1
|
Nakmode DD, Youssef SH, Das S, Song Y, Garg S. Analytical method for simultaneous quantification of levodopa and carbidopa in the injectable oleogel formulation by HPLC. BMC Chem 2025; 19:43. [PMID: 39962556 PMCID: PMC11834227 DOI: 10.1186/s13065-025-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
The developed method for simultaneous detection of levodopa and carbidopa was able to separate the peaks of the drug and sodium bisulfite in the in-vitro release samples and stability samples. Levodopa (LD), a pro-drug of dopamine, is used as the gold standard treatment for Parkinson's disease. It is usually prescribed with carbidopa (CD) to prevent the conversion of levodopa to dopamine peripherally, thus reducing undesirable side effects. Both drugs are unstable at pH 7.4 beyond 24 h due to their oxidation, therefore 0.2% sodium bisulfite is added to the formulation as an antioxidant. The separation was performed by gradient elution using the Luna-C18 column (250 × 4.6 mm, 5 µm) at a flow rate of 1 ml/min. The mobile phase was composed of mobile phase A 30 mM potassium phosphate and acetonitrile (95:5, v/v) with 35 mM tetrabutylammonium hydrogen sulphate and mobile phase B containing 30 mM potassium phosphate and acetonitrile (50:50 v/v). Drug peaks were detected at 280 nm with retention times of 3.05 ± 0.001 min for LD and 3.64 ± 0.001 min for CD. The validation of the method according to US FDA guidelines and results were found to be within acceptable limits. The method was linear from 10-100 µg/ml (r2 = 0.999) and 10-100 µg/ml (r2 = 0.999) for LD and CD, respectively. The developed method was applied to studying the drug release from in-situ gel. The environmental impact of the developed method was evaluated using various greenness assessment tools.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Soumyajit Das
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
2
|
Ahmed MR, Inayathullah M, Morton M, Pothineni VR, Kim K, Ahmed MS, Babar MM, Rajadas J. Intranasal delivery of liposome encapsulated flavonoids ameliorates l-DOPA induced dyskinesia in hemiparkinsonian mice. Biomaterials 2024; 311:122680. [PMID: 38959534 DOI: 10.1016/j.biomaterials.2024.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
In the present study, we explored the development of a novel noninvasive liposomal drug delivery material for use in intranasal drug delivery applications in human diseases. We used drug entrapment into liposomal nanoparticle assembly to efficiently deliver the drugs to the nasal mucosa to be delivered to the brain. The naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF) has previously been shown to have beneficial effects in ameliorating Parkinson's disease (PD). We used both naturally occurring 7,8-DHF and the chemically modified form of DHF, the DHF-ME, to be used as a drug candidate for the treatment of PD and l-DOPA induced dyskinesia (LID), which is the debilitating side effect of l-DOPA therapy in PD. The ligand-protein interaction behavior for 7,8-DHF and 6,7-DHF-ME was found to be more effective with molecular docking and molecular stimulation studies of flavonoid compounds with TrkB receptor. Our study showed that 7,8-DHF delivered via intranasal route using a liposomal formulation ameliorated LID in hemiparkinsonian mice model when these mice were chronically administered with l-DOPA, which is the only current medication for relieving the clinical symptoms of PD. The present study also demonstrated that apart from reducing the LID, 7,8-DHF delivery directly to the brain via the intranasal route also corrected some long-term signaling adaptations involving ΔFosB and α Synuclein in the brain of dopamine (DA) depleted animals.
Collapse
Affiliation(s)
- Mohamed Rafiuddin Ahmed
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Mohammed Inayathullah
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Mithya Morton
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Children's Hospital of Orange County - UC Irvine School of Medicine, Department of Pediatrics, 505 S. Main St., Suite #525, Orange, CA, 92868, USA
| | - Venkata Raveendra Pothineni
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Kwangmin Kim
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Physiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Mohamed Sohail Ahmed
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, MCN 1161 21st Ave S. Nashville TN 37232, USA
| | - Mustafeez Mujtaba Babar
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Mallamaci R, Musarò D, Greco M, Caponio A, Castellani S, Munir A, Guerra L, Damato M, Fracchiolla G, Coppola C, Cardone RA, Rashidi M, Tardugno R, Sergio S, Trapani A, Maffia M. Dopamine- and Grape-Seed-Extract-Loaded Solid Lipid Nanoparticles: Interaction Studies between Particles and Differentiated SH-SY5Y Neuronal Cell Model of Parkinson's Disease. Molecules 2024; 29:1774. [PMID: 38675592 PMCID: PMC11051794 DOI: 10.3390/molecules29081774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (L.G.); (R.A.C.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce—Monteroni, 73100 Lecce, Italy; (D.M.); (S.S.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce—Monteroni, 73100 Lecce, Italy; (D.M.); (S.S.)
