1
|
Liu Y, Su Y, Chen L, Li A, Ma Z. Exploring the roles and therapeutic implications of melatonin-mediated KLF6 in the development of intracranial aneurysm. Ann Med 2024; 56:2397568. [PMID: 39215680 PMCID: PMC11370671 DOI: 10.1080/07853890.2024.2397568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Intracranial aneurysm (IA) is a cerebrovascular disease with a high mortality rate due to ruptured subarachnoid hemorrhage. While Krüppel-like factor 6 (KLF6) dysregulation has been implicated in cancer and cardiovascular diseases, its role in IA remains unclear. MATERIALS AND METHODS The GSE122897 and GSE15629 datasets were downloaded from the Gene Expression Omnibus database. Immune cell infiltration and hypoxia analysis were performed to explore the effects of KLF6 on IA. Weighted gene co-expression network analysis was used to identify hub genes related to KLF6 expression for subsequent analyses. Hypoxia-related genes were identified. Drug prediction was performed for IA. Samples from healthy individuals and patients with IA were collected to detect the expression of endothelin-1 (ET-1), vascular hematoma factor (vWF), and KLF6. A model of H2O2-induced human brain vascular smooth muscle cells (HBVSMC) injury was constructed to explore the effects of KLF6 and melatonin to treat IA. RESULTS T cells CD4 memory resting and monocytes were significantly different in the KLF6 high and low expression groups. Four hypoxia-related gene sets were significantly enriched in the KLF6 high-expression group. Six hypoxia-related hub genes were obtained, which were significantly associated with KLF6. Drug prediction showed that melatonin may be a potential drug for IA. The levels of ET-1, vWF, and KLF6 were significantly upregulated in patients with IA. KLF6 exacerbates H2O2-induced injury in HBVSMC, ameliorated by melatonin. CONCLUSION KLF6 may be a potential target for IA treatment, with melatonin-mediated KLF6 effects playing a crucial role in the development of IA.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Yongxing Su
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Le Chen
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Anzhi Li
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Zhengfei Ma
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| |
Collapse
|
2
|
Xiao S, Chen H, Bai Y, Zhang ZY, Liu Y. Targeting PRL phosphatases in hematological malignancies. Expert Opin Ther Targets 2024; 28:259-271. [PMID: 38653737 DOI: 10.1080/14728222.2024.2344695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxia Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Yan Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Chen H, Bai Y, Kobayashi M, Xiao S, Barajas S, Cai W, Chen S, Miao J, Meke FN, Yao C, Yang Y, Strube K, Satchivi O, Sun J, Rönnstrand L, Croop JM, Boswell HS, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Sukhanova M, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation. Mol Cancer Res 2024; 22:94-103. [PMID: 37756563 PMCID: PMC10841656 DOI: 10.1158/1541-7786.mcr-23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Northwestern University, Chicago, USA
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University, Chicago, USA
| | - Sergio Barajas
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Wenjie Cai
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Sisi Chen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Chonghua Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Katherine Strube
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Odelia Satchivi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - James M. Croop
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K. Altman
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Elizabeth A. Eklund
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | - Wei Tong
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| |
Collapse
|
4
|
Carlock C, Bai Y, Paige-Hood A, Li Q, Nguele Meke F, Zhang ZY. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight 2023; 8:e170065. [PMID: 37665633 PMCID: PMC10619439 DOI: 10.1172/jci.insight.170065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.
Collapse
Affiliation(s)
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology
- Department of Chemistry
- Institute for Cancer Research, and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Yu Y, Chen J, An L, Huang T, Wang W, Cheng Z, Wang L, Xu X, Zhao Z, Fu X, Ma J. Knockdown of phosphatases of regenerating liver-1 prolongs the lifespan of Caenorhabditis elegans via activating DAF-16/FOXO. FASEB J 2023; 37:e22844. [PMID: 36906287 DOI: 10.1096/fj.202202003r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
Phosphatases of regenerating liver (PRLs) are dual-specificity protein phosphatases. The aberrant expression of PRLs threatens human health, but their biological functions and pathogenic mechanisms are unclear yet. Herein, the structure and biological functions of PRLs were investigated using the Caenorhabditis elegans (C. elegans). Structurally, this phosphatase in C. elegans, named PRL-1, consisted of a conserved signature sequence WPD loop and a single C(X)5 R domain. Besides, by Western blot, immunohistochemistry and immunofluorescence staining, PRL-1 was proved to mainly express in larval stages and express in intestinal tissues. Afterward, by feeding-based RNA-interference method, knockdown of prl-1 prolonged the lifespan of C. elegans but also improved their healthspan, such as locomotion, pharyngeal pumping frequency, and defecation interval time. Furthermore, the above effects of prl-1 appeared to be taken without acting on germline signaling, diet restriction pathway, insulin/insulin-like growth factor 1 signaling pathway, and SIR-2.1 but through a DAF-16-dependent pathway. Moreover, knockdown of prl-1 induced the nuclear translocation of DAF-16, and upregulated the expression of daf-16, sod-3, mtl-1, and ctl-2. Finally, suppression of prl-1 also reduced the ROS. In conclusion, suppression of prl-1 enhanced the lifespan and survival quality of C. elegans, which provides a theoretical basis for the pathogenesis of PRLs in related human diseases.
