1
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
2
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
3
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
4
|
Pontes AP, van der Wal S, Ranamalla SR, Roelofs K, Tomuta I, Creemers LB, Rip J. Cell uptake and intracellular trafficking of bioreducible poly(amidoamine) nanoparticles for efficient mRNA translation in chondrocytes. Front Bioeng Biotechnol 2023; 11:1290871. [PMID: 38026902 PMCID: PMC10668025 DOI: 10.3389/fbioe.2023.1290871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Disulfide-containing poly(amidoamine) (PAA) is a cationic and bioreducible polymer, with potential use as a nanocarrier for mRNA delivery in the treatment of several diseases including osteoarthritis (OA). Successful transfection of joint cells with PAA-based nanoparticles (NPs) was shown previously, but cell uptake, endosomal escape and nanoparticle biodegradation were not studied in detail. In this study, C28/I2 human chondrocytes were transfected with NPs co-formulated with a PEG-polymer coating and loaded with EGFP mRNA for confocal imaging of intracellular trafficking and evaluation of transfection efficiency. Compared with uncoated NPs, PEG-coated NPs showed smaller particle size, neutral surface charge, higher colloidal stability and superior transfection efficiency. Furthermore, endosomal entrapment of these PEG-coated NPs decreased over time and mRNA release could be visualized both in vitro and in live cells. Importantly, cell treatment with modulators of the intracellular reducing environment showed that glutathione (GSH) concentrations affect translation of the mRNA payload. Finally, we applied a D-optimal experimental design to test different polymer-to-RNA loading ratios and dosages, thus obtaining an optimal formulation with up to ≈80% of GFP-positive cells and without toxic effects. Together, the biocompatibility and high transfection efficiency of this system may be a promising tool for intra-articular delivery of therapeutical mRNA in OA treatment.
Collapse
Affiliation(s)
| | | | - Saketh R. Ranamalla
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | | | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Rip
- 20Med Therapeutics BV, Leiden, Netherlands
| |
Collapse
|
5
|
Chakraborty A, Dharmaraj S, Truong N, Pearson RM. Excipient-Free Ionizable Polyester Nanoparticles for Lung-Selective and Innate Immune Cell Plasmid DNA and mRNA Transfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56440-56453. [PMID: 36525379 PMCID: PMC9872050 DOI: 10.1021/acsami.2c14424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extrahepatic nucleic acid delivery using polymers typically requires the synthesis and purification of custom monomers, post-synthetic modifications, and incorporation of additional excipients to augment their stability, endosomal escape, and in vivo effectiveness. Here, we report the development of a single-component and excipient-free, polyester-based nucleic acid delivery nanoparticle platform comprising ionizable N-methyldiethanolamine (MDET) and various hydrophobic alkyl diols (Cp) that achieves lung-selective nucleic acid transfection in vivo. PolyMDET and polyMDET-Cp polyplexes displayed high serum and enzymatic stability, while delivering pDNA or mRNA to "hard-to-transfect" innate immune cells. PolyMDET-C4 and polyMDET-C6 mediated high protein expression in lung alveolar macrophages and dendritic cells without inducing tissue damage or systemic inflammatory responses. Improved strategies using readily available starting materials to produce a simple, excipient-free, non-viral nucleic acid delivery platform with lung-selective and innate immune cell tropism has the potential to expedite clinical deployment of polymer-based genetic medicines.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, Maryland21201, United States
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland21201, United States
| |
Collapse
|
6
|
Chen G, Wang Y, Ullah A, Huai Y, Xu Y. The effects of fluoroalkyl chain length and density on siRNA delivery of bioreducible poly(amido amine)s. Eur J Pharm Sci 2020; 152:105433. [PMID: 32590121 DOI: 10.1016/j.ejps.2020.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
Fluorination is an attractive strategy for the improvement of transfection efficiency of nucleic acid delivery vectors. Bioreducible poly(amido amine)s (bPAAs) are an important class of biomaterials exhibited to effectively deliver multiple nucleic acids. However, still, the effects of fluoroalkyl chain length and density of bPAA on siRNA delivery are unveiled. Here, we synthesized bPAAs and grafted with different chain lengths and densities of fluorocarbon compounds. Furthermore, we prepared a library of complexes of fluorinated bPAA and siRNA, and investigated the effects of fluorination on the siRNA delivery in vitro and in vivo. We found that all the synthesized bPAAs readily formed complexes with siRNA and the fluorinated complexes considerably achieved improved gene silencing efficacies both in vitro and in vivo. Dramatically, the gene silencing efficacy was increased with increasing fluorine contents. Heptafluorobutyric anhydride (HF) modified bPAAs achieved better gene silencing efficacy when compared with bPAAs fluorinated by trifluoroacetic anhydride (TF) and pentafluoropropionic anhydride (PF) providing the evidence for choosing of best one among fluorocarbon compounds. In addition, a combination of fluorination with bioreducibility enables efficient and safe siRNA delivery.