zeller CW, Raninger AM, Schittmayer M, Kueznik T, Absenger-Novak M, Birner-Gruenberger R. The cytotoxicity of the α1-adrenoceptor antagonist prazosin is linked to an endocytotic mechanism equivalent to transport-P. Toxicology 2015; 338:17-29. [PMID: 26449523 PMCID: PMC4671317 DOI: 10.1016/j.tox.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Since the α1-adrenergic antagonist prazosin (PRZ) was introduced into medicine as a treatment for hypertension and benign prostate hyperplasia, several studies have shown that PRZ induces apoptosis in various cell types and interferes with endocytotic trafficking. Because PRZ is also able to induce apoptosis in malignant cells, its cytotoxicity is a focus of interest in cancer research. Besides inducing apoptosis, PRZ was shown to serve as a substrate for an amine uptake mechanism originally discovered in neurones called transport-P. In line with our hypothesis that transport-P is an endocytotic mechanism also present in non-neuronal tissue and linked to the cytotoxicity of PRZ, we tested the uptake of QAPB, a fluorescent derivative of PRZ, in cancer cell lines in the presence of inhibitors of transport-P and endocytosis. Early endosomes and lysosomes were visualised by expression of RAB5-RFP and LAMP1-RFP, respectively; growth and viability of cells in the presence of PRZ and uptake inhibitors were also tested. Cancer cells showed co-localisation of QAPB with RAB5 and LAMP1 positive vesicles as well as tubulation of lysosomes. The uptake of QAPB was sensitive to transport-P inhibitors bafilomycin A1 (inhibits v-ATPase) and the antidepressant desipramine. Endocytosis inhibitors pitstop(®) 2 (general inhibitor of endocytosis), dynasore (dynamin inhibitor) and methyl-β-cyclodextrin (cholesterol chelator) inhibited the uptake of QAPB. Bafilomycin A1 and methyl-β-cyclodextrin but not desipramine were able to preserve growth and viability of cells in the presence of PRZ. In summary, we confirmed the hypothesis that the cellular uptake of QAPB/PRZ represents an endocytotic mechanism equivalent to transport-P. Endocytosis of QAPB/PRZ depends on a proton gradient, dynamin and cholesterol, and results in reorganisation of the LAMP1 positive endolysosomal system. Finally, the link seen between the cellular uptake of PRZ and cell death implies a still unknown pro-apoptotic membrane protein with affinity towards PRZ.
Collapse
Affiliation(s)
- Robert Fuchs
- Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria.
| | - Anika Stracke
- Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria.
| | - Nadine Ebner
- Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria.
| | - Christian Wolfgang Zeller
- Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria.
| | - Anna Maria Raninger
- Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria.
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz and Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria.
| | - Tatjana Kueznik
- Centre for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria.
| | - Markus Absenger-Novak
- Centre for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria.
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz and Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria.
| |
Collapse
|
19
|
Stojkov-Mimic NJ, Bjelic MM, Radovic SM, Mihajlovic AI, Sokanovic SJ, Baburski AZ, Janjic MM, Kostic TS, Andric SA. Intratesticular alpha1-adrenergic receptors mediate stress-disturbed transcription of steroidogenic stimulator NUR77 as well as steroidogenic repressors DAX1 and ARR19 in Leydig cells of adult rats. Mol Cell Endocrinol 2015; 412:309-19. [PMID: 26003139 DOI: 10.1016/j.mce.2015.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/16/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to define the role of testicular α1-adrenergic receptors (α1-ADRs) in stress-triggered adaptation of testosterone-producing Leydig cells of adult rats. Results showed that in vivo blockade of testicular α1-ADRs prevented partial recovery of circulating androgen levels registered after 10× repeated immobilization stress (10 × IMO). Moreover, α1-ADR-blockade diminished 10 × IMO-triggered recovery of Leydig cell androgen production, and abolished mitochondrial membrane potential recovery. In the same cells, 10 × IMO-induced increase in Star transcript was abolished, Lhcgr transcript decreased, while transcription of other steroidogenic proteins was not changed. α1-ADR-blockade recovered stress-induced decrease of Nur77, one of the main steroidogenic stimulator, while significantly reduced 10 × IMO-increased in the transcription of the main steroidogenic repressors, Arr19 and Dax1. In vitro experiments revealed an adrenaline-induced α1-ADR-mediated decrease in Nur77 transcription in Leydig cells. Adrenaline-induced increase of repressor Dax1 also involves ADRs in Leydig cells. Accordingly, α1-ADRs participate in some of the stress-triggered effects on the steroidogenic machinery of Leydig cells.