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy or (A.C.); (G.F.); (R.T.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce—Arnesano, 73100 Lecce, Italy (C.C.); (M.R.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (L.G.); (R.A.C.)
| | - Marina Damato
- Department of Experimental Medicine, University of Salento, Via Lecce—Monteroni, 73100 Lecce, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy or (A.C.); (G.F.); (R.T.)
| | - Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce—Arnesano, 73100 Lecce, Italy (C.C.); (M.R.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (L.G.); (R.A.C.)
| | - Mehdi Rashidi
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce—Arnesano, 73100 Lecce, Italy (C.C.); (M.R.)
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy or (A.C.); (G.F.); (R.T.)
| | - Sara Sergio
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce—Monteroni, 73100 Lecce, Italy; (D.M.); (S.S.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy or (A.C.); (G.F.); (R.T.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce—Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Nakmode DD, Day CM, Song Y, Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051503. [PMID: 37242745 DOI: 10.3390/pharmaceutics15051503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) has significantly affected a large proportion of the elderly population worldwide. According to the World Health Organization, approximately 8.5 million people worldwide are living with PD. In the United States, an estimated one million people are living with PD, with approximately 60,000 new cases diagnosed every year. Conventional therapies available for Parkinson's disease are associated with limitations such as the wearing-off effect, on-off period, episodes of motor freezing, and dyskinesia. In this review, a comprehensive overview of the latest advances in DDSs used to reduce the limitations of current therapies will be presented, and both their promising features and drawbacks will be discussed. We are also particularly interested in the technical properties, mechanism, and release patterns of incorporated drugs, as well as nanoscale delivery strategies to overcome the blood-brain barrier.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Candace M Day
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Kumar B, Pandey M, Pottoo FH, Fayaz F, Sharma A, Sahoo PK. Liposomes: Novel Drug Delivery Approach for Targeting Parkinson's Disease. Curr Pharm Des 2021; 26:4721-4737. [PMID: 32003666 DOI: 10.2174/1381612826666200128145124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson's disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson's disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson's disease.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Faizana Fayaz
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Anjali Sharma
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - P K Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| |
Collapse
|
6
|
Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13:5561-5576. [PMID: 30271147 PMCID: PMC6154717 DOI: 10.2147/ijn.s149022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The preeminent treatments for neurodegenerative disease are often unavailable due to the poor accessibility of therapeutic drugs. Moreover, the blood–brain barrier (BBB) effectively blocks the transfer of cells, particles and large molecules, ie, drugs, across the brain. The most important challenge in the treatment of neurodegenerative diseases is the development of targeted drug delivery system. Theranostic strategies are known to combine therapeutic and diagnostic capabilities together. The aim of this review was to record the response to treatment and thereby improve drug safety. Nanotechnology offers a platform for designing and developing theranostic agents that can be used as an efficient nano-carrier system. This is achieved by the manipulation of some of the properties of nanoparticles (NPs), thereby enabling the attachment of suitable drugs onto their surface. The results provide revolutionary treatments by stimulation and thus interaction with targeted sites to promote physiological response with minimum side effects. This review is a brief discussion of the administration of drugs across the brain and the advantages of using NPs as an effective theranostic platform in the treatment of Alzheimer’s, Parkinson’s, epilepsy and Huntington’s disease.