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Yixin Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Yuying Huai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuehua Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable Polymers for Gene-Delivery Applications. Int J Nanomedicine 2020; 15:2131-2150. [PMID: 32280211 PMCID: PMC7125329 DOI: 10.2147/ijn.s222419] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gene-based therapies have emerged as a new modality for combating a myriad of currently incurable diseases. However, the fragile nature of gene therapeutics has significantly hampered their biomedical applications. Correspondingly, the development of gene-delivery vectors is of critical importance for gene-based therapies. To date, a variety of gene-delivery vectors have been created and utilized for gene delivery. In general, they can be categorized into viral- and non-viral vectors. Due to safety issues associated with viral vectors, non-viral vectors have recently attracted much more research focus. Of these non-viral vectors, polymeric vectors, which have been preferred due to their low immunogenicity, ease of production, controlled chemical composition and high chemical versatility, have constituted an ideal alternative to viral vectors. In particular, biodegradable polymers, which possess advantageous biocompatibility and biosafety, have been considered to have great potential in clinical applications. In this context, the aim of this review is to introduce the recent development and progress of biodegradable polymers for gene delivery applications, especially for their chemical structure design, gene delivery capacity and additional biological functions. Accordingly, we first define and categorize biodegradable polymers, followed by describing their corresponding degradation mechanisms. Various types of biodegradable polymers resulting from natural and synthetic polymers will be introduced and their applications in gene delivery will be examined. Finally, a future perspective regarding the development of biodegradable polymer vectors will be given.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung80424, Taiwan
| | - Ping-Kuan Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung40724, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, Taichung40402, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| |
Collapse
|
8
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Kang Y, Lu L, Lan J, Ding Y, Yang J, Zhang Y, Zhao Y, Zhang T, Ho RJ. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater 2018; 68:137-153. [PMID: 29288085 DOI: 10.1016/j.actbio.2017.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
A novel redox-sensitive system for co-delivering hydrophobic drugs and hydrophilic siRNA or shRNA was developed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs) through amide bonds, which is called GA-conjugated PAAs (PAG). PAG can self-assemble into micelles as amphiphilic block copolymers, which exhibits an excellent loading ability for the co-delivery of docetaxel (DTX) and MMP-9 shRNA with adjustable dosing ratios. In addition, confocal microscopy, flow cytometry and in vitro transfection analyses demonstrated more efficient cellular internalization of DTX and MMP-9 shRNA after incubation with PAG/DTX- MMP-9 shRNA micelles (PAG/DTX-shRNA) than with free drugs. Unlike traditional amphiphilic copolymer micelles, GA conjugated in PAG possesses an intrinsic anticancer efficacy. The presence of disulfide bonds in PAAs enables rapid disassembly of PAG micelles in response to reducing agents, inducing the release of loaded drugs (DTX, GA and MMP-9 shRNA). In vitro cellular assays revealed that PAG/DTX-shRNA micelles inhibited MCF-7 cell proliferation more efficiently than the single drug or single drug-loaded micelles. In vivo biodistribution and anti-tumor effect studies using an MCF-7 breast cancer xenograft mouse model have indicated that PAG/DTX-shRNA micelles can enhance drug accumulation compared with the free drug, thereby sustaining the therapeutic effect on tumors. Additionally, PAG/DTX-shRNA micelles displayed a greater anti-tumor efficacy than Taxotere® and PAG-shRNA micelles. These results suggest that the redox-sensitive PAG platform is a promising co-delivery system for combining drugs and gene therapy for the treatment of cancer. STATEMENT OF SIGNIFICANCE The PAG micelles were designed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs), which would serve dual purposes as both gene and drugs co-delivery carrier and an anti-tumor prodrug. Unlike traditional amphiphilic micelles, GA conjugated in PAG could exert its intrinsic efficacy and provide synergistic antiproliferative effects with docetaxel (DTX) on MCF-7 cells. Disulfide bonds in PAG enables a rapid disassembly of PAG micelles in response to reducing agents and to release all loaded drugs (DTX, GA and MMP-9 shRNA) at tumor sites. PAG/DTX-shRNA micelles displayed greater anti-tumor efficacy than that of Taxotere®, indicating the design concept for PAG works well. And the strategy for PAG could be used to develop a series of similar co-delivery systems through conjugations of other small-molecule drugs with PAAs, such as doxorubicin, methotrexate and other drugs with carboxy groups in their structure.
