1
|
Castro J, Maddern J, Chow CY, Tran P, Vetter I, King GF, Brierley SM. The voltage-gated sodium channel Na V1.7 underlies endometriosis-associated chronic pelvic pain. J Neurochem 2024; 168:3760-3776. [PMID: 36840383 DOI: 10.1111/jnc.15795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Chronic pelvic pain (CPP) is the primary symptom of endometriosis patients, but adequate treatments are lacking. Modulation of ion channels expressed by sensory nerves innervating the viscera has shown promise for the treatment of irritable bowel syndrome and overactive bladder. However, similar approaches for endometriosis-associated CPP remain underdeveloped. Here, we examined the role of the voltage-gated sodium (NaV) channel NaV1.7 in (i) the sensitivity of vagina-innervating sensory afferents and investigated whether (ii) NaV1.7 inhibition reduces nociceptive signals from the vagina and (iii) ameliorates endometriosis-associated CPP. The mechanical responsiveness of vagina-innervating sensory afferents was assessed with ex vivo single-unit recording preparations. Pain evoked by vaginal distension (VD) was quantified by the visceromotor response (VMR) in vivo. In control mice, pharmacological activation of NaV1.7 with OD1 sensitised vagina-innervating pelvic afferents to mechanical stimuli. Using a syngeneic mouse model of endometriosis, we established that endometriosis sensitised vagina-innervating pelvic afferents to mechanical stimuli. The highly selective NaV1.7 inhibitor Tsp1a revealed that this afferent hypersensitivity occurred in a NaV1.7-dependent manner. Moreover, in vivo intra-vaginal treatment with Tsp1a reduced the exaggerated VMRs to VD which is characteristic of mice with endometriosis. Conversely, Tsp1a did not alter ex vivo afferent mechanosensitivity nor in vivo VMRs to VD in Sham control mice. Collectively, these findings suggest that NaV1.7 plays a crucial role in endometriosis-induced vaginal hyperalgesia. Importantly, NaV1.7 inhibition selectively alleviated endometriosis-associated CPP without the loss of normal sensation, suggesting that selective targeting of NaV1.7 could improve the quality of life of women with endometriosis.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and Emerging Pharmacological Targets and Treatments of Urinary Incontinence and Related Disorders. Pharmacol Rev 2023; 75:554-674. [PMID: 36918261 DOI: 10.1124/pharmrev.121.000523] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Overactive bladder syndrome with and without urinary incontinence and related conditions, signs, and disorders such as detrusor overactivity, neurogenic lower urinary tract dysfunction, underactive bladder, stress urinary incontinence, and nocturia are common in the general population and have a major impact on the quality of life of the affected patients and their partners. Based on the deliberations of the subcommittee on pharmacological treatments of the 7th International Consultation on Incontinence, we present a comprehensive review of established drug targets in the treatment of overactive bladder syndrome and the aforementioned related conditions and the approved drugs used in its treatment. Investigational drug targets and compounds are also reviewed. We conclude that, despite a range of available medical treatment options, a considerable medical need continues to exist. This is largely because the existing treatments are symptomatic and have limited efficacy and/or tolerability, which leads to poor long-term adherence. SIGNIFICANCE STATEMENT: Urinary incontinence and related disorders are prevalent in the general population. While many treatments have been approved, few patients stay on long-term treatment despite none of them being curative. This paper provides a comprehensive discussion of existing and emerging treatment options for various types of incontinence and related disorders.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Linda Cardozo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Christopher J Chermansky
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Francisco Cruz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Yasuhiko Igawa
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Kyu-Sung Lee
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Arun Sahai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Alan J Wein
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Karl-Erik Andersson
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| |
Collapse
|
3
|
Re: PIEZO2 in Sensory Neurons and Urothelial Cells Coordinate Urination. Eur Urol 2021; 80:255-256. [PMID: 33875308 DOI: 10.1016/j.eururo.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
|
4
|
Castro J, Maddern J, Erickson A, Caldwell A, Grundy L, Harrington AM, Brierley SM. Pharmacological modulation of voltage-gated sodium (NaV) channels alters nociception arising from the female reproductive tract. Pain 2021; 162:227-242. [PMID: 32826751 DOI: 10.1097/j.pain.0000000000002036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dyspareunia, also known as vaginal hyperalgesia, is a prevalent and debilitating symptom of gynaecological disorders such as endometriosis and vulvodynia. Despite this, the sensory pathways transmitting nociceptive information from female reproductive organs remain poorly characterised. As such, the development of specific treatments for pain associated with dyspareunia is currently lacking. Here, we examined, for the first time, (1) the mechanosensory properties of pelvic afferent nerves innervating the mouse vagina; (2) the expression profile of voltage-gated