Collapse
Affiliation(s)
- Yaoru Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jing Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lu An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianci Huang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wenbo Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhizhuang Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Chen H, Bai Y, Kobayashi M, Xiao S, Cai W, Barajas S, Chen S, Miao J, Meke FN, Vemula S, Ropa JP, Croop JM, Boswell HS, Wan J, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 phosphatase enhances oncogenic FLT3 signaling via dephosphorylation of the E3 ubiquitin ligase CBL at tyrosine 371. Blood 2023; 141:244-259. [PMID: 36206490 PMCID: PMC9936309 DOI: 10.1182/blood.2022016580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology and Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Shiyu Xiao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sergio Barajas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sisi Chen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - James P. Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - James M. Croop
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Department of Medical Genetics, Indiana University, Indianapolis, IN
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jessica K. Altman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Elizabeth A. Eklund
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wei Tong
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, NB
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Yan Liu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
7
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Vandsemb EN, Rye MB, Steiro IJ, Elsaadi S, Rø TB, Slørdahl TS, Sponaas AM, Børset M, Abdollahi P. PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2. FEBS J 2021; 288:6700-6715. [PMID: 34092011 DOI: 10.1111/febs.16058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells. To find novel pathways and genes regulated by PRL-3, we characterized the global transcriptional response to PRL-3 overexpression in two MM cell lines. We used pathway enrichment analysis to identify pathways regulated by PRL-3. We further confirmed the hits from the enrichment analysis with in vitro experiments and investigated their function. We found that PRL-3 induced expression of genes belonging to the type 1 interferon (IFN-I) signaling pathway due to activation of signal transducer and activator of transcription (STAT) 1 and STAT2. This activation was independent of autocrine IFN-I secretion. The increase in STAT1 and STAT2 did not result in any of the common consequences of increased IFN-I or STAT1 signaling in cancer. Knockdown of STAT1/2 did not affect the viability of the cells, but decreased PRL-3-induced glycolysis. Interestingly, glucose metabolism contributed to the activation of STAT1 and STAT2 and expression of IFN-I-stimulated genes in PRL-3-overexpressing cells. In summary, we describe a novel signaling circuit where the key IFN-I-activated transcription factors STAT1 and STAT2 are important drivers of the increase in glycolysis induced by PRL-3. Subsequently, increased glycolysis regulates the IFN-I-stimulated genes by augmenting the activation of STAT1/2.
Collapse
Affiliation(s)
- Esten Nymoen Vandsemb
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway.,Biocore - Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ida Johnsen Steiro
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Torstein Bade Rø
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs University Hospital, Norway
| | - Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
A screen of FDA-approved drugs identifies inhibitors of protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3). Sci Rep 2021; 11:10302. [PMID: 33986418 PMCID: PMC8119466 DOI: 10.1038/s41598-021-89668-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) is highly expressed in a variety of cancers, where it promotes tumor cell migration and metastasis leading to poor prognosis. Despite its clinical significance, small molecule inhibitors of PRL-3 are lacking. Here, we screened 1443 FDA-approved drugs for their ability to inhibit the activity of the PRL phosphatase family. We identified five specific inhibitors for PRL-3 as well as one selective inhibitor of PRL-2. Additionally, we found nine drugs that broadly and significantly suppressed PRL activity. Two of these broad-spectrum PRL inhibitors, Salirasib and Candesartan, blocked PRL-3-induced migration in human embryonic kidney cells with no impact on cell viability. Both drugs prevented migration of human colorectal cancer cells in a PRL-3 dependent manner and were selective towards PRLs over other phosphatases. In silico modeling revealed that Salirasib binds a putative allosteric site near the WPD loop of PRL-3, while Candesartan binds a potentially novel targetable site adjacent to the CX5R motif. Inhibitor binding at either of these sites is predicted to trap PRL-3 in a closed conformation, preventing substrate binding and inhibiting function.
Collapse
|
10
|
Jasek-Gajda E, Jurkowska H, JasiŃska M, Litwin JA, Lis GJ. Combination of ERK2 and STAT3 Inhibitors Promotes Anticancer Effects on Acute Lymphoblastic Leukemia Cells. Cancer Genomics Proteomics 2021; 17:517-527. [PMID: 32859630 DOI: 10.21873/cgp.20208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Deregulated activation of signaling through the RAS/RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/RAF/MEK/ERK) and signal transducer and activator of transcription (STAT) pathways is involved in numerous hematological malignancies, making it an attractive therapeutic target. This study aimed to assess the effect of the combination of ERK2 inhibitor VX-11e and STAT3 inhibitor STA-21 on acute lymphoblastic leukemia cell lines REH and MOLT-4. MATERIALS AND METHODS REH and MOLT-4 cell lines were cultured with each drug alone and in combination. Cell viability, ERK activity, cell cycle distribution, apoptosis and oxidative stress induction were assessed by flow cytometry. Protein levels of STAT3, phospho-STAT3, protein tyrosine phosphatase 4A3 (PTP4A3), survivin, p53 and p21 were determined by western blotting. RESULTS VX-11e in combination with STA-21 significantly inhibited cell viability, induced G0/G1 cell-cycle arrest, enhanced production of reactive oxygen species, and induced apoptosis. These effects were associated with an increased level of p21 protein in REH cells and with reduced levels of phopho-STAT3, survivin and PTP4A3 proteins in MOLT-4 cells. CONCLUSION Our findings provide a rationale for combined inhibition of RAS/RAF/MEK/ERK and STAT3 pathways in order to enhance anticancer effects against acute lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Ewa Jasek-Gajda