Collapse
|
10
|
Sun Y, Liu H, Cheng L, Zhu S, Cai C, Yang T, Yang L, Ding P. Thiol Michael addition reaction: a facile tool for introducing peptides into polymer-based gene delivery systems. POLYM INT 2017. [DOI: 10.1002/pi.5490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Hui Liu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Lin Cheng
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Shimeng Zhu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; Husson University; Bangor ME USA
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
11
|
Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy. Top Curr Chem (Cham) 2017; 375:34. [DOI: 10.1007/s41061-017-0124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
12
|
Yu J, Zhang J, Xing H, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Yang L, Ding P. Novel guanidinylated bioresponsive poly(amidoamine)s designed for short hairpin RNA delivery. Int J Nanomedicine 2016; 11:6651-6666. [PMID: 27994462 PMCID: PMC5154728 DOI: 10.2147/ijn.s115773] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two different disulfide (SS)-containing poly(amidoamine) (PAA) polymers were constructed using guanidino (Gua)-containing monomers (ie, arginine [Arg] and agmatine [Agm]) and N,N′-cystamine bisacrylamide (CBA) by Michael-addition polymerization. In order to characterize these two Gua-SS-PAA polymers and investigate their potentials as short hairpin RNA (shRNA)-delivery carriers, pSilencer 4.1-CMV FANCF shRNA was chosen as a model plasmid DNA to form complexes with these two polymers. The Gua-SS-PAAs and plasmid DNA complexes were determined with particle sizes less than 90 nm and positive ζ-potentials under 20 mV at nucleic acid:polymer weight ratios lower than 1:24. Bioresponsive release of plasmid DNA was observed from both newly constructed complexes. Significantly lower cytotoxicity was observed for both polymer complexes compared with polyethylenimine and Lipofectamine 2000, two widely used transfection reagents as reference carriers. Arg-CBA showed higher transfection efficiency and gene-silencing efficiency in MCF7 cells than Agm-CBA and the reference carriers. In addition, the cellular uptake of Arg-CBA in MCF7 cells was found to be higher and faster than Agm-CBA and the reference carriers. Similarly, plasmid DNA transport into the nucleus mediated by Arg-CBA was more than that by Agm-CBA and the reference carriers. The study suggested that guanidine and carboxyl introduced into Gua-SS-PAAs polymers resulted in a better nuclear localization effect, which played a key role in the observed enhancement of transfection efficiency and low cytotoxicity. Overall, two newly synthesized Gua-SS-PAAs polymers demonstrated great potential to be used as shRNA carriers for gene-therapy applications.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Sun Y, Xian L, Yu J, Yang T, Zhang J, Yang Z, Jiang J, Cai C, Zhao X, Yang L, Ding P. Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Lei Xian
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jiankun Yu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; School of Pharmacy; Husson University; Bangor ME 04401-2929 USA
| | - Jinmin Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Zhen Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jingzheng Jiang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology; School of life Science and Biopharmaceutics; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
14
|
Yu J, Zhang J, Xing H, Yang Z, Cai C, Zhang C, Zhao X, Wei M, Yang L, Ding P. Guanidinylated bioresponsive poly(amido amine)s designed for intranuclear gene delivery. Int J Nanomedicine 2016; 11:4011-24. [PMID: 27574429 PMCID: PMC4993266 DOI: 10.2147/ijn.s109406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Guanidinylated poly(amido amine)s with multiple disulfide linkages (Gua-SS-PAAs) were designed and constructed as nonviral gene carriers. The main chains of these novel carriers were synthesized based on monomers containing guanidino groups (guanidine hydrochloride and chlorhexidine), which could avoid complicated side-chain-modification reactions while introducing the guanidino groups. The synthesized Gua-SS-PAAs polymers were characterized by 1H nuclear magnetic resonance, molecular weight, and polydispersity. Furthermore, Gua-SS-PAAs polymers were complexed with pDNA, and the properties of the complexes were determined, including entrapment efficiency, particle size, ζ-potential, atomic force microscopy images, stability, DNA complexation ability, reduction sensitivity, cytotoxicity, and transfection efficiency. The new Gua-SS-PAAs carriers exhibited higher transfection efficiency and lower cytotoxicity compared with two widely used gene delivery carriers, polyethylenimine and lipofectamine 2000. Furthermore, the relationship between the side-chain structure and morphological/biological properties was extrapolated, and the results showed that guanidine in the side chain aids in the improvement of transfection efficiency. In addition, the introduction of guanidino group might confer the new carriers with nuclear localization function compared to carriers without it.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Conglu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Xiaoyun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University