Collapse
Affiliation(s)
- Sahana Ramanathan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | - Govindaraju Archunan
- Department of Animal Science, Centre for Pheromone Technology (CPT), Bharathidasan University, Tiruchirappalli, India
| | - Muthusamy Sivakumar
- Nanoscience and Technology, Anna University - BIT Campus, Tiruchirappalli, India
| | | | - A Lenin Fred
- Mar Ephraem College of Engineering and Technology, Kanyakumari, India
| | - Sundramurthy Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | | |
Collapse
|
7
|
Rotigotine transdermal patch and sleep in Parkinson's disease: where are we now? NPJ PARKINSONS DISEASE 2017; 3:28. [PMID: 28890931 PMCID: PMC5585311 DOI: 10.1038/s41531-017-0030-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022]
Abstract
A wide range of sleep dysfunction complicates Parkinson’s disease during its course from prodromal to palliative stage. It is now increasingly acknowledged that sleep disturbances are thus integral to the disease and pose a significant burden impacting on quality of life of patients. Sleep fragmentation, restless legs syndrome, nocturia, and nocturnal pain are regarded as one of the main components of night-time sleep dysfunction with possible secondary impact on cognition and well-being. The role of dopaminergic therapies, particularly using a continuous drug delivery strategy in managing some of these sleep issues, have been reported but the overall concept remains unclear. This review provides an overview of several aspects of night-time sleep dysfunction in Parkinson’s disease and describes all available published open-label and blinded studies that investigated the use of rotigotine transdermal patch targeting sleep. Blinded studies have suggested beneficial effects of rotigotine transdermal patch on maintenance insomnia and restless legs syndrome in Parkinson’s disease patients. Open-label studies support these observations and also suggest beneficial effects on nocturia and nocturnal pain.
Collapse
|
8
|
Hinow P, Radunskaya A, Mackay SM, Reynolds JNJ, Schroeder M, Tan EW, Tucker IG. Signaled drug delivery and transport across the blood-brain barrier. J Liposome Res 2015; 26:233-45. [PMID: 26572864 DOI: 10.3109/08982104.2015.1102277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We use a mathematical model to describe the delivery of a drug to a specific region of the brain. The drug is carried by liposomes that can release their cargo by application of focused ultrasound (US). Thereupon, the drug is absorbed through the endothelial cells that line the brain capillaries and form the physiologically important blood-brain barrier (BBB). We present a compartmental model of a capillary that is able to capture the complex binding and transport processes the drug undergoes in the blood plasma and at the BBB. We apply this model to the delivery of levodopa (L-dopa, used to treat Parkinson's disease) and doxorubicin (an anticancer agent). The goal is to optimize the delivery of drug while at the same time minimizing possible side effects of the US.
Collapse
Affiliation(s)
- Peter Hinow
- a Department of Mathematical Sciences , University of Wisconsin , Milwaukee , WI , USA
| | - Ami Radunskaya
- b Department of Mathematics , Pomona College , Claremont , CA , USA
| | - Sean M Mackay
- c Department of Chemistry , University of Otago , Dunedin , New Zealand
| | - John N J Reynolds
- d Department of Anatomy and the Brain Health Research Centre , University of Otago , Dunedin , New Zealand
| | - Morgan Schroeder
- e Department of Biology , University of Oregon , Eugene , OR , USA , and
| | - Eng Wui Tan
- c Department of Chemistry , University of Otago , Dunedin , New Zealand
| | - Ian G Tucker
- f New Zealand's National School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
9
|
Fonseca J, Santos CA. Percutaneous endoscopic gastrostomy with jejunal extension plus percutaneous endoscopic gastrostomy (PEG-j plus PEG) in patients with gastric/duodenal cancer outlet obstruction. ARQUIVOS DE GASTROENTEROLOGIA 2015; 52:72-5. [PMID: 26017087 DOI: 10.1590/s0004-28032015000100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Stent palliation is the gold standard for gastric/duodenal cancer outlet obstruction. When stenting is impossible, feeding may be achieved through a gastrojejunostomy (PEG-J), but displacement of jejunal tube is frequent due to manipulation for feeding and drainage. Gastric outlet obstruction results on increased gastroesophageal reflux or extra-tube leakage. In order to reduce the jejunostomy tube manipulation and the gastric residuum, we created a second gastrostomy (PEG) dedicated to gastric drainage, reducing the PEG-J handling. OBJECTIVE Our aim was evaluating of the usefulness of an added second gastrostomy in a PEG-J patient, for: 1. controlling symptomatic reflux and extra-tube leakage; 2. preventing jejunal tube dislocation. Methods We retrospectively evaluated patients were stent palliation of gastric/duodenal cancer outlet obstruction was not achieved, who were referred and underwent PEG-J. We selected four of these patients who needed a second PEG dedicated to gastric drainage, which was performed a few centimetres apart from the gastrojejunostomy. In order to achieve an efficient gastric drainage and provide the maximum comfort to the patient, the drainage PEG tube could be linked to an ileostomy bag. RESULTS The four PEG-J cancer patients with longer survival developed symptoms associated with an important gastric residuum. After the drainage gastrostomy, symptoms subsided or vanished and there were no jejunal tube dislocations. CONCLUSIONS When stenting is not possible in patients with gastric/duodenal outlet obstruction due to cancer growing, feeding PEG-J plus drainage PEG may be an alternative, allowing duodenal/jejunal feeding and gastric drainage with minimal manipulation of the jejunal tube.