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - MaŁgorzata JasiŃska
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jan A Litwin
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz J Lis
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
11
|
Liu C, Zhong W, Xia L, Fang C, Liu H, Liu X. A retrospective cohort study of clinical value of PRL-3 in stage III human colorectal cancer. Medicine (Baltimore) 2021; 100:e25658. [PMID: 33907129 PMCID: PMC8084011 DOI: 10.1097/md.0000000000025658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/20/2021] [Accepted: 04/04/2021] [Indexed: 12/09/2022] Open
Abstract
ABSTRACT The aim of this study was to investigate the expression of phosphatase of regenerating live-3 (PRL-3) in human stage III colorectal cancer (CRC) and to evaluate its correlation with metachronous liver metastasis (MLM) and prognosis.The retrospective cohort study included 116 stage III CRC primary tumors and 60 normal colorectal tissues. PRL-3 expression was measured by immunohistochemistry. We investigated the correlation of PRL-3 with clinicopathologic features by the chi-square test. The association of PRL-3 expression with MLM was assessed by binary logistic regression. Overall survival (OS) and disease-free survival (DFS) between patients with positive PRL-3 expression and those with negative PRL-3 expression were compared by the Kaplan-Meier method and Cox proportional hazards regression model.We found that 32.8% of stage III CRC primary tumors were PRL-3 positive, and 15.0% of normal colorectal epithelia showed high PRL-3 expression (P = .012). Seventeen tumors (47.2%) among 36 cases that developed MLM were PRL-3 positive, and only 21 tumors (26.3%) in the 80 cases that did not develop MLM had positive PRL-3 expression (P = .026). PRL-3 expression was associated with MLM (P = .028). Patients with positive expression of PRL-3 showed a significantly shorter OS (40.32 ± 3.97 vs 53.96 ± 2.77 months, P = .009) and DFS (34.97 ± 4.30 vs 44.48 ± 2.89 months, P = .036). A multivariate analysis indicated that PRL-3 expression was an independent unfavorable prognostic factor for OS (P = .007).Our study suggested that high PRL-3 expression is an independent risk factor for MLM and poor prognosis. PRL-3 is expected to be a promising biomarker for predicting the incidence of MLM and prognosis in patients with stage III CRC.
Collapse
|
12
|
Castro-Sánchez P, Hernández-Pérez S, Aguilar-Sopeña O, Ramírez-Muñoz R, Rodríguez-Perales S, Torres-Ruiz R, Roda-Navarro P. Fast Diffusion Sustains Plasma Membrane Accumulation of Phosphatase of Regenerating Liver-1. Front Cell Dev Biol 2021; 8:585842. [PMID: 33425892 PMCID: PMC7793866 DOI: 10.3389/fcell.2020.585842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that the accumulation of farnesylated phosphatase of regenerating liver-1 (PRL-1) at the plasma membrane is mediated by static electrostatic interactions of a polybasic region with acidic membrane lipids and assisted by oligomerization. Nonetheless, localization at early and recycling endosomes suggests that the recycling compartment might also contribute to its plasma membrane accumulation. Here, we investigated in live cells the dynamics of PRL-1 fused to the green fluorescent protein (GFP-PRL-1). Blocking the secretory pathway and photobleaching techniques suggested that plasma membrane accumulation of PRL-1 was not sustained by recycling endosomes but by a dynamic exchange of diffusible protein pools. Consistent with this idea, fluorescence correlation spectroscopy in cells overexpressing wild type or monomeric mutants of GFP-PRL-1 measured cytosolic and membrane-diffusing pools of protein that were not dependent on oligomerization. Endogenous expression of GFP-PRL-1 by CRISPR/Cas9 genome edition confirmed the existence of fast diffusing cytosolic and membrane pools of protein. We propose that plasma membrane PRL-1 replenishment is independent of the recycling compartment and the oligomerization state and mainly driven by fast diffusion of the cytosolic pool.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rocia Ramírez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
13
|
The Oncogenic PRL Protein Causes Acid Addiction of Cells by Stimulating Lysosomal Exocytosis. Dev Cell 2020; 55:387-397.e8. [DOI: 10.1016/j.devcel.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
|
14
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Du X, Zhang Y, Li X, Li Q, Wu C, Chen G, Guo X, Weng Y, Wang Z. PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Cell Biosci 2019; 9:96. [PMID: 31798830 PMCID: PMC6884919 DOI: 10.1186/s13578-019-0358-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
High levels of ROS cause oxidative stress, which plays a critical role in cell death. As a ROS effector protein, PRL2 senses ROS and controls phagocyte bactericidal activity during infection. Here we report PRL2 regulates oxidative stress induced cell death. PRL2 senses oxidative stress via highly reactive cysteine residues at 46 and 101. The oxidation of PRL2 causes protein degradation and supports pro-survival PDK1/AKT signal which in turn to protect cells against oxidative stress. As a result, PRL2 levels have a high correlation with oxidative stress induced cell death. In vivo experiments showed PRL2 deficient cells survive better in inflammatory oxidative environment and resist to ionizing radiation. Our finding suggests PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Therefore, PRL2 could be targeted to modulate cell viability in inflammation or irradiation associated therapy.
