1
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
2
|
Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacology 2025; 33:505-525. [PMID: 39543054 DOI: 10.1007/s10787-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is the predominant and major cause of fatality worldwide, based on the different types of cancer. There is a limitation in the current treatment. So we need better therapeutic agents that counteract the progression and development of malignant tumours. Plant-derived products are closely related and useful for human health. Luteolin is a polyphenolic flavonoid bioactive molecule that is present in various herbs, vegetables, fruits, and flowers and exhibits chemoprotective and pharmacological activity against different malignancies. To offer innovative approaches for the management of various cancers, we present a comprehensive analysis of the latest discoveries on luteolin. The aim is to inspire novel concepts for the development of advanced pharmaceuticals targeting cancer and search specifically targeted reviews and research articles published from January 1999 to January 2024 that investigated the application of luteolin in various cancer management. A thorough literature search utilizing the keywords "luteolin" "Signalling Pathway" "cancer" and nanoparticles was performed in the databases of Google Scholar, Web of Science, SCOPUS, UGC care list and PubMed. Through the compilation of existing research, we have discovered that luteolin possesses several therapeutic actions against various cancer via a signaling pathway involving the of NF-κB regulation, AMPK/mTOR, toll-like receptor, Nrf-2, PI3K/Akt MAPK and Wnt/β-catenin and their underlying mechanism of action has been well understood. This review intended to completely integrate crucial information on natural sources, biosynthesis, pharmacokinetics, signaling pathways, chemoprotective and therapeutic properties against various cancers, and nanoformulation of luteolin.
Collapse
Affiliation(s)
- Deepika Singh
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Gaurav Shukla
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
3
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
4
|
González-Ayón MA, Rochin-Galaviz A, Zizumbo-López A, Licea-Claverie A. Poly( N-vinylcaprolactam)-Gold Nanorods-5 Fluorouracil Hydrogels: In the Quest of a Material for Topical Therapies against Melanoma Skin Cancer. Pharmaceutics 2023; 15:pharmaceutics15041097. [PMID: 37111585 PMCID: PMC10145490 DOI: 10.3390/pharmaceutics15041097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Chemically crosslinked hydrogels based on poly(N-vinylcaprolactam) (PNVCL) were synthetized by a photoinitiated chemical method. A galactose-based monomer, 2-lactobionamidoethyl methacrylate (LAMA), and N-vinylpyrrolidone (NVP) were added with the aim to improve the physical and chemical properties of hydrogels. The effects of both comonomers on the swelling ratio (Q), volume phase transition temperature (VPTT), glass transition temperature (Tg), and Young's moduli by mechanical compression below and above the VPTT were studied. Gold nanorods (GNRDs) and 5-fluorouracil (5FU) were embedded into the hydrogels, to study the drug release profiles with and without the excitation of GNRDs by irradiation in the near-infrared region (NIR). Results showed that the addition of LAMA and NVP increased the hydrogels' hydrophilicity, elasticity, and VPTT. The loading of GNRDs in the hydrogels changed the release rate of 5FU when irradiated intermittently with an NIR laser. The present study reports on the preparation of a hydrogel-based platform of PNVCL-GNRDs-5FU as a potential hybrid anticancer hydrogel for chemo/photothermal therapy that could be applied against skin cancer for topical 5FU delivery.
Collapse
Affiliation(s)
- Mirian A González-Ayón
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
| | - Alondra Rochin-Galaviz
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
| | - Arturo Zizumbo-López
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
| |
Collapse
|
5
|
Zhao Z, Fang L, Lv D, Chen L, Zhang B, Wu D. Design and synthesis of Ag NPs/chitosan-starch nano-biocomposite as a modern anti-human malignant melanoma drug. Int J Biol Macromol 2023; 236:123823. [PMID: 36842739 DOI: 10.1016/j.ijbiomac.2023.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
In recent years, the unprecedented increase in various cancers such as melanoma has caused researchers to focus more on the formulation of newer drugs with less side effects. In this study, we herein indicate the biogenic nanoarchitechtonics of Ag NPs template over chitosan/starch mixed hydrogel having notable reducing potential and anti-malignant melanoma effects. The two biopolymers also could stabilize as-synthesized Ag NPs. Physicochemical features of the material were further characterized over a range of advanced methods like X-ray diffraction (XRD), elemental mapping, dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier transformed infrared spectroscopy (FT-IR). TEM analysis showed the spherical-shaped nanocomposite with the mean diameter in the range of 5-15 nm. Thereafter, the nanocomposite was exploited in the anti-malignant melanoma and cytotoxicity effects studies against various human malignant melanoma cell lines (HT144, RPMI7951, SKMEL2, UACC3074, WM266-4 and MUM2C) in situ. The bio-composite corresponding IC50 values were 193, 102, 227, 250, 301, and 203 μg/mL against MUM2C, WM266-4, UACC3074, SKMEL2, RPMI7951, and HT144 cell lines, respectively. A significantly high IC50 value offered an excellent antioxidant capacity of bio-composite. According to the above results, Ag NPs/CS-Starch nanomaterial can be utilized as an efficient drug to treat malignant melanoma in humans after doing clinical trial studies.