Collapse
Affiliation(s)
- Jorge Fonseca
- Hospital Garcia de Orta, Serviço de Gastrenterologia, GENE - Grupo de Estudo de Nutrição Entérica, Pragal, Almada, Portugal
| | - Carla Adriana Santos
- Hospital Garcia de Orta, Serviço de Gastrenterologia, GENE - Grupo de Estudo de Nutrição Entérica, Pragal, Almada, Portugal
| |
Collapse
|
10
|
Chan K, Saggu R, Milbourn H, Hayman M. Management of medication in patients with Parkinson's disease who are nil-by-mouth. Br J Hosp Med (Lond) 2013. [DOI: 10.12968/hmed.2013.74.sup8.c120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karen Chan
- ST2, Medicine, St. Thomas' Hospital, London SEI 7EH
| | - Ravijyot Saggu
- Senior Clinical Pharmacist, Honorary Lecturer, Medicine and Emergency Services, University College London Hospitals NHS Trusts, London and London School of Pharmacy, London
| | - Helen Milbourn
- ST3 in Care of the Elderly Medicine, King's College Hospital NHS Foundation Trust, London and Dr Matthew Hayman is Consultant Geriatrician, University College London Hospitals NHS Trust, London
| | - Matthew Hayman
- Consultant Geriatrician, University College London Hospitals NHS Trust, London
| |
Collapse
|
11
|
Sujith OK, Lane C. Therapeutic options for continuous dopaminergic stimulation in Parkinson's disease. Ther Adv Neurol Disord 2011; 2:105-13. [PMID: 21180645 DOI: 10.1177/1756285608101378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Treatment of Parkinson's disease aims to replace dopaminergic transmission at striatal synapses. In the normal state, nigral neurons fire continuously, exposing striatal dopamine receptors to relatively constant levels of dopamine. In the disease state, periodic dosing and the short half-life of antiparkinsonian drugs leads to more intermittent stimulation. Abnormal pulsatile stimulation of striatal dopamine receptors may lead to dysregulation of genes and proteins in downstream neurons and consequently, alterations in neuronal firing patterns. This may ultimately lead to motor complications. In order to prevent the development of motor complications a therapy that provides continuous dopaminergic stimulation as observed in the normal state would be ideal. Different routes of administration of levodopa and other dopaminergic drugs have been tried to achieve continuous dopaminergic stimulation (CDS). This review discusses the various methods available to achieve this goal with particular emphasis on duodenal dopa administration.
Collapse
Affiliation(s)
- O K Sujith
- Pacific Parkinson's Research Center, WesBrook Mall, UBC, Canada and Chief Neurologist and Movement Disorder specialist, Kannur Medical college.