Collapse
Affiliation(s)
- Xinyue Du
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Yang Zhang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Xiao Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Qi Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Chenyun Wu
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Guangjie Chen
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - XiaoKui Guo
- 3Institute for Global Health, Shanghai Jiao Tong University School of Medicine-Chinese Center for Tropical Diseases Research, Shanghai, 200025 People's Republic of China
| | - Yongqiang Weng
- 2Department of General Surgery, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 People's Republic of China
| | - Zhaojun Wang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| |
Collapse
|
16
|
Guo P, Xu X, Wang F, Yuan X, Tu Y, Zhang B, Zheng H, Yu D, Ge W, Gong Z, Yang X, Xi Y. A Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO 2 Stimulation in Drosophila. iScience 2019; 19:291-302. [PMID: 31404830 PMCID: PMC6700421 DOI: 10.1016/j.isci.2019.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Neuroprotection is essential for the maintenance of normal physiological functions in the nervous system. This is especially true under stress conditions. Here, we demonstrate a novel protective function of PRL-1 against CO2 stimulation in Drosophila. In the absence of PRL-1, flies exhibit a permanent held-up wing phenotype upon CO2 exposure. Knockdown of the CO2 olfactory receptor, Gr21a, suppresses the phenotype. Our genetic data indicate that the wing phenotype is due to a neural dysfunction. PRL-1 physically interacts with Uex and controls Uex expression levels. Knockdown of Uex alone leads to a similar wing held-up phenotype to that of PRL-1 mutants. Uex acts downstream of PRL-1. Elevated Uex levels in PRL-1 mutants prevent the CO2-induced phenotype. PRL-1 and Uex are required for a wide range of neurons to maintain neuroprotective functions. Expression of human homologs of PRL-1 could rescue the phenotype in Drosophila, suggesting a similar function in humans. PRL-1 functions to protect the nervous system against olfactory CO2 stimulation PRL-1 physically interacts with Uex and controls Uex expression levels PRLs may retain a similar neuroprotective function in humans
Collapse
Affiliation(s)
- Pengfei Guo
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Xu
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Fang Wang
- College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xin Yuan
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Yinqi Tu
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Bei Zhang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Huimei Zheng
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Danqing Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Wanzhong Ge
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xiaohang Yang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yongmei Xi
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
17
|
Yin C, Wu C, Du X, Fang Y, Pu J, Wu J, Tang L, Zhao W, Weng Y, Guo X, Chen G, Wang Z. PRL2 Controls Phagocyte Bactericidal Activity by Sensing and Regulating ROS. Front Immunol 2018; 9:2609. [PMID: 30483267 PMCID: PMC6244668 DOI: 10.3389/fimmu.2018.02609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Although it is well-recognized that inflammation enhances leukocyte bactericidal activity, the underlying mechanisms are not clear. Here we report that PRL2 is sensitive to oxidative stress at inflamed sites. Reduced PRL2 in phagocytes causes increased respiratory burst activity and enhances phagocyte bactericidal activity. PRL2 (Phosphatase Regenerating Liver 2) is highly expressed in resting immune cells, but is markedly downregulated by inflammation. in vitro experiments showed that PRL2 was sensitive to hydrogen peroxide (H2O2), a common damage signal at inflamed sites. In response to infection, PRL2 knockout (KO) phagocytes were hyper activated, produced more reactive oxygen species (ROS) and exhibited enhanced bactericidal activity. Mice with PRL2 deficiency in the myeloid cell compartment were resistant to lethal listeria infection and cleared the bacteria more rapidly and effectively. Moreover, in vitro experiments demonstrated that PRL2 binds to GTPase Rac and regulates ROS production. Rac GTPases were more active in PRL2 (KO) phagocytes than in wild type cells after bacterium infection. Our findings indicate that PRL2 senses ROS at inflamed sites and regulates ROS production in phagocytes. This positive feedback mechanism promotes bactericidal activity of phagocytes and may play an important role in innate anti-bacterial immunity.
Collapse
Affiliation(s)
- Cennan Yin
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenyun Wu
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyue Du
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Fang
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juebiao Pu
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianhua Wu
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lili Tang
- Department of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Wei Zhao
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongqiang Weng
- Department of General Surgery, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Abstract
The phosphatase of regenerating liver (PRL) family, also known as protein tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases with largely unknown cellular functions. However, accumulating evidence indicates that PRLs are oncogenic across a broad variety of human cancers. PRLs are highly expressed in advanced tumors and metastases compared to early stage cancers or matched healthy tissue, and high expression of PRLs often correlates with poor patient prognosis. Consequentially, PRLs have been considered potential therapeutic targets in cancer. Persistent efforts have been made to define their role and mechanism in cancer progression and to create specific PRL inhibitors for basic research and drug development. However, targeting PRLs with small molecules remains challenging due to the highly conserved active site of protein tyrosine phosphatases and a high degree of sequence similarity between the PRL protein families. Here, we review the current PRL inhibitors, including the strategies used for their identification, their biological efficacy, potency, and selectivity, with a special focus on how PRL structure can inform future efforts to develop specific PRL inhibitors.