sodium (NaV) channels within these afferents; and (3) how pharmacological modulation of these channels alters vaginal nociceptive signalling ex vivo, in vitro, and in vivo. We developed a novel afferent recording preparation and characterised responses of pelvic afferents innervating the mouse vagina to different mechanical stimuli. Single-cell reverse transcription-polymerase chain reaction determined mRNA expression of NaV channels within vagina-innervating dorsal root ganglia neurons. Vagina-innervating dorsal root ganglia neuroexcitability was measured using whole-cell patch-clamp electrophysiology. Nociception evoked by vaginal distension was assessed by dorsal horn neuron activation within the spinal cord and quantification of visceromotor responses. We found that pelvic afferents innervating the vagina are tuned to detect various mechanical stimuli, with NaV channels abundantly expressed within these neurons. Pharmacological modulation of NaV channels (with veratridine or tetrodotoxin) correspondingly alters the excitability and mechanosensitivity of vagina-innervating afferents, as well as dorsal horn neuron activation and visceromotor responses evoked by vaginal distension. This study identifies potential molecular targets that can be used to modulate vaginal nociceptive signalling and aid in the development of approaches to manage endometriosis and vulvodynia-related dyspareunia.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, Australia
| |
Collapse
|
5
|
Bientinesi R, Sacco E. Managing urinary incontinence in women - a review of new and emerging pharmacotherapy. Expert Opin Pharmacother 2018; 19:1989-1997. [PMID: 30304645 DOI: 10.1080/14656566.2018.1532502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The pharmacological treatment of urinary incontinence and overactive bladder (OAB) has been, for a longer time, based on antimuscarinic agents. In recent years, two other pharmacological principles have been introduced for the treatment of OAB and urgency urinary incontinence: the β3-adrenergic agent mirabegron and botulinum neurotoxin. Meanwhile, there is lack of effective drugs for the treatment of stress incontinence. AREAS COVERED This literature review presents synthetic compounds aimed to treat female urinary incontinence that are in phase II-III clinical development. EXPERT OPINION Antimuscarinic agents will continue to represent the current gold standard for the first-line pharmacological management of OAB and urgency urinary incontinence. The class of β3-agonists will certainly expand with the discovery and clinical development of novel agents. Combination therapy of antimuscarinic agents and β3-agonists could offer an alternative treatment in these patients, including those with symptoms refractory to first-line monotherapy. A huge number of preclinical studies are underway in this field exploring the therapeutic potential of many novel compounds while some have advanced to clinical phases of development.
Collapse
Affiliation(s)
- Riccardo Bientinesi
- a Urology Department, Agostino Gemelli Academic Hospital Foundation IRCCS , Catholic University School of Medicine of Rome , Rome , Italy
| | - Emilio Sacco
- a Urology Department, Agostino Gemelli Academic Hospital Foundation IRCCS , Catholic University School of Medicine of Rome , Rome , Italy
| |
Collapse
|
6
|
Roedel M, Ravens U, Kasper M, Wirth MP, Jepps TA, Propping S. Contractile responses in intact and mucosa-denuded human ureter—a comparison with urinary bladder detrusor preparations. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:773-782. [DOI: 10.1007/s00210-018-1505-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/17/2018] [Indexed: 11/28/2022]
|
7
|
Abstract
Antimuscarinic agents are now widely used as the pharmacological therapy for overactive bladder (OAB) because neuronal (parasympathetic nerve) and non-neuronal acetylcholine play a significant role for the bladder function. In this review, we will highlight basic and clinical aspects of eight antimuscarinic agents (oxybutynin, propiverine, tolterodine, solifenacin, darifenacin, trospium, imidafenacin, and fesoterodine) clinically used to treat urinary dysfunction in patients with OAB. The basic pharmacological characteristics of these eight antimuscarinic agents include muscarinic receptor subtype selectivity, functional bladder selectivity, and muscarinic receptor binding in the bladder and other tissues. The measurement of drug-receptor binding after oral administration of these agents allows for clearer understanding of bladder selectivity by the integration of pharmacodynamics and pharmacokinetics under in vivo conditions. Their central nervous system (CNS) penetration potentials are also discussed in terms of the feasibility of impairments in memory and cognitive function in elderly patients with OAB. The clinical aspects of efficacy focus on improvements in the daytime urinary frequency, nocturia, bladder capacity, the frequency of urgency, severity of urgency, number of incontinence episodes, OAB symptom score, and quality of life (QOL) score by antimuscarinic agents in patients with OAB. The safety of and adverse events caused by treatments with antimuscarinic agents such as dry mouth, constipation, blurred vision, erythema, fatigue, increased sweating, urinary retention, and CNS adverse events are discussed. A dose-dependent relationship was observed with adverse events, because the risk ratio generally increased with elevations in the drug dose of antimuscarinic agents. Side effect profiles may be additive to or contraindicated by other medications.