| | | |
Collapse
|
12
|
Abstract
Dopamine receptor agonists are indicated for the symptomatic treatment of early, moderate or advanced Parkinson's disease as well as for the reduction of levodopa-related motor complications. Ergolinic dopamine agonists, such as bromocriptine or pergolide, were initially developed and marketed, and then non-ergolinic dopamine agonists, such as pramipexole and ropinirole, were introduced, reducing the risk of drug-induced fibrotic reactions. Once-daily, controlled-release oral and transdermal formulations have been developed aiming at providing more stable 24-hour plasma drug concentrations and more convenient administration. A disease-modifying effect of dopamine agonists has not been demonstrated clinically. As with any other drug, dopamine agonists can also cause adverse drug reactions, which can be related or unrelated to dopaminergic hyperactivation. Dopaminergic reactions include nausea, hallucinations, confusion and orthostatic hypotension, among others, which were readily identified in pre-marketing clinical trials. During post-marketing surveillance, important adverse reactions were identified, such as daytime somnolence, impulse-control disorders and heart valve fibrosis. Other issues, including the efficacy of dopamine agonists for the treatment of non-motor symptoms, remain under evaluation.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Department of Clinical Pharmacology and Neurosciences, Hospital and University of Toulouse and INSERM CIC9023 and UMR 825, Toulouse, France
| | | |
Collapse
|
13
|
Jenner P. From the MPTP-treated primate to the treatment of motor complications in Parkinson's disease. Parkinsonism Relat Disord 2010; 15 Suppl 4:S18-23. [PMID: 20123550 DOI: 10.1016/s1353-8020(09)70829-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The MPTP-treated primate has proved to be a highly predictive model of the effects of dopaminergic drugs in the symptomatic treatment of Parkinson's disease (PD) and for the avoidance of motor complications. Using MPTP-treated primates, new dopaminergic therapies have been devised alongside novel treatment strategies and novel routes of administration while providing knowledge on how to use dopaminergic drugs in a manner that avoids the onset of motor complications. The use of MPTP-treated primates led to the concept of continuous dopaminergic stimulation (CDS) and the early introduction of dopamine receptor agonists as monotherapy for PD for the prevention of dyskinesia. However, CDS does not explain the differences in dyskinesia induction that exist between L-dopa and dopamine receptor agonists, and a more rationale approach to therapy involves continuous drug delivery (CDD). CDD has been explored in the MPTP-treated primate and this review focuses on some of the evidence showing that the delivery of dopaminergic drugs in PD is key to the avoidance of dyskinesia while maintaining therapeutic efficacy. Other types of motor complication, such as "wearing off" and "on-off" remain to be explored in MPTP-treated primates and the model has yet to be used to examine non-motor components of PD. Despite having been employed for almost 25 years, the MPTP-treated primate has many potential uses in the future that will further improve the treatment of PD.
Collapse
Affiliation(s)
- Peter Jenner
- Neurodegenerative Disease Research Centre, School of Health and Biomedical Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Rascol O, Perez-Lloret S. Rotigotine transdermal delivery for the treatment of Parkinson's disease. Expert Opin Pharmacother 2009; 10:677-91. [PMID: 19239399 DOI: 10.1517/14656560902746041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Rotigotine is a non-ergot dopamine agonist that has been developed as a new transdermal formulation, and is indicated for use in early (USA and Europe) and advanced (Europe only) Parkinson's disease (PD). The potential advantages of the rotigotine patch include immediacy of effect onset as intestinal absorption in unneeded, constant drug delivery, and ease of use via application of a once-daily adhesive patch. An interesting element of this profile is constant drug delivery, which may avoid pulsatile dopaminergic stimulation, which has been postulated to be related to the development of motor complications. OBJECTIVE To consider the evidence surrounding the profile of rotigotine and, in particular, whether its constant delivery system offers significant benefits to the treatment of early and advanced PD. METHODS Source material was identified using a PubMed search for the term 'rotigotine' (up to March 2008). The review focuses only on publications related to the rotigotine indication for PD. RESULTS/CONCLUSION The rotigotine transdermal patch demonstrates clinical efficacy, alongside a tolerability profile that appears to be well within the range of that observed with other non-ergot dopamine agonists. The once-daily patch formulation may favour compliance but, in similarity with the other theoretical advantages of constant drug delivery (for example reduced emergence of motor complications, improved tolerance to peripheral AEs), requires further detailed study.