Collapse
Affiliation(s)
- Min Wei
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Jessica S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
19
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
20
|
Zhou J, Toh SHM, Chan ZL, Quah JY, Chooi JY, Tan TZ, Chong PSY, Zeng Q, Chng WJ. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J Hematol Oncol 2018; 11:36. [PMID: 29514683 PMCID: PMC5842526 DOI: 10.1186/s13045-018-0581-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase of regenerating liver 3 (PRL-3) is overexpressed in a subset of AML patients with inferior prognosis, representing an attractive therapeutic target. However, due to relatively shallow pocket of the catalytic site of PRL-3, it is difficult to develop selective small molecule inhibitor. METHODS In this study, we performed whole-genome lentiviral shRNA library screening to discover synthetic lethal target to PRL-3 in AML. We used specific small molecule inhibitors to validate the synthetic lethality in human PRL-3 high vs PRL-3 low human AML cell lines and primary bone marrow cells from AML patients. AML mouse xenograft model was used to examine the in vivo synergism. RESULTS The list of genes depleted in TF1-hPRL3 cells was particularly enriched for members involved in WNT/β-catenin pathway and AKT/mTOR signaling. These findings prompted us to explore the impact of AKT/mTOR signaling inhibition in PRL-3 high AML cells in combination with WNT/β-catenin inhibitor. VS-5584, a novel, highly selective dual PI3K/mTOR inhibitor, and ICG-001, a WNT inhibitor, were used as a combination therapy. A synthetic lethal interaction between mTOR/AKT pathway inhibition and WNT/β-catenin was validated by a variety of cellular assays. Notably, we found that treatment with these two drugs significantly reduced leukemic burden and prolonged survival of mice transplanted with human PRL-3 high AML cells, but not with PRL-3 low AML cells. CONCLUSIONS In summary, our results support the existence of cooperative signaling networks between AKT/mTOR and WNT/β-catenin pathways in PRL-3 high AML cells. Simultaneous inhibition of these two pathways could achieve robust clinical efficacy for this subtype of AML patient with high PRL-3 expression and warrant further clinical investigation.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Zit-Liang Chan
- Cancer Science Institute of Singapore, Singapore, Singapore
| | | | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore, Singapore
- Translational Centre for Development and Research, National University Health System, Singapore, Singapore
| | | | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228 Singapore
| |
Collapse
|
21
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
22
|
Mu N, Gu J, Liu N, Xue X, Shu Z, Zhang K, Huang T, Chu C, Zhang W, Gong L, Zhao H, Jia B, Gao D, Shang L, Zhang W, Guo Q. PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways. Am J Cancer Res 2018; 8:1527-1539. [PMID: 29556339 PMCID: PMC5858165 DOI: 10.7150/thno.22699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/10/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose: Glioblastoma is the most common and aggressive type of primary brain malignancy and is associated with a poor prognosis. Previously, we found that phosphatase of regenerating liver-3 (PRL-3) was significantly up-regulated in glioblastoma as determined by a microarray analysis. However, the function of PRL-3 in glioblastoma remains unknown. We aimed to investigate the clinical relationship between PRL-3 and glioblastoma, and uncover the mechanisms of PRL-3 in the process of glioblastoma. Methods: PRL-3 expression was evaluated in 61 glioblastoma samples and 4 cell lines by RT-qPCR and immunohistochemistry. Kaplan-Meier analysis was performed to evaluate the prognostic value of PRL-3 for overall survival (OS) and progression-free survival (PFS) for glioblastoma patients. Proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and EdU proliferation assay, migration and invasion by wound-closure/Transwell assays, and qRT-PCR/immunoblotting/IHC were used for both in vivo and in vitro investigations. Result: A high PRL-3 expression level was closely correlated with unfavorable OS and PFS for glioblastoma patients, and was also significantly correlated with Ki-67 expression. Down-regulation of PRL-3 inhibited glioma cell proliferation, invasion and migration through ERK/JNK/matrix metalloproteinase 7 (MMP7) in vitro and in vivo. Conclusions: PRL-3 expression enhances the invasion and proliferation of glioma cells, highlighting this phosphatase as a novel prognostic candidate and an attractive target for future therapy in glioblastoma.
Collapse
|
23
|
Podder A, Senapati S, Maiti P, Kamalraj D, Jaffer SS, Khatun S, Bhuniya S. A ‘turn-on’ fluorescent probe for lysosomal phosphatase: a comparative study for labeling of cancer cells. J Mater Chem B 2018; 6:4514-4521. [DOI: 10.1039/c8tb01143e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A turn-on fluorescent probe (LP1) discriminates cancer cells from normal cells based on expression of phosphatase in lysosomes.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Sudipta Senapati
- School of Materials Science and Technology
- Indian Institute of Technology (BHU)
- Vanarasi
- India
| | - Pralay Maiti
- School of Materials Science and Technology
- Indian Institute of Technology (BHU)
- Vanarasi
- India
| | - Devaraj Kamalraj
- Department of Chemistry
- Coimbatore Institute of Technology
- Coimbatore
- India
| | - Syed S Jaffer
- Department of Chemistry
- Coimbatore Institute of Technology
- Coimbatore
- India
| | - Sabina Khatun
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| |
Collapse
|
24
|
Hoeger B, Rios P, Berteotti A, Hoermann B, Duan G, Köhn M. Mutational Analysis of a Conserved Glutamate Reveals Unique Mechanistic and Structural Features of the Phosphatase PRL-3. ACS OMEGA 2017; 2:9171-9180. [PMID: 30023603 PMCID: PMC6044973 DOI: 10.1021/acsomega.7b01208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Phosphatase of regenerating liver (PRL)-3 (PTP4A3) has gained much attention in cancer research due to its involvement in tumor promoting and metastatic processes. It belongs to the protein tyrosine phosphatase (PTP) superfamily and is thought to follow the catalytic mechanism shared by this family, which aside from the conserved active-site amino acids includes a conserved glutamic acid residue that is usually required for the integrity of the active site in PTPs. We noted that in structures of PRL-3, PRL-1, and PTEN these residues do not clearly align and therefore we sought to investigate if the glutamic acid residue fulfills its usual function in these proteins. Although this residue was essential for PTEN's catalytic activity, it was nonessential for PRL-1 and PRL-3. Surprisingly, the mutation E50R increased PRL-3 activity against all tested in vitro substrates and also enhanced PRL-3-promoted cell adhesion and migration. We show that the introduction of Arg50 leads to an enhancement of substrate turnover for both PRL-3 and, to a lesser extent, PRL-1, and that the stronger gain in activity correlates with a higher structural flexibility of PRL-3, likely allowing for conformational adaptation during catalysis. Thus, in contrast to its crucial functions in other PTPs, this conserved glutamic acid can be replaced in PRL-3 without impairing the structural integrity. The variant with enhanced activity might serve as a tool to study PRL-3 in the future.