Collapse
|
8
|
Park EC, Lim JS, Kim SI, Lee SY, Tak YK, Choi CW, Yun S, Park J, Lee M, Chung HK, Kim KS, Na YG, Shin JH, Kim GH. Proteomic Analysis of Urothelium of Rats with Detrusor Overactivity Induced by Bladder Outlet Obstruction. Mol Cell Proteomics 2018; 17:948-960. [PMID: 29414759 DOI: 10.1074/mcp.ra117.000290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
Overactive bladder (OAB) syndrome is a condition that has four symptoms: urgency, urinary frequency, nocturia, and urge incontinence and negatively affects a patient's life. Recently, it is considered that the urinary bladder urothelium is closely linked to pathogenesis of OAB. However, the mechanisms of pathogenesis of OAB at the molecular level remain poorly understood, mainly because of lack of modern molecular analysis. The goal of this study is to identify a potential target protein that could act as a predictive factor for effective diagnosis and aid in the development of therapeutic strategies for the treatment of OAB syndrome. We produced OAB in a rat model and performed the first proteomic analysis on the mucosal layer (urothelium) of the bladders of sham control and OAB rats. The resulting data revealed the differential expression of 355 proteins in the bladder urothelium of OAB rats compared with sham subjects. Signaling pathway analysis revealed that the differentially expressed proteins were mainly involved in the inflammatory response and apoptosis. Our findings suggest a new target for accurate diagnosis of OAB that can provide essential information for the development of drug treatment strategies as well as establish criteria for screening patients in the clinical environment.
Collapse
Affiliation(s)
- Edmond Changkyun Park
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,§Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae Sung Lim
- ‖Department of Urology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seung Il Kim
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,§Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang-Yeop Lee
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,§Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yu-Kyung Tak
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Chi-Won Choi
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,**Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Sungho Yun
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Joohyun Park
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Minji Lee
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyo Kyun Chung
- ‡‡Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Koon Soon Kim
- ‡‡Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Yong Gil Na
- ‖Department of Urology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ju Hyun Shin
- ‖Department of Urology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gun-Hwa Kim
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; .,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,**Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Michel MC. Editorial on "Beta-3 adrenergic receptor is expressed in acetylcholine-containing nerve fibers of the human urinary bladder: An immunohistochemical study". Neurourol Urodyn 2017; 36:2192. [PMID: 28220531 DOI: 10.1002/nau.23238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Liu HT, Kuo HC. Expressions of urothelial functional proteins in idiopathic detrusor overactivity patients refractory to antimuscarinic therapy with different urodynamic characteristics. Neurourol Urodyn 2016; 36:1313-1319. [PMID: 27654640 DOI: 10.1002/nau.23138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 11/10/2022]
Abstract
AIMS This study investigated the expressions of PGP9.5, P2 X 3 , muscarinic receptor (M3) and beta-3 adrenoreceptor (AR) in idiopathic detrusor overactivity (IDO) patients refractory to antimuscarinic treatment, and analyzed the correlation between protein expressions and clinical symptoms of IDO bladders with different urodynamic characteristics. METHODS Specimens of 48 IDO and 10 control patients without lower urinary tract symptoms were included. The levels of these proteins from bladder mucosa were determined by Western blotting. RESULTS The expression levels of β3-AR and M3 receptor were similar between IDO patients and controls. When IDO patients were divided into two subgroups, phasic DO and terminal DO, the results showed that β3-AR level in the patients with phasic DO was significantly higher than that of the controls and terminal DO (Both P < 0.05). PGP9.5 and P2 X 3 levels were also significantly increased in phasic DO subgroup than controls. P2 X 3 receptor was positively correlated with PGP9.5 and β3-AR, and negatively correlated with the first sensation of bladder filling and voided volume in phasic DO. CONCLUSIONS Similar expression M3 receptor and increased P2 X 3 levels in phasic DO, compared with the controls, indicate that dysregulation of purinergic bladder signaling may contribute to the pathogenesis of phasic DO refractory to antimuscarinics. Elevated expression of β3-AR in phasic DO but not in terminal DO patients may explain the different urodynamic characteristics of DO between the two subgroups. Our findings suggest that β3-AR agonist or P2 X 3 antagonist might be a good treatment choice for patients with phasic DO refractory to antimuscarinic therapy.