| |
Collapse
|
15
|
An S, He D, Wagner E, Jiang C. Peptide-like Polymers Exerting Effective Glioma-Targeted siRNA Delivery and Release for Therapeutic Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015. [PMID: 26222334 DOI: 10.1002/smll.201501167] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Lipopolymer 49, a solid-phase synthesized T-shaped peptide-like oligoamide containing two central oleic acids, 20 aminoethane, and two terminal cysteine units, is identified as very potent and biocompatible small interfering RNA (siRNA) carrier for gene silencing in glioma cells. This carrier is combined with a novel targeting polymer 727, containing a precise sequence of Angiopep 2 targeting peptide, linked with 28 monomer units of ethylene glycol, 40 aminoethane, and two terminal cysteines in siRNA complex formation. Angiopep-polyethylene glycol (PEG)/siRNA polyplexes exhibit good nanoparticle features, effective glioma-targeting siRNA delivery, and intracellular siRNA release, resulting in an outstanding gene downregulation both in glioma cells and upon intravenous delivery in glioma model nude mice without significant biotoxicity. Therefore, this novel siRNA delivery system is expected to be a promising strategy for targeted and safe glioma therapy.
Collapse
Affiliation(s)
- Sai An
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Dongsheng He
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
16
|
Cheng W, Wang G, Kumar JN, Liu Y. Surfactant-Free Emulsion-Based Preparation of Redox-Responsive Nanogels. Macromol Rapid Commun 2015; 36:2102-6. [PMID: 26379215 DOI: 10.1002/marc.201500421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/19/2015] [Indexed: 01/28/2023]
Abstract
A surfactant-free emulsion-based approach is developed for preparation of nanogels. A water-in-oil emulsion is generated feasibly from a mixture of water and a solution of disulfide-containing hyperbranched PEGylated poly(amido amine)s, poly(BAC2-AMPD1)-PEG, in chloroform. The water droplets in the emulsion are stabilized and filled with poly(BAC2-AMPD1)-PEG, and the crosslinked poly(amido amine)s nanogels are formed via the intermolecular disulfide exchange reaction. FITC-dextran is loaded within the nanogels by dissolving the compound in water before emulsification. Transmission electron microscopy and dynamic light scattering are applied to characterize the emulsion and the nanogels. The effects of the homogenization rate and the ratio of water/polymer are investigated. Redox-induced degradation and FITC-dextran release profile of the nanogels are monitored, and the results show efficient loading and redox-responsive release of FITC-dextran. This is a promising approach for the preparation of nanogels for drug delivery, especially for neutral charged carbohydrate-based drugs.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Guan Wang
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Jatin Nitin Kumar
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| |
Collapse
|
17
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
18
|
Cheng W, Kumar JN, Zhang Y, Liu Y. pH- and redox-responsive self-assembly of amphiphilic hyperbranched poly(amido amine)s for controlled doxorubicin delivery. Biomater Sci 2015. [PMID: 26222420 DOI: 10.1039/c4bm00410h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinyl-terminated hyperbranched poly(amido amine)s is obtained by Michael addition polymerization of 4-(aminomethyl)piperidine (AMPD) with a double molar N,N-cystaminebis(acrylamide) (BAC). Then an amphiphilic hyperbranched poly(BAC2-AMPD1)-PEG is produced via converting the vinyl groups to amines followed by PEGylation. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and (1)H nuclear magnetic resonance (NMR) results indicate that the micelles can be obtained via self-assembly of hyperbranched poly(BAC2-AMPD1)-PEG. Further an anti-cancer drug, doxorubicin (DOX), can be loaded into the micelles. pH- and redox-response of the micelles of hyperbranched poly(BAC2-AMPD1)-PEG without and with DOX are investigated. The results of confocal microscopy and flow cytometry reflect that FITC tagged or DOX loaded micelles of hyperbranched poly(BAC2-AMPD1)-PEG can enter HepG2 and MCF-7 cells, and DOX can be observed in the nucleus of the cells. The cytotoxicity of the micelles without and with DOX is evaluated in HepG2 and MCF-7 cells, and the efficacy to kill the cancer cells is discussed in comparison with free DOX.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602, Singapore.