Collapse
Affiliation(s)
- Birgit Hoeger
- Genome
Biology Unit, European Molecular Biology
Laboratory, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Pablo Rios
- Genome
Biology Unit, European Molecular Biology
Laboratory, Meyerhofstraße
1, 69117 Heidelberg, Germany
- Faculty
of Biology and Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Anna Berteotti
- Genome
Biology Unit, European Molecular Biology
Laboratory, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Bernhard Hoermann
- Genome
Biology Unit, European Molecular Biology
Laboratory, Meyerhofstraße
1, 69117 Heidelberg, Germany
- Faculty
of Biology and Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- University
of Heidelberg, 69120 Heidelberg, Germany
| | - Guangyou Duan
- Genome
Biology Unit, European Molecular Biology
Laboratory, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- Genome
Biology Unit, European Molecular Biology
Laboratory, Meyerhofstraße
1, 69117 Heidelberg, Germany
- Faculty
of Biology and Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
25
|
PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun 2017; 8:1060. [PMID: 29057934 PMCID: PMC5651906 DOI: 10.1038/s41467-017-01168-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of skin and internal organs. Protein tyrosine phosphatases have received little attention in the study of SSc or fibrosis. Here, we show that the tyrosine phosphatase PTP4A1 is highly expressed in fibroblasts from patients with SSc. PTP4A1 and its close homolog PTP4A2 are critical promoters of TGFβ signaling in primary dermal fibroblasts and of bleomycin-induced fibrosis in vivo. PTP4A1 promotes TGFβ signaling in human fibroblasts through enhancement of ERK activity, which stimulates SMAD3 expression and nuclear translocation. Upstream from ERK, we show that PTP4A1 directly interacts with SRC and inhibits SRC basal activation independently of its phosphatase activity. Unexpectedly, PTP4A2 minimally interacts with SRC and does not promote the SRC–ERK–SMAD3 pathway. Thus, in addition to defining PTP4A1 as a molecule of interest for TGFβ-dependent fibrosis, our study provides information regarding the functional specificity of different members of the PTP4A subclass of phosphatases. Although protein tyrosine kinases are being explored as antifibrotic agents for the treatment of systemic sclerosis, little is known about the function of counteractive protein tyrosine phosphatases in this context. Here, the authors show that PTP4A1 is highly expressed by fibroblasts from patients with systemic sclerosis and promotes TGFβ activity via SRC–ERK–SMAD3 signaling.
Collapse
|
26
|
Stanford SM, Bottini N. Targeting Tyrosine Phosphatases: Time to End the Stigma. Trends Pharmacol Sci 2017; 38:524-540. [PMID: 28412041 DOI: 10.1016/j.tips.2017.03.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, and several PTPs have been validated as therapeutic targets for human diseases. Historically, the development of drugs targeting PTPs has been highly challenging, leading to stigmatization of these enzymes as undruggable targets. Despite these difficulties, efforts to drug PTPs have persisted, and recent years have seen an influx of new probes providing opportunities for biological examination of old and new PTP targets. Here we discuss progress towards drugging PTPs with special emphasis on the development of selective probes with biological activity. We describe the development of new small-molecule orthosteric, allosteric, and oligomerization-inhibiting PTP inhibitors and discuss new studies targeting the receptor PTP (RPTP) subfamily with biologics.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Zhou J, Chan ZL, Bi C, Lu X, Chong PSY, Chooi JY, Cheong LL, Liu SC, Ching YQ, Zhou Y, Osato M, Tan TZ, Ng CH, Ng SB, Wang S, Zeng Q, Chng WJ. LIN28B Activation by PRL-3 Promotes Leukemogenesis and a Stem Cell-like Transcriptional Program in AML. Mol Cancer Res 2017; 15:294-303. [PMID: 28011885 DOI: 10.1158/1541-7786.mcr-16-0275-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/29/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
Abstract
PRL-3 (PTP4A3), a metastasis-associated phosphatase, is also upregulated in patients with acute myeloid leukemia (AML) and is associated with poor prognosis, but the underlying molecular mechanism is unknown. Here, constitutive expression of PRL-3 in human AML cells sustains leukemogenesis in vitro and in vivo Furthermore, PRL-3 phosphatase activity dependently upregulates LIN28B, a stem cell reprogramming factor, which in turn represses the let-7 mRNA family, inducing a stem cell-like transcriptional program. Notably, elevated levels of LIN28B protein independently associate with worse survival in AML patients. Thus, these results establish a novel signaling axis involving PRL-3/LIN28B/let-7, which confers stem cell-like properties to leukemia cells that is important for leukemogenesis.Implications: The current study offers a rationale for targeting PRL-3 as a therapeutic approach for a subset of AML patients with poor prognosis. Mol Cancer Res; 15(3); 294-303. ©2016 AACR.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Zit-Liang Chan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Chonglei Bi
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Xiao Lu
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Phyllis S Y Chong
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Lip-Lee Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Shaw-Cheng Liu
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Yafeng Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Chin Hin Ng
- Department of Haematology-Oncology, National University Cancer Institute, NUHS, Singapore, Republic of Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Pathology, National University Hospital, Singapore, Republic of Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Haematology-Oncology, National University Cancer Institute, NUHS, Singapore, Republic of Singapore
| |
Collapse
|
28
|
Kobayashi M, Nabinger SC, Bai Y, Yoshimoto M, Gao R, Chen S, Yao C, Dong Y, Zhang L, Rodriguez S, Yashiro-Ohtani Y, Pear WS, Carlesso N, Yoder MC, Kapur R, Kaplan MH, Daniel Lacorazza H, Zhang ZY, Liu Y. Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors. Stem Cells 2017; 35:1053-1064. [PMID: 28009085 DOI: 10.1002/stem.2559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023]
Abstract
The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064.