Collapse
Affiliation(s)
- Zunjiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China; Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China.
| | - Linsen Fang
- Department of Burns and Wound Repair Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Dalun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China
| | - Lei Chen
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China
| | - Baode Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China
| | - Dejin Wu
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China
| |
Collapse
|
6
|
Rad FT, Gargari BN, Ghorbian S, Farsani ZS, Sharifi R. Inhibiting the growth of melanoma cells via hTERT gene editing using CRISPR-dCas9-dnmt3a system. Gene 2022; 828:146477. [PMID: 35398175 DOI: 10.1016/j.gene.2022.146477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
CRISPR-Cas9 gene-editing technology has pushed the boundaries of genetic modification. The principle of this method is based on the purposeful defense system of DNA degradation and will be one of the most powerful instruments for gene editing shortly. The purpose of this study was to evaluate the capability of this approach to manage melanoma cells. The present study used EF1a-hsaCas9-U6-gRNA as a hybrid vector of sgRNA and Cas9 for the transfection of A-375 melanoma cells. Transfection efficiency was enhanced by examining the two concentrations of 4 and 8 µg/mL of hexadimethrine bromide (trade name Polybrene). The existence of Cas9 in transfected cells was detected by flow cytometry. The expression level of the metabisulfite-modified hTERT gene was measured by real-time PCR technique. The presence of telomerase in cells was determined by flow cytometry and western blotting analysis. The hTERT gene promoter methylation was also evaluated by HRM assay. Finally, the induction of apoptosis in transfected A375 cells was assessed using flow cytometry. The results showed that the presence of gRNA significantly increased the transfection efficiency (up to about 7.75 times higher). The hTERT expression levels in A-375 cells were significantly decreased at different concentrations of Polybrene (in a dose-dependent manner) and various amounts of transfection (P < 0.05). The expression of hTERT in basal cells was not significantly different from the group transfected without gRNA (P˃0.05) but was significantly higher than the group transfected with gRNA (P < 0.05). The results of flow cytometry and western blotting analysis showed a decrease in hTERT level compared to cells transfected without gRNA as well as basal cells. The methylation of hTERT gene promoter in the cells transfected with gRNA at a concentration of 80 μg/mL in the presence of both 4 μg/mL and 8 μg/mL of Polybrene was significantly increased compared to those transfected without sRNA (P < 0.05). The flow cytometry results indicated no significant difference in the induction of apoptosis in the transfected cells compared to the basal cells (P < 0.05). Evidence suggests that the designed CRISPR/Cas9 system reduces the expression of the hTERT gene and telomerase presence, thereby inhibiting the growth of melanoma cells.
Collapse
Affiliation(s)
- Farbod Taghavi Rad
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Bahar Naghavi Gargari
- Department of Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saied Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Rasoul Sharifi
- Department of Biology, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|
7
|
Liu R, Sun X, Hu Z, Peng C, Wu T. Knockdown of long non-coding RNA MIR155HG suppresses melanoma cell proliferation, and deregulated MIR155HG in melanoma is associated with M1/M2 balance and macrophage infiltration. Cells Dev 2022; 170:203768. [DOI: 10.1016/j.cdev.2022.203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
|
8
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
9
|
Abstract
Melanoma is a relentless type of skin cancer which involves myriad signaling pathways which regulate many cellular processes. This makes melanoma difficult to treat, especially when identified late. At present, therapeutics include chemotherapy, surgical resection, biochemotherapy, immunotherapy, photodynamic and targeted approaches. These interventions are usually administered as either a single-drug or in combination, based on tumor location, stage, and patients' overall health condition. However, treatment efficacy generally decreases as patients develop treatment resistance. Genetic profiling of melanocytes and the discovery of novel molecular factors involved in the pathogenesis of melanoma have helped to identify new therapeutic targets. In this literature review, we examine several newly approved therapies, and briefly describe several therapies being assessed for melanoma. The goal is to provide a comprehensive overview of recent developments and to consider future directions in the field of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Pavan Kumar Dhanyamraju, Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA17033, USA. Tel: +1-6096474712, E-mail:
| | - Trupti N. Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
10
|
Moon KM, Lee MK, Hwang T, Choi CW, Kim MS, Kim HR, Lee B. The multi-functional roles of forkhead box protein O in skin aging and diseases. Redox Biol 2021; 46:102101. [PMID: 34418600 PMCID: PMC8385202 DOI: 10.1016/j.redox.2021.102101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box, class O (FoxO) family members are multifunctional transcription factors that are involved in several metabolic processes, including energy metabolism, apoptosis, DNA repair, and oxidative stress. However, their roles in skin health have not been well-documented. Recent studies have indicated that FoxOs are important factors to control skin homeostasis and health. The activation or deactivation of some FoxO family members is closely related to melanogenesis, wound healing, acne, and melanoma. In this review, we have discussed the recent findings that demonstrate the relationship between FoxOs and skin health as well as the underlying mechanisms associated with their functions.
Collapse
Affiliation(s)
- Kyoung Mi Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea
| | - Taehyeok Hwang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea.
| |
Collapse
|
11
|
Rafat M, Moraghebi M, Afsa M, Malekzadeh K. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell 2021; 34:1051-1065. [PMID: 33997944 DOI: 10.1007/s13577-021-00544-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence to reach the molecular mechanism and clinical significance of miR-132 in different types of cancer. Dysregulation of miR-132 level in various types of malignancies, including hepatocellular carcinoma, breast cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, osteosarcoma, pancreatic cancer, and ovarian cancer have reported, significantly decrease in its level, which can be indicated to its function as a tumor suppressor. miR-132 is involved in cell proliferation, migration, and invasion through cell cycle pathways, such as PI3K, TGFβ or hippo signaling pathways, or on oncogenes such as Ras, AKT, mTOR, glycolysis. miR-132 could be potentially a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-132 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.
Collapse
Affiliation(s)
- Milad Rafat
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahta Moraghebi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Afsa
- Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. .,Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
12
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
13
|
Abstract
Melanoma represents the most aggressive and the deadliest form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include single agents or combined therapies, depending on the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be decreased due to the development of diverse resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of the malignant transformation. In this review, we aim to survey therapies approved and under evaluation for melanoma treatment and relevant research on the molecular mechanisms underlying melanomagenesis.