| | | | | | | |
Collapse
|
19
|
Jung SJ, Kasala D, Choi JW, Lee SH, Hwang JK, Kim SW, Yun CO. Safety profiles and antitumor efficacy of oncolytic adenovirus coated with bioreducible polymer in the treatment of a CAR negative tumor model. Biomacromolecules 2015; 16:87-96. [PMID: 25400213 PMCID: PMC4294585 DOI: 10.1021/bm501116x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Adenovirus (Ad) vectors show promise as cancer gene therapy delivery vehicles, but immunogenic safety concerns and coxsackie and adenovirus receptor (CAR)-dependency have limited their use. Alternately, biocompatible and bioreducible nonviral vectors, including arginine-grafted cationic polymers, have been shown to deliver nucleic acids through a cell penetration peptide (CPP) and protein transduction domain (PTD) effect. We utilized the advantages of both viral and nonviral vectors to develop a hybrid gene delivery vehicle by coating Ad with mPEG-PEI-g-Arg-S-S-Arg-g-PEI-mPEG (Ad/PPSA). Characterization of Ad/PPSA particle size and zeta potential showed an overall size and cationic charge increase in a polymer concentration-dependent manner. Ad/PPSA also showed a marked transduction efficiency increase in both CAR-negative and -positive cells compared to naked Ad. Competition assays demonstrated that Ad/PPSA produced higher transgene expression levels than naked Ad and achieved CAR-independent transduction. Oncolytic Ad (DWP418)/PPSA was able to overcome the nonspecificity of polymer-only therapies by demonstrating cancer-specific killing effects. Furthermore, the DWP418/PPSA nanocomplex elicited a 2.24-fold greater antitumor efficacy than naked Ad in vivo. This was supported by immunohistochemical confirmation of Ad E1As accumulation in MCF7 xenografted tumors. Lastly, intravenous injection of DWP418/PPSA elicited less innate immune response compared to naked Ad, evaluated by interleukin-6 cytokine release into the serum. The increased antitumor effect and improved vector targeting to both CAR-negative and -positive cells make DWP418/PPSA a promising tool for cancer gene therapy.