Collapse
Affiliation(s)
- Hsin-Tzu Liu
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan.,Voiding Dysfunction Therapeutic Center, Department of Medical Research, Tzu Chi General Hospital, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Voiding Dysfunction Therapeutic Center, Department of Medical Research, Tzu Chi General Hospital, Hualien, Taiwan.,Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Gacci M, Andersson KE, Chapple C, Maggi M, Mirone V, Oelke M, Porst H, Roehrborn C, Stief C, Giuliano F. Latest Evidence on the Use of Phosphodiesterase Type 5 Inhibitors for the Treatment of Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia. Eur Urol 2016; 70:124-133. [PMID: 26806655 DOI: 10.1016/j.eururo.2015.12.048] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/29/2015] [Indexed: 01/19/2023]
Abstract
CONTEXT Several preclinical reports, randomized controlled trials, systematic reviews, and posthoc analyses corroborate the role of phosphodiesterase type 5 inhibitors (PDE5-Is) in the treatment of men with lower urinary tract symptoms (LUTS) associated with benign prostatic enlargement (BPE). OBJECTIVE Update of the latest evidence on the mechanisms of action, evaluate the current meta-analyses, and emphasize the results of pooled data analyses of PDE5-Is in LUTS/BPE. EVIDENCE ACQUISITION Literature analysis of basic researches on PDE5-Is, systematic literature search in PubMed and Scopus until May 2015 on reviews of trials on PDE5-Is, and collection of pooled data available on tadalafil 5mg. EVIDENCE SYNTHESIS Latest evidences on the pathophysiology of LUTS/BPE has provided the rationale for use of PDE5-Is: (1) improvement of LUT oxygenation, (2) smooth muscle relaxation, (3) negative regulation of proliferation and transdifferentiation of LUT stroma, (4) reduction of bladder afferent nerve activity, and (5) down-regulation of prostate inflammation are the proven mechanisms of action of PDE5-Is. Data from eight systematic reviews demonstrated that PDE5-Is allow to improve LUTS (International Prostate Symptom Score mean difference vs placebo: 2.35-4.21) and erectile function (International Index of Erectile Function mean difference vs placebo: 2.25-5.66), with negligible change in flow rate (Qmax mean difference vs placebo: 0.01-1.43). Pooled data analyses revealed that tadalafil 5mg once daily allows the clinically-meaningful improvement of LUTS and nocturnal voiding frequency independent of both erectile dysfunction severity and improvement. CONCLUSIONS PDE5-Is are safe and effective in improving both LUTS and erectile function in appropriately selected men with LUTS/BPE. Data on the reduction of disease progression, long-term outcomes, and cost-effectiveness analyses are still lacking. PATIENT SUMMARY We reviewed recent literature on phosphodiesterase type 5 inhibitors in men with lower urinary tract symptoms associated with prostatic enlargement. We found evidence to confirm that phosphodiesterase type 5 inhibitors are a valid treatment option for men affected by bothersome urinary symptoms with or without erectile dysfunction.
Collapse
Affiliation(s)
- Mauro Gacci
- Department of Urology, University of Florence, Florence, Italy.