Collapse
Affiliation(s)
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Yunpeng Bai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Momoko Yoshimoto
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chonghua Yao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Yuanshu Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lujuan Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sonia Rodriguez
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Yumi Yashiro-Ohtani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nadia Carlesso
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Mervin C Yoder
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Mark H Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Hugo Daniel Lacorazza
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Overexpression of PTP4A3 in ETV6-RUNX1 acute lymphoblastic leukemia. Leuk Res 2016; 54:1-6. [PMID: 28063378 DOI: 10.1016/j.leukres.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 12/18/2016] [Indexed: 11/21/2022]
Abstract
Cell signalling, which is often derailed in cancer, is a network of multiple interconnected pathways with numerous feedback mechanisms. Dynamics of cell signalling is intimately regulated by addition and removal of phosphate groups by kinases and phosphatases. We examined expression of members of the PTP4A family of phosphatases across acute leukemias. While expression of PTP4A1 and PTP4A2 remained relatively unchanged across diseases, PTP4A3 showed marked overexpression in ETV6-RUNX1 and BCR-ABL1 subtypes of precursor B cell acute lymphoblastic leukemia. We show that PTP4A3 is regulated by the ETV6-RUNX1 fusion, but noticed no marked impact on cell viability either after PTP4A3 silencing or treatment with a PTP4A3 inhibitor. Regulation of PTP4A3 expression is altered in specific subgroups of acute leukemias and this is likely brought about by expression of the aberrant fusion genes.
Collapse
|
31
|
Abdollahi P, Vandsemb EN, Hjort MA, Misund K, Holien T, Sponaas AM, Rø TB, Slørdahl TS, Børset M. Src Family Kinases Are Regulated in Multiple Myeloma Cells by Phosphatase of Regenerating Liver-3. Mol Cancer Res 2016; 15:69-77. [DOI: 10.1158/1541-7786.mcr-16-0212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
|
32
|
Discovery and Evaluation of PRL Trimer Disruptors for Novel Anticancer Agents. Methods Mol Biol 2016. [PMID: 27514804 DOI: 10.1007/978-1-4939-3746-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Overexpression of PRL phosphatases (PRL1, PRL2, and PRL3) has been found in a variety of late-stage tumors and their distant metastatic sites. Therefore, the oncogenic PRL phosphatases represent intriguing targets for cancer therapy. There is considerable interest in identifying small molecule inhibitors targeting PRLs as novel anticancer agents. However, it has been difficult to acquire phosphatase activity-based PRL inhibitors due to the unusual wide and shallow catalytic pockets of PRLs revealed by crystal structure studies. Here, we present a novel method to identify PRL1 inhibitors by targeting the PRL1 trimer interface and the procedure to characterize their biochemical and cellular activity.
Collapse
|
33
|
Bai Y, Yu ZH, Liu S, Zhang L, Zhang RY, Zeng LF, Zhang S, Zhang ZY. Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase. Cancer Res 2016; 76:4805-15. [PMID: 27325652 DOI: 10.1158/0008-5472.can-15-2323] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/31/2016] [Indexed: 01/12/2023]
Abstract
Phosphatase of regenerating liver (PRL) oncoproteins are phosphatases overexpressed in numerous types of human cancer. Elevated levels of PRL associate with metastasis and poor clinical outcomes. In principle, PRL phosphatases offer appealing therapeutic targets, but they remain underexplored due to the lack of specific chemical probes. In this study, we address this issue by exploiting a unique property of PRL phosphatases, namely, that they may function as homotrimers. Starting from a sequential structure-based virtual screening and medicinal chemistry strategy, we identified Cmpd-43 and several analogs that disrupt PRL1 trimerization. Biochemical and structural analyses demonstrate that Cmpd-43 and its close analogs directly bind the PRL1 trimer interface and obstruct PRL1 trimerization. Cmpd-43 also specifically blocks the PRL1-induced cell proliferation and migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exerted potent anticancer activity both in vitro and in vivo in a murine xenograft model of melanoma. Our results validate a trimerization-dependent signaling mechanism for PRL and offer proof of concept for trimerization inhibitors as candidate therapeutics to treat PRL-driven cancers. Cancer Res; 76(16); 4805-15. ©2016 AACR.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, and Purdue Center for Drug Discovery, Purdue University, West Lafayette, Indiana. Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, and Purdue Center for Drug Discovery, Purdue University, West Lafayette, Indiana. Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Sijiu Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lujuan Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, and Purdue Center for Drug Discovery, Purdue University, West Lafayette, Indiana. Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, and Purdue Center for Drug Discovery, Purdue University, West Lafayette, Indiana. Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, and Purdue Center for Drug Discovery, Purdue University, West Lafayette, Indiana. Department of Chemistry, Purdue University, West Lafayette, Indiana. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
34
|
miR-601 is a prognostic marker and suppresses cell growth and invasion by targeting PTP4A1 in breast cancer. Biomed Pharmacother 2016; 79:247-53. [PMID: 27044835 DOI: 10.1016/j.biopha.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNA) play important roles in the initiation and progression of breast cancer. Here, we investigated the role of miR-601 in breast cancer and found that its expression was significantly down-regulated in breast cancer tissues compared with matched adjacent non-cancerous breast tissues. Moreover, we found that down-regulation of miR-601 was closely associated with distant metastasis and poor distant metastasis-free survival in breast cancer. In addition, miR-601 levels were inversely correlated with metastatic potential of human breast cancer cell lines. Further experiments showed that ectopic overexpression of miR-601 suppressed breast cancer cell proliferation, migration and invasion, whereas miR-601 knockdown promoted breast cancer cell proliferation, migration and invasion. Furthermore, protein tyrosine phosphatase type IVA 1 (PTP4A1) was identified as a direct target of miR-601. Overexpression of miR-601 repressed PTP4A1 mRNA and protein expression. Conversely, inhibition of miR-601 increased PTP4A1 mRNA and protein expression. Taken together, our data suggest that miR-601 inhibits growth and invasion of breast cancer cells by targeting PTP4A1 and that miR-601 is a potential biomarker for prognosis and therapeutic target in breast cancer.