Collapse
Affiliation(s)
- Beatriz Domingues
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital S João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Liang G, Liu M, Wang Q, Shen Y, Mei H, Li D, Liu W. Itraconazole exerts its anti-melanoma effect by suppressing Hedgehog, Wnt, and PI3K/mTOR signaling pathways. Oncotarget 2018; 8:28510-28525. [PMID: 28212537 PMCID: PMC5438669 DOI: 10.18632/oncotarget.15324] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma is the deadliest form of all skin cancers. Itraconazole, a commonly used systemic antifungal drug, has been tested for its anti-tumor effects on basal cell carcinoma, prostate cancer, and non-small cell lung cancer. Whether itraconazole has any specific anti-tumor effect on melanoma remains unknown. However, the goal of this study is to investigate the effect of itraconazole on melanoma and to reveal some details of its underlying mechanism. In the in vivo xenograft mouse model, we find that itraconazole can inhibit melanoma growth and extend the survival of melanoma xenograft mice, compared to non-itraconazole-treated mice. Also, itraconazole can significantly inhibit cell proliferation, as demonstrated by Ki-67 staining in itraconazole-treated tumor tissues. In in vitro, we show that itraconazole inhibits the proliferation and colony formation of both SK-MEL-28 and A375 human melanoma cells. Moreover, we demonstrate that itraconazole significantly down-regulates Gli-1, Gli-2, Wnt3A, β-catenin and cyclin D1, while it up-regulates Gli-3 and Axin-1, indicating potent inhibitory effects of itraconazole on Hedgehog (Hh) and Wnt signaling pathways. Furthermore, itraconazole significantly suppresses the PI3K/mTOR signaling pathway – indicated by the down-regulated phosphorylation of p70S6K, 4E-BP1 and AKT – but has no effect on the phosphorylation of MEK or ERK. Our data suggest that itraconazole inhibits melanoma growth through an interacting regulatory network that includes Hh, Wnt, and PI3K/mTOR signaling pathways. These results suggest that this agent has several potent anti-melanoma features and may be useful in the synergesis of other anti-cancer drugs via blockage of the Hh, Wnt and PI3K/mTOR signaling pathways.
Collapse
Affiliation(s)
- Guanzhao Liang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Musang Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yongnian Shen
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Huan Mei
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dongmei Li
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
15
|
Julius A, Desai A, Yung RL. Recombinant human erythropoietin stimulates melanoma tumor growth through activation of initiation factor eIF4E. Oncotarget 2018; 8:30317-30327. [PMID: 28415825 PMCID: PMC5444745 DOI: 10.18632/oncotarget.16331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Recombinant human erythropoietin (EPO) is standard treatment for anemia in cancer patients. Recent clinical trials suggest that EPO may accelerate tumor progression and increase mortality. However, the evidence supporting a growth-promoting effect of EPO has remained controversial. Employing an in vivo model of B16 murine melanoma, we observed that administration of EPO to tumor bearing C57BL/6 mice resulted in pronounced acceleration of melanoma growth. Our in vitro studies demonstrate that B16 murine melanoma cells express EPOR, both at the protein and mRNA levels. Interestingly, expression of EPOR was retained in the established tumors. EPO stimulation of B16 cells enhanced proliferation and protein synthesis rates, and correlated with activation of the receptor associated Janus kinase 2 (Jak2) as well as phosphorylation of extracellular signal–regulated kinase (Erk) 1/2 and Akt kinases. Treatment with EPO and Jak-2 antagonists significantly inhibited EPO-mediated B16 cell proliferation. Moreover, EPO dose-dependently induced the phosphorylation and activation of the translation initiation factor eIF4E as well as the phosphorylation of its repressor, the eIF4E binding protein 4E-BP1. Finally, using eIF4E small interfering RNA (siRNA), we observed that EPO-mediated stimulation of B16 cell proliferation is eIF4E-dependent. Our results indicate that EPO exerts a powerful stimulatory effect on cell proliferation and de novo protein synthesis in melanoma cells through activation of the initiation factor eIF4E.
Collapse
Affiliation(s)
- Annabelle Julius
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Desai
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Raymond L Yung
- Geriatric Research, Education and Clinical Center, Veterans Affairs Ann Arbor Health System, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Fang M, Zhu D, Luo C, Li C, Zhu C, Ou J, Li H, Zhou Y, Huo C, Liu W, Peng J, Peng Q, Mo Z. In vitro and in vivo anti-malignant melanoma activity of Alocasia cucullata via modulation of the phosphatase and tensin homolog/phosphoinositide 3-kinase/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:359-365. [PMID: 29180042 DOI: 10.1016/j.jep.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Alocasia cucullata, a Chinese herb, has been used as an anticancer treatment in southern China. Phosphatase and tensin (PTEN), is a tumor suppressor gene and the loss of PTEN expression may activate the phosphoinositide-3-kinase (PI3K)/AKT signaling pathway which play a key role in tumors formation and progression. In this study, we evaluated the anti-melanoma effect and the underlying mechanism of 50% ethanolic extract of A. cucullata (EAC) in vitro and in vivo. Using MTT, wound healing, and transwell assays, we found that EAC suppressed the proliferation, migration, and invasion of melanoma cells (B16-F10, A375 and A2058) in a dose-dependent manner. We also found that EAC suppresses B16-F10 tumor growth in a xenografted mouse model. Western blot analysis revealed that the expression level of PTEN was up-regulated, and phosphorylation of PI3K and AKT reduced in B16-F10 cells and tumor tissues after EAC treatment. No significant differences were observed in PI3K and AKT expression. Moreover, immunohistochemistry showed that the number of PTEN-positive cells in tumor tissues increased and that of p-AKT-positive cells decreased with EAC treatment, corroborating the western blot results. Our data reveal that EAC can inhibit malignant melanoma in vitro and in vivo and suggest that its anti-tumor effect is associated with modulation of the PTEN/ PI3K/AKT signaling pathway. In summary, our findings highlight a promising herbal remedy for the treatment of malignant melanoma, which warrants further study.