Collapse
Affiliation(s)
- Olivier Rascol
- Clinical Investigation Center and Neurosciences Institute, Department of Clinical Pharmacology, Faculty of Medicine, INSERM U 825, Toulouse, France.
| | | |
Collapse
|
15
|
Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 2009; 8:67-81. [PMID: 19081516 DOI: 10.1016/s1474-4422(08)70291-6] [Citation(s) in RCA: 840] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN-HFS) is the preferred surgical treatment for advanced Parkinson's disease. In the 15 years since its introduction into clinical practice, many studies have reported on its benefits, drawbacks, and insufficiencies. Despite limited evidence-based data, STN-HFS has been shown to be surgically safe, and improvements in dopaminergic drug-sensitive symptoms and reductions in subsequent drug dose and dyskinesias are well documented. However, the procedure is associated with adverse effects, mainly neurocognitive, and with side-effects created by spread of stimulation to surrounding structures, depending on the precise location of electrodes. Quality of life improves substantially, inducing sudden global changes in patients' lives, often requiring societal readaptation. STN-HFS is a powerful method that is currently unchallenged in the management of Parkinson's disease, but its long-term effects must be thoroughly assessed. Further improvements, through basic research and methodological innovations, should make it applicable to earlier stages of the disease and increase its availability to patients in developing countries.
Collapse
Affiliation(s)
- Alim Louis Benabid
- Department of Neurosurgery and Neurology, University of Grenoble, CHU Albert Michallon, Grenoble, France.
| | | | | | | |
Collapse
|
16
|
de Souza Silva MA, Topic B, Huston JP, Mattern C. Intranasal dopamine application increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor activity in the open field. Synapse 2008; 62:176-84. [PMID: 18081176 DOI: 10.1002/syn.20484] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dopamine (DA) plays an important role in a number of behavioral processes and neurological disorders. The intranasal administration of DA provides improved brain penetrability in comparison to systemic administration. We investigated the effects of intranasal administration of DA on the activity of dopaminergic neurons of the mesostriatal and mesolimbic systems and on motor activity. Rats previously implanted with guide-cannulae in the neostriatum (NS) and nucleus accumbens (NAc) were submitted to microdialysis procedure under urethane anesthesia. Vehicle or DA (0.03, 0.3, or 3.0 mg/kg) was administered bilaterally into the nostrils. In a separate study, animals received an intraperitoneal (i.p.) injection of vehicle or DA (0.03, 0.3, 3.0, or 30.0 mg/kg). Samples were collected every 10 min and analyzed for the content of DA and metabolites using high-performance liquid chromatography. For the open field study, rats were given intranasal vehicle or DA (0.03, 0.3, or 3.0 mg/kg) and placed into the field for 30 min. Motor activity (locomotion and rearing) and grooming were analyzed in blocks of 10 min using Ethovision. Intranasal DA (3.0 mg/kg) significantly increased DA levels in the NS and NAc immediately after administration. A comparable effect was obtained only after i.p. administration of 30 mg/kg DA. In the open field, the 3.0 mg/kg dose significantly decreased grooming behavior in the second 10 min interval and significantly increased locomotor activity in the third 10 min interval. The data indicate that intranasal administration of DA can influence dopaminergic functions and motor activity, and has a potential application in the therapy of diseases affecting the dopaminergic system.
Collapse
Affiliation(s)
- M A de Souza Silva
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
17
|
Linazasoro G. Potential applications of nanotechnologies to Parkinson's disease therapy. Parkinsonism Relat Disord 2008; 14:383-92. [PMID: 18329315 DOI: 10.1016/j.parkreldis.2007.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 11/10/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022]
Abstract
Nanotechnology will play a key role in developing new diagnostic and therapeutic tools. Nanotechnologies use engineered materials with the smallest functional organization on the nanometre scale in at least one dimension. Some aspects of the material can be manipulated resulting in new functional properties. Nanotechnology could provide devices to limit and reverse neuropathological disease states, to support and promote functional regeneration of damaged neurons, to provide neuroprotection and to facilitate the delivery of drugs and small molecules across the blood-brain barrier. All of them are relevant to improve current therapy of Parkinson's disease (PD).