Collapse
Affiliation(s)
- Natasa J Stojkov-Mimic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Maja M Bjelic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sava M Radovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar I Mihajlovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Srdjan J Sokanovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Z Baburski
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Janjic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
20
|
Zhang W, Ma Z, Li W, Li G, Chen L, Liu Z, Du L, Li M. Discovery of Quinazoline-Based Fluorescent Probes to α1-Adrenergic Receptors. ACS Med Chem Lett 2015; 6:502-6. [PMID: 26005522 DOI: 10.1021/ml5004298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/30/2015] [Indexed: 11/28/2022] Open
Abstract
α1-Adrenergic receptors (α1-ARs), as the essential members of G protein-coupled receptors (GPCRs), can mediate numerous physiological responses in the sympathetic nervous system. In the current research, a series of quinazoline-based small-molecule fluorescent probes to α1-ARs (1a-1e), including two parts, a pharmacophore for α1-AR recognition and a fluorophore for visualization, were well designed and synthesized. The biological evaluation results displayed that these probes held reasonable fluorescent properties, high affinity, accepted cell toxicity, and excellent subcellular localization imaging potential for α1-ARs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenhua Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Geng Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Laizhong Chen
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
21
|
Patil KC, McPherson L, Daly CJ. Co-Localization of Alpha1-Adrenoceptors and GPR55: A Novel Prostate Cancer Paradigm? ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.64023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Franchini S, Battisti UM, Baraldi A, Prandi A, Fossa P, Cichero E, Tait A, Sorbi C, Marucci G, Cilia A, Pirona L, Brasili L. Structure–affinity/activity relationships of 1,4-dioxa-spiro[4.5]decane based ligands at α 1 and 5-HT1A receptors. Eur J Med Chem 2014;87:248-66. [DOI: 10.1016/j.ejmech.2014.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 01/26/2023]
|
23
|
Tian XC, Huang X, Wang D, Gao F. Eco-Efficient One-Pot Synthesis of Quinazoline-2,4(1 H,3 H)-diones at Room Temperature in Water. Chem Pharm Bull (Tokyo) 2014; 62:824-9. [DOI: 10.1248/cpb.c14-00264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xin-Chuan Tian
- Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agricultural University
| | - Xing Huang
- Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agricultural University
| | - Dan Wang
- Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agricultural University
| | - Feng Gao
- Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agricultural University
| |
Collapse
|
24
|
Hendrix LN, Hamilton DA, Kyprianou N. Emerging therapeutics targeting castration-resistant prostate cancer: the AR-mageddon of tumor epithelial-mesenchymal transition. Expert Rev Endocrinol Metab 2013; 8:403-416. [PMID: 30736155 DOI: 10.1586/17446651.2013.811914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advanced prostate cancer will claim nearly 30,000 lives among men in the USA in the year 2013. Most of these will be castration-resistant prostate cancers that are not responsive to traditional therapeutic modalities, and there is no available regimen that fully eradicates metastatic disease. This poses a significant clinical challenge for practitioners and has stimulated the development of novel agents that target these castration-resistant tumor cells. Development of metastatic prostate cancer is orchestrated by multiple signaling pathways that regulate cell survival, apoptosis, anoikis, epithelial-mesenchymal transition (EMT), invasion, the androgen signaling axis and angiogenesis. Disruption of the mechanisms underlying these processes is critical for development of agents that can target otherwise resistant tumor cells. Insights into the mechanisms by which rounds of EMT/mesenchymal-epithelial transition conversions facilitate the progression of localized prostate carcinomas to advanced metastatic and castration-resistant disease emerge as attractive targets for drug development. In this review, the authors discuss the current understanding of therapeutic resistance in castration-resistant prostate cancer with focus on the androgen receptor signaling axis and EMT. Novel therapeutic approaches targeting critical players of both pathways as well as the results from ongoing clinical trials will be discussed in this review.