Collapse
Affiliation(s)
- Miao Fang
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Chen Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Jinying Ou
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Hancheng Li
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Yuting Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Chuying Huo
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Wei Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| | - Jiangli Peng
- School of Pharmaceutical, Hunan University of Chinese Medicine, Xueshi Road, Changsha 410208, China.
| | - Qiuxian Peng
- School of Pharmaceutical, Hunan University of Chinese Medicine, Xueshi Road, Changsha 410208, China.
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
17
|
Pópulo H, Batista R, Sampaio C, Pardal J, Lopes JM, Soares P. SDHD promoter mutations are rare events in cutaneous melanomas but SDHD protein expression is downregulated in advanced cutaneous melanoma. PLoS One 2017; 12:e0180392. [PMID: 28662141 PMCID: PMC5491217 DOI: 10.1371/journal.pone.0180392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND SDHD promoter mutations were reported in 4-10% of cutaneous melanomas. The advanced clinico-pathological and patient survival association with SDHD mutation and/or expression in cutaneous melanoma remains controversial. OBJECTIVES To evaluate the presence of SDHD promoter mutations and SDHD protein expression in a melanoma series and its possible association with prognosis and survival of the patients. METHODS We assessed SDHD promoter status in cutaneous melanomas (CM), ocular melanomas (OM) and melanoma cell lines, and the expression of SDHD protein by immunohistochemistry in CM and OM, and by western blot in melanoma cell lines. We explored the putative association between SDHD protein expression and clinico-pathological and prognostic parameters of melanoma. RESULTS We detected 2% of SDHD promoter mutations in CM, but none in OM and cell lines. SDHD protein expression was present in all CM, in OM and in all CM and OM derived cell lines analysed. A significant association between lower SDHD mean protein expression and presence of ulceration and higher pT stage was found. CONCLUSIONS SDHD promoter mutation seems to be a rare event in CM but SDHD lower expression might associate with worst prognostic features in CM.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal (Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal)
| | - Rui Batista
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal (Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal)
- Medical Faculty, University of Porto, Porto, Portugal
| | - Cristina Sampaio
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal (Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal)
- Medical Faculty, University of Porto, Porto, Portugal
| | - Joana Pardal
- Department of Pathology, Hospital S. João, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal (Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal)
- Department of Pathology, Hospital S. João, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal (Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal)
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Bu P, Luo C, He Q, Yang P, Li X, Xu D. MicroRNA-9 inhibits the proliferation and migration of malignant melanoma cells via targeting sirituin 1. Exp Ther Med 2017; 14:931-938. [PMID: 28810544 PMCID: PMC5526066 DOI: 10.3892/etm.2017.4595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/01/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miR) are a class of small non-coding RNA that are able to inhibit gene expression by directly binding to the 3′ untranslated region (UTR) of their target mRNA and thus promote translational repression or mRNA degradation. Recently, miR-9 was reported to have a suppressive role in malignant melanoma; however, the underlying mechanism remains largely unclear. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to examine the mRNA and protein expression levels in malignant melanoma tissues and cell lines. The MTT assay and wound healing assay were used to examine the cell viability, proliferation and migratory capacities. Bioinformatics prediction and luciferase reporter assay were performed to investigate the relationship between miR-9 and its potential target gene. The present data revealed that miR-9 expression was significantly downregulated in malignant melanoma tissues when compared with their matched adjacent non-tumor tissues. Furthermore, the expression levels of miR-9 were reduced in malignant melanoma cell lines when compared with human normal skin HACAT cells. Moreover, the ectopic expression of miR-9 significantly suppressed the proliferation and migration of malignant melanoma cells, accompanied with a remarkable decrease in the protein expression levels of sirtuin 1 (SIRT1), which were markedly upregulated in malignant melanoma tissues and cell lines. Additionally, restoration of SIRT1 reversed the suppressive effects of miR-9 on the proliferation and migration of malignant melanoma cells. Luciferase reporter assay data further identified SIRT1 as a direct target gene of miR-9. To conclude, the present findings indicate that miR-9 has a suppressive role in malignant melanoma cell viability and migration, at least in part, via directly inhibiting the protein expression of its target gene, SIRT1. Therefore, miR-9 may serve as a potential candidate for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Pingyuan Bu
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengqun Luo
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Quanyong He
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ping Yang
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xi Li
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Xu
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
19
|
Xu D, Chen X, He Q, Luo C. MicroRNA-9 suppresses the growth, migration, and invasion of malignant melanoma cells via targeting NRP1. Onco Targets Ther 2016; 9:7047-7057. [PMID: 27895497 PMCID: PMC5117879 DOI: 10.2147/ott.s107235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRs) are a class of small noncoding RNAs that negatively regulate the gene expression by directly binding to the 3' untranslated region of their target mRNA, thus resulting in mRNA degradation or translational repression. miR-9 has recently been demonstrated to play a role in the development and progression of malignant melanoma (MM), but the regulatory mechanism of miR-9 in the malignant phenotypes of MM still remains largely unknown. In this study, a total of 73 pairs of MM tissues and adjacent normal tissues were collected. Real-time reverse transcription polymerase chain reaction and Western blot were used to detect the mRNA and protein expression of miR-9. MTT assay, wound healing assay, and transwell assay were conducted to determine the cell proliferation, migration, and invasion. Luciferase reporter assay was used to determine the targeting relationship between miR-9 and NRP1. Our data demonstrated that miR-9 expression was significantly downregulated in MM tissues compared with that in adjacent normal tissues. The decreased miR-9 level was significantly associated with the tumor stage and metastasis of MM. We also found that the expression level of miR-9 was decreased in MM cell lines (G361, B16, A375, and HME1) compared with normal skin HACAT cells. Ectopic expression of miR-9 led to a significant decrease in the ability of proliferation, migration, and invasion in A375 cells. NRP1 was further identified as a direct target gene of miR-9, and the protein expression of NRP1 was negatively regulated by miR-9 in A375 cells. Furthermore, overexpression of NRP1 reversed the suppressive effects of miR-9 on the malignant phenotypes of A375 cells. In vivo study revealed that miR-9 overexpression decreased the tumor growth, while overexpression of NRP1 increased MM growth. In summary, our findings suggest that the miR-9/NRP1 axis may serve as a potential target for the treatment of MM.