Collapse
Affiliation(s)
- Soo-Jung Jung
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - Dayananda Kasala
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - Joung-Woo Choi
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - Soo-Hwan Lee
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - June Kyu Hwang
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - Sung Wan Kim
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Chae-Ok Yun
- Department
of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| |
Collapse
|
20
|
Mohammadifar E, Nemati Kharat A, Adeli M. Polyamidoamine and polyglycerol; their linear, dendritic and linear–dendritic architectures as anticancer drug delivery systems. J Mater Chem B 2015; 3:3896-3921. [DOI: 10.1039/c4tb02133a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the latest advances in the conjugation of chemotherapeutics such as doxorubicin, paclitaxel, methotrexate, fluorouracil and cisplatin to dendritic polymers, including polyamidoamine dendrimers, hyperbranched polyglycerols and their linear analogues, with a focus on their cytotoxicity, biodistribution and biodegradability.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Ali Nemati Kharat
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Mohsen Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khoramabad
- Iran
| |
Collapse
|
21
|
Islam MA, Park T, Singh B, Maharjan S, Firdous J, Cho MH, Kang SK, Yun CH, Choi Y, Cho CS. Major degradable polycations as carriers for DNA and siRNA. J Control Release 2014; 193:74-89. [DOI: 10.1016/j.jconrel.2014.05.055] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
|
22
|
Cheng W, Kumar JN, Zhang Y, Liu Y. pH- and redox-responsive poly(ethylene glycol) and cholesterol-conjugated poly(amido amine)s based micelles for controlled drug delivery. Macromol Biosci 2013; 14:347-58. [PMID: 24106152 DOI: 10.1002/mabi.201300339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/22/2012] [Indexed: 12/22/2022]
Abstract
An optimized condition is identified to prepare linear poly(amido amine)s via Michael Addition polymerization of trifunctional amine, 4-(aminomethyl)piperidine (AMPD), with an equimolar diacrylamide, N,N-cystaminebis(acrylamide) (BAC). Poly(ethylene glycol) (PEG) and cholesterol (CE) are conjugated to linear poly(BAC-AMPD) through the reactions with the secondary amino groups in the backbone, respectively, to form poly(BAC-AMPD)-g-PEG-g-CE. The chemical structures of poly(BAC-AMPD) and poly(BAC-AMPD)-g-PEG-g-CE are characterized using NMR and gel permeation chromatography (GPC). Transmission electron microscopy (TEM), dynamic light scattering (DLS) and (1)H NMR results show that micelles with PEG shells and hydrophobic cores composed of poly(BAC-AMPD) and CE are formed via self-assembly of poly(BAC-AMPD)-g-PEG-g-CE in aqueous solution, and the micelles of poly(BAC-AMPD)-g-PEG-g-CE can be degraded by the presence of L-dithiothreitol and show a limited cytotoxicity in vitro. The anti-cancer drug, doxorubicin (DOX), can be loaded into the micelles. The DOX loaded micelles of poly(BAC-AMPD)-g-PEG-g-CE show pH- and redox-responsive drug release and redox-induced formation of aggregates, and it is shown that the DOX loaded micelles can deliver DOX into cells and show a higher efficacy in killing cancer cells than free drug.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602, Singapore; Department of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576, Singapore
| | | | | | | |
Collapse
|
23
|
Ping Y, Wu D, Kumar JN, Cheng W, Lay CL, Liu Y. Redox-Responsive Hyperbranched Poly(amido amine)s with Tertiary Amino Cores for Gene Delivery. Biomacromolecules 2013; 14:2083-94. [DOI: 10.1021/bm400460r] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuan Ping
- Institute of Materials
Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jatin Nitin Kumar
- Institute of Materials
Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Weiren Cheng
- Institute of Materials
Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Chee Leng Lay
- Institute of Materials
Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Ye Liu
- Institute of Materials
Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| |
Collapse
|
24
|
Green JJ. 2011 Rita Schaffer lecture: nanoparticles for intracellular nucleic acid delivery. Ann Biomed Eng 2012; 40:1408-18. [PMID: 22451256 DOI: 10.1007/s10439-012-0550-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
Nanoparticles are a promising technology for delivery of new types of therapeutics. A polymer library approach has allowed engineering of polymeric particles that are particularly effective for the delivery of DNA and siRNA to human cells. Certain chemical structural motifs, degradable linkages, hydrophobicity, and biophysical properties are key for successful intracellular delivery. Small differences to biomaterial structure, and especially the type of degradable linkage in the polymers, can be critical for successful delivery of siRNA vs. DNA. Furthermore, subtle changes to biomaterial structure can facilitate cell-type gene delivery specificity between human brain cancer cells and healthy cells as well as between human retinal endothelial cells and epithelial cells. These polymeric nanoparticles are effective for nucleic acid delivery in a broad range of human cell types and have applications to regenerative medicine, ophthalmology, and cancer among many other biomedical research areas.
Collapse
Affiliation(s)
- Jordan J Green
- Department of Biomedical Engineering, The Wilmer Eye Institute, The Institute for Nanobiotechnology, and The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Smith 5017, Baltimore, MD 21231, USA.
| |
Collapse
|