Collapse
Affiliation(s)
- Lauren N Hendrix
- a Division of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David A Hamilton
- a Division of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Natasha Kyprianou
- b Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
- c Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
- d Division of Urology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
25
|
Bonifazi A, Piergentili A, Del Bello F, Farande Y, Giannella M, Pigini M, Amantini C, Nabissi M, Farfariello V, Santoni G, Poggesi E, Leonardi A, Menegon S, Quaglia W. Structure–Activity Relationships in 1,4-Benzodioxan-Related Compounds. 11. Reversed Enantioselectivity of 1,4-Dioxane Derivatives in α1-Adrenergic and 5-HT1A Receptor Binding Sites Recognition. J Med Chem 2013; 56:584-8. [DOI: 10.1021/jm301525w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| | - Yogita Farande
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| | - Mario Giannella
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| | - Maria Pigini
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| | - Consuelo Amantini
- Experimental Medicine Section,
School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Massimo Nabissi
- Experimental Medicine Section,
School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Valerio Farfariello
- Experimental Medicine Section,
School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Giorgio Santoni
- Experimental Medicine Section,
School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Elena Poggesi
- Recordati S.p.A.,
Drug Discovery, Via Civitali 1, 20148 Milano, Italy
| | - Amedeo Leonardi
- Recordati S.p.A.,
Drug Discovery, Via Civitali 1, 20148 Milano, Italy
| | - Sergio Menegon
- Recordati S.p.A.,
Drug Discovery, Via Civitali 1, 20148 Milano, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School
of Pharmacy, University of Camerino, Via
S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
26
|
Andric SA, Kojic Z, Bjelic MM, Mihajlovic AI, Baburski AZ, Sokanovic SJ, Janjic MM, Stojkov NJ, Stojilkovic SS, Kostic TS. The opposite roles of glucocorticoid and α1-adrenergic receptors in stress triggered apoptosis of rat Leydig cells. Am J Physiol Endocrinol Metab 2013; 304:E51-9. [PMID: 23149620 PMCID: PMC3774172 DOI: 10.1152/ajpendo.00443.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The stress-induced initiation of proapoptotic signaling in Leydig cells is relatively well defined, but the duration of this signaling and the mechanism(s) involved in opposing the stress responses have not been addressed. In this study, immobilization stress (IMO) was applied for 2 h daily, and animals were euthanized immediately after the first (IMO1), second (IMO2), and 10th (IMO10) sessions. In IMO1 and IMO2 rats, serum corticosterone and adrenaline were elevated, whereas serum androgens and mRNA transcription of insulin-like factor-3 in Leydig cells were inhibited. Reduced oxygen consumption and the mitochondrial membrane potential coupled with a leak of cytochrome c from mitochondria and increased caspase-9 expression, caspase-3 activity, and number of apoptotic Leydig cells was also observed. Corticosterone and adrenaline were also elevated in IMO10 rats but were accompanied with a partial recovery of androgen secretion and normalization of insulin-like factor-3 transcription coupled with increased cytochrome c expression, abolition of proapoptotic signaling, and normalization of the apoptotic events. Blockade of intratesticular glucocorticoid receptors diminished proapoptotic effects without affecting antiapoptotic effects, whereas blockade of intratesticular α(1)-adrenergic receptors diminished the antiapoptotic effects without affecting proapoptotic effects. These results confirmed a critical role of glucocorticoids in mitochondria-dependent apoptosis and showed for the first time the relevance of stress-induced upregulation of α(1)-adrenergic receptor expression in cell apoptotic resistance to repetitive IMOs. The opposite role of two hormones in control of the apoptotic rate in Leydig cells also provides a rationale for a partial recovery of androgen production in chronically stressed animals.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Cells, Cultured
- Corticosterone/blood
- Corticosterone/metabolism
- Corticosterone/pharmacology
- Corticosterone/physiology
- Drug Antagonism
- Glucocorticoids/pharmacology
- Glucocorticoids/physiology
- Immobilization/psychology
- Leydig Cells/drug effects
- Leydig Cells/metabolism
- Leydig Cells/physiology
- Male
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/physiology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Glucocorticoid/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gotoh A, Nagaya H, Kanno T, Nishizaki T. Antitumor action of α(1)-adrenoceptor blockers on human bladder, prostate and renal cancer cells. Pharmacology 2012; 90:242-6. [PMID: 23007551 DOI: 10.1159/000342797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/21/2012] [Indexed: 11/19/2022]
Abstract
The present study investigated the antitumor action of α(1)-adrenoceptor blockers on human bladder, prostate and renal cancer cells. For bladder cancer cell lines used here such as 253J, 5637, KK-47, T24 and UM-UC-3 cells, prazosin, a selective α(1)-adrenoceptor blocker, reduced cell viability at concentrations more than 30 µmol/l. Likewise, naftopidil, a blocker of α(1A)- and α(1D)-adrenoceptors, reduced cell viability for all the bladder cancer cells used here in a concentration (10-100 µmol/l)-dependent manner, with a much greater advantage than prazosin. Naftopidil also reduced cell viability for human prostate cancer cell lines such as DU145, LNCap and PC-3 cells and ACHN human renal cancer cells, with a much higher potential than prazosin. Thus, the results of the present study suggest that naftopidil could be a beneficial antitumor drug for the treatment of urological cancers.
Collapse
Affiliation(s)
- Akinobu Gotoh
- Laboratory of Cell and Gene Therapy, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | |
Collapse
|