Collapse
Affiliation(s)
- Dan Xu
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University
| | - Xiaofeng Chen
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Quanyong He
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University
| | - Chengqun Luo
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University
| |
Collapse
|
20
|
Jiang F, Jin K, Huang S, Bao Q, Shao Z, Hu X, Ye J. Liposomal C6 Ceramide Activates Protein Phosphatase 1 to Inhibit Melanoma Cells. PLoS One 2016; 11:e0159849. [PMID: 27631768 PMCID: PMC5025141 DOI: 10.1371/journal.pone.0159849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/09/2016] [Indexed: 02/02/2023] Open
Abstract
Melanoma is one common skin cancer. In the present study, the potential anti-melanoma activity by a liposomal C6 ceramide was tested in vitro. We showed that the liposomal C6 (ceramide) was cytotoxic and anti-proliferative against a panel of human melanoma cell lines (SK-Mel2, WM-266.4 and A-375 and WM-115). In addition, liposomal C6 induced caspase-dependent apoptotic death in the melanoma cells. Reversely, its cytotoxicity was attenuated by several caspase inhibitors. Intriguingly, liposomal C6 was non-cytotoxic to B10BR mouse melanocytes and primary human melanocytes. Molecularly, liposomal C6 activated protein phosphatase 1 (PP1) to inactivate Akt-mammalian target of rapamycin (mTOR) signaling in melanoma cells. On the other hand, PP1 shRNA knockdown or exogenous expression of constitutively activate Akt1 (CA-Akt1) restored Akt-mTOR activation and significantly attenuated liposomal C6-mediated cytotoxicity and apoptosis in melanoma cells. Our results suggest that liposomal C6 activates PP1 to inhibit melanoma cells.
Collapse
Affiliation(s)
- Fangzhen Jiang
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Kai Jin
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
- * E-mail:
| | - Shenyu Huang
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Qi Bao
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Zheren Shao
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xueqing Hu
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| |
Collapse
|
21
|
Evangelisti C, Cenni V, Lattanzi G. Potential therapeutic effects of the MTOR inhibitors for preventing ageing and progeria-related disorders. Br J Clin Pharmacol 2016; 82:1229-1244. [PMID: 26952863 PMCID: PMC5061804 DOI: 10.1111/bcp.12928] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is an highly conserved signal transduction axis involved in many cellular processes, such as cell growth, survival, transcription, translation, apoptosis, metabolism, motility and autophagy. Recently, this signalling pathway has come to the attention of the scientific community owing to the unexpected finding that inhibition of mTOR by rapamycin, an antibiotic with immunosuppressant and chemotherapeutic properties, extends lifespan in diverse animal models. Moreover, rapamycin has been reported to rescue the cellular phenotype in a progeroid syndrome [Hutchinson–Gilford Progeria syndrome (HGPS)] that recapitulates most of the traits of physiological ageing. The promising perspectives raised by these results warrant a better understanding of mTOR signalling and the potential applications of mTOR inhibitors to counteract ageing‐associated diseases and increase longevity. This review is focused on these issues.
Collapse
Affiliation(s)
- Camilla Evangelisti
- CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Vittoria Cenni
- CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy. .,Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy.