Collapse
Affiliation(s)
- G Linazasoro
- Centro de Investigación Parkinson, Policlínica Gipuzkoa, Parque Tecnológico de Miramón, 174, 20009 San Sebastián (Guipúzcoa), Spain.
| |
Collapse
|
18
|
Nyholm D, Lennernäs H. Irregular gastrointestinal drug absorption in Parkinson's disease. Expert Opin Drug Metab Toxicol 2008; 4:193-203. [DOI: 10.1517/17425255.4.2.193] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Scalabrino GA, Hogan N, O'Boyle KM, Slator GR, Gregg DJ, Fitchett CM, Draper SM, Bennett GW, Hinkle PM, Bauer K, Williams CH, Tipton KF, Kelly JA. Discovery of a dual action first-in-class peptide that mimics and enhances CNS-mediated actions of thyrotropin-releasing hormone. Neuropharmacology 2007; 52:1472-81. [PMID: 17418282 DOI: 10.1016/j.neuropharm.2007.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Thyrotropin-releasing hormone (TRH) displays multiple CNS-mediated actions that have long been recognized to have therapeutic potential in treating a wide range of neurological disorders. Investigations of CNS functions and clinical use of TRH are hindered, however, due to its rapid degradation by TRH-degrading ectoenzyme (TRH-DE). We now report the discovery of a set of first-in-class compounds that display unique ability to both potently inhibit TRH-DE and bind to central TRH receptors with unparalleled affinity. This dual pharmacological activity within one molecular entity was found through selective manipulation of peptide stereochemistry. Notably, the lead compound of this set, L-pyroglutamyl-L-asparaginyl-L-prolyl-D-tyrosyl-D-tryptophan amide (Glp-Asn-Pro-D-Tyr-D-TrpNH(2)), is effective in vivo at producing and potentiating central actions of TRH without evoking release of thyroid-stimulating hormone (TSH). Specifically, this peptide displayed high plasma stability and combined potent inhibition of TRH-DE (K(i) 151 nM) with high affinity binding to central TRH receptors (K(i) 6.8 nM). Moreover, intraperitoneal injection of this peptide mimicked and augmented the effects of TRH on behavioural activity in rat. Analogous to TRH, it also antagonized pentobarbital-induced narcosis when administered intravenously. This discovery provides new opportunities for probing the role of TRH actions in the CNS and a basis for development of novel TRH-based neurotherapeutics.
Collapse
Affiliation(s)
- Gaia A Scalabrino
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 2007; 337:1-24. [PMID: 17475423 DOI: 10.1016/j.ijpharm.2007.03.025] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/22/2022]
Abstract
Interest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers. The current review provides an in-depth discussion of therapeutic aspects of IN delivery including consideration of the intended indication, regimen, and patient population, as well as physicochemical properties of the drug itself. Case examples are provided to illustrate the utility of IN dosing. It is anticipated that the present review will prove useful for formulation scientists considering IN delivery as a delivery route.
Collapse
|
21
|
O’Keeffe G, Barker RA. Cell repair in Parkinson’s disease. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder with the cardinal clinical features of muscular rigidity, resting tremor and bradykinesia. The prevalence of this disease is approximately 2% of those aged over 65 years, thus causing significant morbidity. The disease is characterized by degeneration of dopaminergic cells in the substantia nigra pars compacta, resulting in reduced dopaminergic input to the striatum. Significant clinical benefit can be achieved through the restoration of dopamine levels in this system with pharmacological interventions, although these therapies are only symptomatic and the disease progresses. Indeed, with disease progression other features often appear, including autonomic, affective and cognitive dysfunction, reflecting pathology at non-nigral sites. The occurrence of neural stem cells (NSCs) in the adult CNS, which, under certain conditions, are able to proliferate and renew neuronal numbers, has raised great expectations for alternative therapeutic applications in the treatment of PD. Indeed, it is potentially possible to harness this capacity either directly (increase of local proliferation, directed migration and differentiation) or indirectly (in vitro expansion before their transplantation), to facilitate the generation of specific cell types in order to replace missing neurons in neurodegenerative diseases. The manipulation of embryonic stem cells or their derivatives also offers a promising alternative as extensive proliferation may be achieved and, most importantly, directed differentiation to a dopaminergic phenotype is possible. Nevertheless, neuronal replacement will only be possible if proliferating or transplanted NSCs and their progeny can be harnessed at sites of pathology. It is the manipulation of stem cells both in vivo and in vitro, in the context of repairing the core pathological hallmark of PD, that is the main focus of this report.