Collapse
|
35
|
Suda J, Rockey DC, Karvar S. Akt2-Dependent Phosphorylation of Radixin in Regulation of Mrp-2 Trafficking in WIF-B Cells. Dig Dis Sci 2016; 61:453-63. [PMID: 26500117 DOI: 10.1007/s10620-015-3905-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/24/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND The dominant ezrin/radixin/moesin protein in hepatocytes is radixin, which plays an important role in mediating the binding of F-actin to the plasma membrane after a conformational activation by phosphorylation at Thr564. AIM Here we have investigated the importance of Akt-mediated radixin Thr564 phosphorylation on Mrp-2 distribution and function in WIF-B cells. Mrp-2 is an adenosine triphosphate (ATP)-binding cassette transporter that plays an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, organic anions, and drug metabolites such as glucuronides. METHODS Akt1 and Akt2 expression were manipulated using dominant active and negative constructs as well as Akt1 and Akt2 siRNA. Cellular distribution of radixin and Mrp-2 was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate, which is a substrate of the Mrp-2 and is actively transported in canalicular lumina, was used to measure Mrp-2 function. RESULTS Radixin phosphorylation was significantly increased in wild-type and dominant active Akt2 transfected cells. Furthermore, radixin and Mrp-2 were localized at the canalicular membrane, similar to control cells. In contrast, overexpression of dominant negative Akt2, siRNA knockdown of Akt2 and a specific Akt inhibitor prevented radixin phosphorylation and led to alteration of normal radixin and Mrp-2 localization; inhibition of Akt2, but not Akt1 function led to radixin localization to the cytoplasmic space. In addition, dominant negative and Akt2 knockdown led to a dramatically impaired hepatocyte secretory response, while wild-type and dominant active Akt2 transfected cells exhibited increased 5-chloromethylfluorescein diacetate excretion. In contrast to Akt2, Akt1 was not associated with radixin phosphorylation. CONCLUSIONS These studies, therefore, identify Akt2 as a critical kinase that regulates radixin phosphorylation and leads to Mrp-2 translocation and function.
Collapse
|
36
|
Abstract
Cancer, more than any other human disease, now has a surfeit of potential molecular targets poised for therapeutic exploitation. Currently, a number of attractive and validated cancer targets remain outside of the reach of pharmacological regulation. Some have been described as undruggable, at least by traditional strategies. In this article, we outline the basis for the undruggable moniker, propose a reclassification of these targets as undrugged, and highlight three general classes of this imposing group as exemplars with some attendant strategies currently being explored to reclassify them. Expanding the spectrum of disease-relevant targets to pharmacological manipulation is central to reducing cancer morbidity and mortality.
Collapse
Affiliation(s)
- John S Lazo
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735; ,
| | - Elizabeth R Sharlow
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735; ,
| |
Collapse
|
37
|
Kobayashi M, Chen S, Gao R, Bai Y, Zhang ZY, Liu Y. Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies. Cell Cycle 2015; 13:2827-35. [PMID: 25486470 DOI: 10.4161/15384101.2014.954448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The phosphatases of regenerating liver (PRLs), consisting PRL1, PRL2 and PRL3, are dual-specificity protein phosphatases that have been implicated as biomarkers and therapeutic targets in several solid tumors. However, their roles in hematological malignancies are largely unknown. Recent findings demonstrate that PRL2 is important for hematopoietic stem cell self-renewal and proliferation. In addition, both PRL2 and PRL3 are highly expressed in some hematological malignancies, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Moreover, PRL deficiency impairs the proliferation and survival of leukemia cells through regulating oncogenic signaling pathways. While PRLs are potential novel therapeutic targets in hematological malignancies, their exact biological function and cellular substrates remain unclear. This review will discuss how PRLs regulate hematopoietic stem cell behavior, what signaling pathways are regulated by PRLs, and how to target PRLs in hematological malignancies. An improved understanding of how PRLs function and how they are regulated may facilitate the development of PRL inhibitors that are effective in cancer treatment.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- a Department of Pediatrics, Herman B Wells Center for Pediatric Research; Department of Biochemistry and Molecular Biology , Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | | | |
Collapse
|
38
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|