| |
Collapse
|
22
|
Zhu Y, Shen J, Gao L, Feng Y. Estrogen promotes fat mass and obesity-associated protein nuclear localization and enhances endometrial cancer cell proliferation via the mTOR signaling pathway. Oncol Rep 2016; 35:2391-7. [PMID: 26884084 DOI: 10.3892/or.2016.4613] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/05/2022] Open
Abstract
Extensive exposure to estrogen is generally acknowledged as a risk factor for endometrial cancer. Given that the accumulation of adipocytes also contributes to the increased production of estrogen, in the present study, we evaluated the expression of the fat mass and obesity-associated (FTO) gene in endometrial tumor tissues and further explored the mechanism of how estrogen facilitates FTO nuclear localization and promotes endometrial cancer cell proliferation. Immunohistochemical (IHC) staining assay was used to detect the FTO expression in endometrial tumor samples. Western blotting was performed to investigate the mechanism of estrogen-induced FTO nuclear localization. siRNA was used to knock down ERα and further explore its role in FTO nuclear localization. MTT assay was carried out to determine cell proliferation. We found that FTO was overexpressed in endometrial carcinoma tissues and served as a poor prognostic marker. Additionally, estrogen induced FTO nuclear accumulation via the mTOR signaling pathway and the nuclear localization was ERα-dependent, which contributed to enhanced proliferative activity. Therefore, the present study provides new insight into the mechanisms of estrogen-induced proliferation, implying the possibility of using FTO as a potential therapeutic target for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yaping Zhu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Jiaqi Shen
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Liyan Gao
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
23
|
Pópulo H, Caldas R, Lopes JM, Pardal J, Máximo V, Soares P. Overexpression of pyruvate dehydrogenase kinase supports dichloroacetate as a candidate for cutaneous melanoma therapy. Expert Opin Ther Targets 2016; 19:733-45. [PMID: 25976231 DOI: 10.1517/14728222.2015.1045416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We aimed to verify if there is evidence to consider dichloroacetate (DCA), which inhibits the pyruvate dehydrogenase kinase (PDK) and reverts the metabolic shift of cancer cells from glycolysis to oxidative phosphorylation, as a promising drug for therapy of cutaneous melanoma (CM) patients. RESEARCH DESIGN AND METHODS We assessed the expression profile of PDK 1, 2 and 3 in a series of melanoma samples, to verify if melanoma tumors express the DCA targets, if this expression correlates with the activation of important signaling cascades for melanomagenesis and also with the prognosis of melanoma patients. We also established the sensitivity of melanoma cell lines to DCA treatment, by assessing their metabolic alterations, proliferation and survival. RESULTS We observed that both PDK 1 and 2 isoforms are overexpressed in CM compared to nevi, this expression being associated with the expression of the mTOR pathway effectors and independent of the BRAF mutational status. Melanoma cell lines treated with DCA showed a shift in metabolism, that is, a decrease in glucose consumption and lactate production, downregulation of proliferation, an increase of apoptosis and a decrease in mTOR pathway activation. CONCLUSION Our results suggest that PDK expression may play a role in melanoma development and that DCA can be useful for CM therapy, alone or in combination with mTOR inhibitors.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto , Porto , Portugal +22 557 0700 ; +22 557 0799 ;
| | | | | | | | | | | |
Collapse
|
24
|
Chen L, Liu T, Tu Y, Rong D, Cao Y. Cul1 promotes melanoma cell proliferation by promoting DEPTOR degradation and enhancing cap-dependent translation. Oncol Rep 2015; 35:1049-56. [PMID: 26717892 DOI: 10.3892/or.2015.4442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin1 (Cul1) serves as a rigid scaffold in the SCF (Skp1/Cullin/Rbx1/F-box protein) E3 ubiquitin ligase complex and has been found to be overexpressed in melanoma and to enhance melanoma cell proliferation by promoting G1-S phase transition. However, the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1 remain poorly understood. In the present study, we found that Cul1 promoted mTORC1 activity and cap-dependent translation by enhancing the ubiquitination and degradation of DEPTOR. We further showed that suppression of the eIF4F complex assembly profoundly inhibited the promoting effect of Cul1 on melanoma cell proliferation, while enhancement of the eIF4F complex activity reversed the inhibitory effect of Cul1 depletion on melanoma cell proliferation, indicating that Cul1 contributes to melanoma cell proliferation by activating cap‑dependent translation. These data elucidate the role of Cul1 in cap-dependent translation and improves our understanding of the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tianyu Liu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yunhua Tu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dongyun Rong
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
25
|
Shao Z, Bao Q, Jiang F, Qian H, Fang Q, Hu X. VS-5584, a Novel PI3K-mTOR Dual Inhibitor, Inhibits Melanoma Cell Growth In Vitro and In Vivo. PLoS One 2015. [PMID: 26204252 PMCID: PMC4512677 DOI: 10.1371/journal.pone.0132655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Melanomas cause over 76% of skin cancer deaths annually. Phosphatidylinositol 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) signaling pathway is important for melanoma initiation and progression. In the current study, we evaluated the potential anti-melanoma effect of VS-5584, a novel and highly potent PI3K-mTOR dual inhibitor. We demonstrated that VS-5584 potently inhibited survival and proliferation of established (A375, A-2058 and SK-MEL-3 lines) and primary human melanoma cells, but was non-cytotoxic to non-cancerous human skin keratinocytes and B10BR murine melanocytes. At the meantime, VS-5584 induced caspase-dependent apoptotic death in melanoma cells, and its cytotoxicity was alleviated by the caspase inhibitors. At the molecular level, VS-5584 blocked AKT-mTOR activation and downregulated cyclin D1 expression in melanoma cells, while the expressions of Bcl-xL and Bcl-2 were not affected by VS-5584 treatment. On the other hand, a BH-3 mimetic Bcl-xL/Bcl-2 inhibitor ABT-737, as well as siRNA-mediated knockdown of Bcl-xL or Bcl-2, enhanced the activity of VS-5584 in melanoma cells. In vivo, oral administration of VS-5584 suppressed A375 melanoma xenograft growth in nude mice, and its activity was further enhanced by co-administration of ABT-737. These results provide the rationale for the clinical assessment of VS-5584 in melanoma patients and development of ABT-737 and other Bcl-xL/Bcl-2 inhibitors as the possible adjuvants.