Collapse
Affiliation(s)
- G O’Keeffe
- University of Cambridge, Cambridge Centre for Brain Repair, CB2 2PY, UK
| | - RA Barker
- University of Cambridge, Cambridge Centre for Brain Repair, CB2 2PY, UK
| |
Collapse
|
22
|
Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson's disease. Prog Neurobiol 2007; 81:29-44. [PMID: 17258379 DOI: 10.1016/j.pneurobio.2006.11.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/14/2006] [Accepted: 11/22/2006] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) affects one in every 100 persons above the age of 65 years, making it the second most common neurodegenerative disease after Alzheimer's disease. PD is a disease of the central nervous system that leads to severe difficulties with body motions. The currently available therapies aim to improve the functional capacity of the patient for as long as possible; however they do not modify the progression of the neurodegenerative process. The need for newer and more effective agents is consequently receiving a great deal of attention and consequently being subjected to extensive research. This review concisely compiles the limitations of currently available therapies and the most recent research regarding neuroprotective agents, antioxidants, stem cell research, vaccines and various surgical techniques available and being developed for the management of PD.
Collapse
Affiliation(s)
- Neha Singh
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | | | | |
Collapse
|
23
|
Hegde S, Schmidt M. Chapter 32 To Market, To Market – 2006. ANNUAL REPORTS IN MEDICINAL CHEMISTRY VOLUME 42 2007. [DOI: 10.1016/s0065-7743(07)42032-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Meredith EJ, Holder MJ, Rosén A, Lee AD, Dyer MJS, Barnes NM, Gordon J. Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin's lymphoma. Proc Natl Acad Sci U S A 2006; 103:13485-90. [PMID: 16938864 PMCID: PMC1569189 DOI: 10.1073/pnas.0605993103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human B lymphocytes and derived lines from a spectrum of B cell malignancy were studied for expression of dopaminergic pathway components and for their cytostatic response to the catecholamine and related, potentially therapeutic compounds. Proliferating normal lymphocytes and dividing malignant clones rapidly arrested on exposure to dopamine in the low (</=10 muM) micromolar range. The antiparkinsonian drugs l-DOPA and apomorphine (particularly) were similarly antiproliferative. With the exception of D4, dopamine receptors D1-D5 were variably expressed among normal and neoplastic B cell populations, as was the dopamine transporter. Transcripts for D1 and D2 were frequently found, whereas D3 and D5 revealed restricted expression; dopamine transporter was detected in most cases. Nevertheless, pharmacological analysis disclosed that dopamine targeted cycling B cells independent of these structures. Rather, oxidative stress constituted the primary mechanism: the catecholamine's actions being mimicked by hydrogen peroxide and reversed by exogenous catalase, and evidence for the intracellular redox protein thioredoxin contributing protection. Among proliferating clones, growth arrest was accompanied by cell death in populations deplete in antiapoptotic Bcl-2: resting lymphocytes escaping low micromolar dopamine toxicity. Dysregulated bcl-2 expression, although preventing oxidative-induced caspase-dependent apoptosis, by itself conferred only minor protection against dopamine cytostasis. The selective impact of dopamine on lymphocytes that are in active cycle indicates an axis for therapeutic intervention not only in B cell neoplasia but also in lymphoproliferative disturbances generally. Rational tailoring of drug delivery systems already in development for Parkinson's disease could provide ideal vehicles for carrying the oxidative hit directly to the target populations.
Collapse
Affiliation(s)
- Elizabeth J. Meredith
- *Medical Research Council Centre for Immune Regulation, Division of Immunity and Infection, The Medical School, University of Birmingham, Vincent Drive, Birmingham B15 2TT, United Kingdom
| | - Michelle J. Holder
- *Medical Research Council Centre for Immune Regulation, Division of Immunity and Infection, The Medical School, University of Birmingham, Vincent Drive, Birmingham B15 2TT, United Kingdom
| | - Anders Rosén
- Department of Biomedicine and Surgery, University of Linköping, SE-581 85 Linköping, Sweden
| | - Adrian Drake Lee
- Ear, Nose, and Throat (ENT) Department, University Hospital, Edgbaston, Birmingham B15 2TH, United Kingdom
| | - Martin J. S. Dyer
- Medical Research Council Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom; and
| | - Nicholas M. Barnes
- Division of Neuroscience, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - John Gordon
- *Medical Research Council Centre for Immune Regulation, Division of Immunity and Infection, The Medical School, University of Birmingham, Vincent Drive, Birmingham B15 2TT, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|