| | - Karl-Erik Andersson
- AIAS, Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, Denmark
| | - Christopher Chapple
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mario Maggi
- Sexual Medicine & Andrology, Department "Mario Serio", University of Florence, Florence, Italy
| | - Vincenzo Mirone
- Department of Urology, University Federico II, Naples, Italy
| | - Matthias Oelke
- Department of Urology, Hannover Medical School, Hannover, Germany
| | - Hartmut Porst
- Private Institute for Urology,Andrology and Sexual Medicine, Hamburg, Germany
| | - Claus Roehrborn
- Department of Urology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Christian Stief
- Department of Urology, Ludwig-Maximilians-Universität München, Germany
| | - François Giuliano
- Inserm U1179 Versailes - Saint Quentin University Montigny-le-Bretonneux, R. Poincaré Hospital - Assistance Publique-Hôpitaux de Paris, Garches, France
| |
Collapse
|
12
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
13
|
Andersson KE. Drug therapy of overactive bladder--what is coming next? Korean J Urol 2015; 56:673-9. [PMID: 26495067 PMCID: PMC4610893 DOI: 10.4111/kju.2015.56.10.673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023] Open
Abstract
After the approval and introduction of mirabegron, tadalafil, and botulinum toxin A for treatment of lower urinary tract symptoms/overactive bladder, focus of interest has been on their place in therapy versus the previous gold standard, antimuscarinics. However, since these agents also have limitations there has been increasing interest in what is coming next - what is in the pipeline? Despite progress in our knowledge of different factors involved in both peripheral and central modulation of lower urinary tract dysfunction, there are few innovations in the pipe-line. Most developments concern modifications of existing principles (antimuscarinics, β3-receptor agonists, botulinum toxin A). However, there are several new and old targets/drugs of potential interest for further development, such as the purinergic and cannabinoid systems and the different members of the transient receptor potential channel family. However, even if there seems to be good rationale for further development of these principles, further exploration of their involvement in lower urinary tract function/dysfunction is necessary.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA. ; Aarhus Institute for Advanced Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Keast JR, Smith-Anttila CJA, Osborne PB. Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 2015; 3:53. [PMID: 26389118 PMCID: PMC4555086 DOI: 10.3389/fcell.2015.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023] Open
Abstract
The development of organs occurs in parallel with the formation of their nerve supply. The innervation of pelvic organs (lower urinary tract, hindgut, and sexual organs) is complex and we know remarkably little about the mechanisms that form these neural pathways. The goal of this short review is to use the urinary bladder as an example to stimulate interest in this question. The bladder requires a healthy mature nervous system to store urine and release it at behaviorally appropriate times. Understanding the mechanisms underlying the construction of these neural circuits is not only relevant to defining the basis of developmental problems but may also suggest strategies to restore connectivity and function following injury or disease in adults. The bladder nerve supply comprises multiple classes of sensory, and parasympathetic or sympathetic autonomic effector (motor) neurons. First, we define the developmental endpoint by describing this circuitry in adult rodents. Next we discuss the innervation of the developing bladder, identifying challenges posed by this area of research. Last we provide examples of genetically modified mice with bladder dysfunction and suggest potential neural contributors to this state.
Collapse
Affiliation(s)
- Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
15
|
Michel MC, Chess-Williams R, Hegde SS. Are blood vessels a target to treat lower urinary tract dysfunction? Naunyn Schmiedebergs Arch Pharmacol 2015; 388:687-94. [PMID: 26026700 DOI: 10.1007/s00210-015-1137-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/12/2023]
Abstract
Bladder dysfunction is common in the general population (Stewart et al. 2010) and even more so among patients seeing a physician for any reason (Goepel et al. 2002). It often manifests as lower urinary tract symptoms (LUTS), a term originally coined to describe voiding and storage symptoms in men with benign prostatic hyperplasia (BPH) but now more universally used to describe any type of voiding and storage symptoms in both sexes. Studies into possible causes of urinary bladder dysfunction have long focused on detrusor smooth muscle cells (Turner and Brading 1999). More recently, it became clear that several other types of cells and organs contribute to regulating detrusor smooth muscle function. These include the urothelium (Andersson and McCloskey 2014; Michel 2015), afferent nerves (Michel and Igawa 2015; Yoshimura et al. 2014b), and the central and autonomic nervous systems (Fowler and Griffiths 2010; Yoshimura et al. 2014a). Alterations in any of these may at least partly be responsible for detrusor dysfunction and, accordingly, be potential targets for the treatment of bladder dysfunction. As highlighted by an article in this issue of Naunyn-Schmiedeberg's Archives of Pharmacology (Bayrak et al. 2015), there is an additional suspect, the bladder vasculature. This article will discuss the currently available experimental and clinical evidence for a role of the vasculature in causing bladder dysfunction, and how existing and emerging treatments may modulate bladder function by acting on blood vessels. Due to a similarity in concept, data on prostate perfusion will also be discussed to some extent.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg Universität, Obere Zahlbacher Str. 67, 55101, Mainz, Germany,
| | | | | |
Collapse
|