Collapse
Affiliation(s)
- Zheren Shao
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Qi Bao
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Fangzhen Jiang
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Quan Fang
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
26
|
TERT promoter mutations in skin cancer: the effects of sun exposure and X-irradiation. J Invest Dermatol 2014; 134:2251-2257. [PMID: 24691053 DOI: 10.1038/jid.2014.163] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/07/2023]
Abstract
The reactivation or reexpression of telomerase (TERT) is a widespread feature of neoplasms. TERT promoter mutations were recently reported that were hypothesized to result from UV radiation. In this retrospective study, we assessed TERT promoter mutations in 196 cutaneous basal cell carcinomas (BCCs), including 102 tumors from X-irradiated patients, 94 tumors from patients never exposed to ionizing radiation treatment, and 116 melanomas. We sought to evaluate the effects of UV and X-ray irradiation on TERT mutation frequency. TERT mutations were detected in 27% of BCCs from X-irradiated patients, 51% of BCCs from nonirradiated patients, and 22% of melanoma patients. TERT mutations were significantly increased in non-X-irradiated BCC patients compared with X-irradiated BCC patients; the mutations also presented a different mutation signature. In nonirradiated patients, TERT mutations were more frequent in BCCs of sun-exposed skin, supporting a possible causative role of UV radiation. In melanoma, TERT promoter mutations were generally restricted to intermittent sun-exposed areas and were associated with nodular and superficial spreading subtypes, increased thickness, ulceration, increased mitotic rate, and BRAFV600E mutations. Our results suggest that various carcinogenic factors may cause distinct TERT promoter mutations in BCC and that TERT promoter mutations might be associated with a poorer prognosis in melanoma.
Collapse
|
27
|
Masaki T, Wang Y, DiGiovanna JJ, Khan SG, Raffeld M, Beltaifa S, Hornyak TJ, Darling TN, Lee CCR, Kraemer KH. High frequency of PTEN mutations in nevi and melanomas from xeroderma pigmentosum patients. Pigment Cell Melanoma Res 2014; 27:454-64. [PMID: 24483290 DOI: 10.1111/pcmr.12226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/24/2014] [Indexed: 02/05/2023]
Abstract
We examined nevi and melanomas in 10 xeroderma pigmentosum (XP) patients with defective DNA repair. The lesions had a lentiginous appearance with markedly increased numbers of melanocytes. Using laser capture microdissection, we performed DNA sequencing of 18 benign and atypical nevi and 75 melanomas (melanoma in situ and invasive melanomas). The nevi had a similar high frequency of PTEN mutations as melanomas [61% (11/18) versus 53% (39/73)]. Both had a very high proportion of UV-type mutations (occurring at adjacent pyrimidines) [91% (10/11) versus 92% (36/39)]. In contrast to melanomas in the general population, the frequency of BRAF mutations (11%, 7/61), NRAS mutations (21%, 13/62), and KIT mutations (21%, 6/28) in XP melanomas was lower than for PTEN. Phospho-S6 immunostaining indicated activation of the mTOR pathway in the atypical nevi and melanomas. Thus, the clinical and histological appearances and the molecular pathology of these UV-related XP nevi and melanomas were different from nevi and melanomas in the general population.
Collapse
Affiliation(s)
- Taro Masaki
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Soares P, Celestino R, Gaspar da Rocha A, Sobrinho-Simões M. Papillary thyroid microcarcinoma: how to diagnose and manage this epidemic? Int J Surg Pathol 2014; 22:113-9. [PMID: 24401191 DOI: 10.1177/1066896913517394] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The incidence of papillary thyroid microcarcinoma (PTmC) has been increasing everywhere due to the improvement of imaging and morphological diagnoses and probably also due to environmental alterations. Despite this, the mortality caused by thyroid cancer has not increased, reflecting the low clinical aggressiveness of most papillary thyroid carcinomas (PTCs) and the quality of the available treatment. The criteria used to classify PTmC remain questionable, making the clinical risk evaluation of these lesions very difficult. There is no solid basis for establishing the most appropriate tumor size (currently <10 mm) to distinguish PTmC from PTC. Moreover, PTmCs encompass all sorts of PTC histotypes, thus turning the whole group of PTmC genetically and biologically heterogeneous. In this review, we address the 2 most interesting issues from a practical standpoint: Are there any specific morphological or molecular features distinguishing PTmC from PTC? Is it possible to predict the clinical behavior of PTmC in fine needle aspiration biopsy and in surgical specimens, using morphological and/or molecular markers?
Collapse
Affiliation(s)
- Paula Soares
- 1Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
29
|
Chen J, Chi M, Chen C, Zhang XD. Obesity and melanoma: exploring molecular links. J Cell Biochem 2013; 114:1955-61. [PMID: 23554059 DOI: 10.1002/jcb.24549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/13/2013] [Indexed: 12/11/2022]
Abstract
Obesity is now a major health problem due to its rapidly increasing incidence worldwide and severe consequences. Among many conditions associated with obesity are some cancers including melanoma. Both genetic defects and environmental risk factors are involved in the carcinogenesis of melanoma. Activation of multiple signal pathways such as the PI3K/Akt and MAPK pathways are necessary for the initiation of melanoma. Activation of the MAPK pathway as a result of activating mutations in BRAF is commonly seen in melanoma though it alone is not sufficient to cause malignant transformation of melanocytes. Obesity can result in the activation of many signal pathways including PI3K/Akt, MAPK, and STAT3. The activation of these pathways may have a synergistic effect with the genetic defects thereby increasing the incidence of melanoma.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, University of Queensland, Sir William MacGregor Building 64, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
30
|
Alan JK, Struckhoff EC, Lundquist EA. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans. Small GTPases 2013; 4:208-20. [PMID: 24149939 PMCID: PMC4011816 DOI: 10.4161/sgtp.26602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.
Collapse
Affiliation(s)
| | - Eric C Struckhoff
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
31
|
Ahn JO, Lee HW, Seo KW, Kang SK, Ra JC, Youn HY. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma. PLoS One 2013; 8:e74897. [PMID: 24040358 PMCID: PMC3767623 DOI: 10.1371/journal.pone.0074897] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 08/09/2013] [Indexed: 12/26/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors.
Collapse
Affiliation(s)
- Jin ok Ahn
- Department of Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee woo Lee
- Department of Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyoung won Seo
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung keun Kang
- Stem Cell Research Center, RNL Bio Co. Ltd, Seoul, Republic of Korea
| | - Jeong chan Ra
- Stem Cell Research Center, RNL Bio Co. Ltd, Seoul, Republic of Korea
| | - Hwa young Youn
- Department of Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Sun MM, Zhang MZ, Chen Y, Li SL, Zhang W, Ya GW, Chen KS. Mechanistic target of rapamycin small interfering RNA and rapamycin synergistically inhibit tumour growth in a mouse xenograft model of human oesophageal carcinoma. J Int Med Res 2013. [PMID: 23206445 DOI: 10.1177/030006051204000502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the effect of mechanistic target of rapamycin (mTOR)-specific small interfering RNA (siRNA) and rapamycin on tumour size and levels of hypoxia inducible factor 1α(HIF-1α), vascular endothelial growth factor (VEGF) and mTOR proteins, and mTOR mRNA, in a mouse xenograft model of human oesophageal carcinoma. METHODS Tumours were induced in BALB/c nude mice using the human oesophageal squamous cell carcinoma cell line, EC1, injected subcutaneously. Animals were divided into four treatment groups (n = 5 per group) after 7 days: control (phosphate buffered saline, daily intraperitoneal [i.p.] injection); 50 μg/kg rapamycin, daily i.p. injection; 3 μg/kg mTOR siRNA, daily i.p. injection; combined mTOR siRNA and rapamycin, daily i.p. injections. Tumour volume was measured 21 days after xenograft. Levels of mTOR, VEGF and HIF-1α were assessed via immunohistochemistry and in situ hybridization. RESULTS mTOR siRNA and/or rapamycin significantly decreased tumour volume and levels of HIF-1α, VEGF and mTOR protein, and mTOR mRNA. Combination treatment was significantly more effective than either treatment alone. CONCLUSIONS mTOR siRNA and/or rapamycin inhibited the growth of oesophageal carcinoma in vivo. This may represent a novel and effective treatment strategy for oesophageal carcinoma.
Collapse
Affiliation(s)
- M M Sun
- Department of Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Lv X, Ma X, Hu Y. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Expert Opin Drug Discov 2013; 8:991-1012. [PMID: 23668243 DOI: 10.1517/17460441.2013.800479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) is a serine/threonine kinase, which is the key component of two distinct signaling complexes in cells; these complexes are the mTOR complex 1 (mTORC1) and the mTOR complex 2 (mTORC2). Given the importance of these complexes in cellular growth, survival, motility, proliferation, protein synthesis and transcription, it is not surprising that they are impacted in multiple types of cancer. Studies on a number of ATP-competitive mTOR inhibitors have suggested that these inhibitors have a therapeutic superiority to rapalogs (rapamycin analogs) in a number of cancers. AREAS COVERED This review provides insight into the binding of mTOR inhibitors with the ATP-binding site, for the benefit of future mTOR inhibitor design and discovery. The authors, furthermore, deduce that a hypothetical binding mode is from docking studies, co-crystal structures and the structure-activity relationships (SARs). The authors also highlight the preclinical and clinical development of hit/lead compounds, and the selectivity for representative mTOR inhibitors. EXPERT OPINION The structural analysis of mTOR is hampered by its large size and complexity. Further exploration of mTOR inhibitors may therefore require the combination of structure-based drug design (SBDD, based on the mTOR homology models), fragment-based drug design (FBDD) and analog synthesis. Recent studies suggested that the global inhibition of PI3Ks may be harmful to organisms. Therefore, the future discovery of dual mTOR/PI3K inhibitors needs to ensure that inhibitors are both efficacious and have reduced adverse effects.
Collapse
Affiliation(s)
- Xiaoqing Lv
- Zhejiang University, College of Pharmaceutical Sciences, ZJU-ENS Joint Laboratory of Medicinal Chemistry, Hangzhou 310058, China
| | | | | |
Collapse
|
34
|
Velho TR. Metastatic melanoma - a review of current and future drugs. Drugs Context 2012; 2012:212242. [PMID: 24432031 PMCID: PMC3885142 DOI: 10.7573/dic.212242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background: Melanoma is one of the most aggressive cancers, and it is estimated that 76,250 men and women will be diagnosed with melanoma of the skin in the USA in 2012. Over the last few decades many drugs have been developed but only in 2011 have new drugs demonstrated an impact on survival in metastatic melanoma. Methods: A systematic search of literature was conducted, and studies providing data on the effectiveness of current and/or future drugs used in the treatment of metastatic melanoma were selected for review. This review discusses the advantages and limitations of these agents, evaluating past, current and future clinical trials designed to overcome such limitations. Results: To date, there are four drugs approved by the Food and Drug Administration for melanoma (dacarbazine, interleukin-2, ipilimumab and vemurafenib). Despite efforts to develop new drugs, few of them have demonstrated any clinical benefits. Approved in 1975, dacarbazine remains the gold standard in chemotherapy, although ipilimumab and vemurafenib have raised many hopes in the last few years. Combining dacarbazine or other chemotherapy agents with new pharmacological agents may be a new way to achieve better clinical responses in patients with metastatic melanoma. Discussion: Advances in the molecular knowledge of melanoma have led to major improvements in the treatment of patients with metastatic melanoma, providing new targets and insights. However, heterogeneity amongst study populations, different approaches to treatment and the different melanoma types and localisations included in the trials makes their comparison difficult. New studies focusing on drugs developed in recent decades are warranted.
Collapse
|