1
|
Zhang Z, Wang X, Dai Q, Qin Y, Sun X, Suzuki M, Ying X, Han M, Wei Q. Peptide-functionalized gold nanoparticles for boron neutron capture therapy with the potential to use in Glioblastoma treatment. Pharm Dev Technol 2024; 29:862-873. [PMID: 39286881 DOI: 10.1080/10837450.2024.2406044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
Collapse
Affiliation(s)
- Zhicheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxin Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Xiaoying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Khalil A, Adam MSS. Nucleoside Scaffolds and Carborane Clusters for Boron Neutron Capture Therapy: Developments and Future Perspective. Curr Med Chem 2024; 31:5739-5754. [PMID: 37818562 DOI: 10.2174/0109298673245020230929152030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.
Collapse
Affiliation(s)
- Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| |
Collapse
|
3
|
Yang JU, Kim S, Lee KC, Lee YJ, Kim JY, Park JA. Development of Brain-Tumor-Targeted Benzothiazole-Based Boron Complex for Boron Neutron Capture Therapy. ACS Med Chem Lett 2022; 13:1615-1620. [PMID: 36262402 PMCID: PMC9575175 DOI: 10.1021/acsmedchemlett.2c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a precision treatment technology that ideally damages only boron-accumulating cells. The effectiveness of BNCT depends on the amount of boron in the tumor cells and the concentration ratio between normal and tumor tissues. Therefore, for successful brain-tumor treatment using BNCT, it is essential to develop a drug with high blood-brain barrier (BBB) permeability and high tumor accumulation. The benzothiazole-based boron complex 4-(benzo[d]thiazol-2-yl)phenylboronic acid (BTPB) is a hydrophobic, low-molecular-weight compound that has shown high BBB permeability and brain accumulation. The highest boron concentration of BTPB is 36.11 ± 2.73 μg/g (at 1 h post-injection) in the brain, and the highest brain/blood ratio is 3.94 ± 0.46 (at 2 h post-injection), which is sufficient for the BNCT drug condition. In addition, BTPB showed good tumor-targeting ability in vivo in a U87MG glioma tumor model. In this study, we conducted a biological evaluation of BTPB compared to boronophenylalanine as a novel drug for BNCT.
Collapse
Affiliation(s)
- Ji-ung Yang
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences (KIRAMS), Seoul 01812, Korea
- Department
of Medical & Biological Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Soyeon Kim
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences (KIRAMS), Seoul 01812, Korea
- Department
of Medical & Biological Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Kyo Chul Lee
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Yong Jin Lee
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Jung Young Kim
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Ji-Ae Park
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences (KIRAMS), Seoul 01812, Korea
| |
Collapse
|
4
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Hu Q, Padron K, Hara D, Shi J, Pollack A, Prabhakar R, Tao W. Interactions of Urea-Based Inhibitors with Prostate-Specific Membrane Antigen for Boron Neutron Capture Therapy. ACS OMEGA 2021; 6:33354-33369. [PMID: 34926886 PMCID: PMC8674901 DOI: 10.1021/acsomega.1c03554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
In this study, molecular interactions of prostate-specific membrane antigen (PSMA) with five chemically distinct urea-based boron-containing inhibitors have been investigated at the atomic level using molecular docking and molecular dynamics simulations. The PSMA-inhibitor complexations have been analyzed by comparing their binding modes, secondary structures, root-mean-square deviations, noncovalent interactions, principal components, and binding free energies. PSMA is a cell surface glycoprotein upregulated in cancerous cells and can be targeted by boron-labeled inhibitors for boron neutron capture therapy (BNCT). The effective BNCT requires the selective boron delivery to the tumor area and highly specific PSMA-mediated cellular uptake by tumor. Thus, a potent inhibitor must exhibit both high binding affinity and high boron density. The computational results suggest that the chemical nature of inhibitors affects the binding mode and their association with PSMA is primarily dominated by hydrogen bonding, salt bridge, electrostatic, and π-π interactions. The binding free energies (-28.0, -15.2, -43.9, -23.2, and -38.2 kcal/mol) calculated using λ-dynamics for all inhibitors (In1-5) predict preferential binding that is in accordance with experimental data. Among all inhibitors, In5 was found to be the best candidate for BNCT. The binding of this inhibitor to PSMA preserved its overall secondary structure. These results provide computational insights into the coordination flexibility of PSMA and its interaction with various inhibitors. They can be used for the design and synthesis of efficient BNCT agents with improved drug selectivity and high boron percentage.
Collapse
Affiliation(s)
- Qiaoyu Hu
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Kevin Padron
- Department
of Computer Science, University of Miami, Coral Gables, Florida 33146, United States
| | - Daiki Hara
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Junwei Shi
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Alan Pollack
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Wensi Tao
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
6
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
7
|
Abstract
AbstractIntroduction:In the recent years, some publications (mainly from one group of authors) have dealt with the effectiveness of proton–boron fusion therapy (PBFT). This theory is based on the Q-value of three produced α particles in the reaction of protons with boron (11B). They claim that this reaction significantly increases the absorbed dose in the target volume. However, the current study would re-evaluate their method to show if PBFT is really effective.Methods and materials:A parallel 80-MeV proton beam was irradiated on a water medium in a cubic boron uptake region (BUR). The two-dimensional dose distribution and percentage depth dose of protons, alphas and all particles were calculated using tally F6 and mesh-tallies by Monte Carlo N Particle Transport code.Results:The results not only showed that the dose enhancement in BUR is neglectable but also the higher density of BUR in comparison with water led to decrement of dose in this region. Because of low cross section of boron for proton beam (<100 mb), the α particles’ dose is 1,000 times lower than the proton dose.Conclusions:The physical aspects and the simulation results did not show any effectiveness of the PBFT for proton therapy dose enhancement.
Collapse
|
8
|
Feng S, Li H, Ren Y, Zhi C, Huang Y, Chen F, Zhang H. RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Colloids Surf B Biointerfaces 2020; 190:110964. [PMID: 32179413 DOI: 10.1016/j.colsurfb.2020.110964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 01/30/2023]
Abstract
Boron nitride nanospheres (BNNS) have attracted increasing attention in many fields due to their unique physicochemical properties. Biomedical application of BNNS has also been explored recently. However, limited by the hydrophobicity and poor dispersity of BNNS, their biocompatible performance especially the in vivo biosafety has rarely been reported and is still unclear now. In this work, BNNS were firstly camouflaged with red blood cell membrane by physical extrusion (CM-BNNS). CM-BNNS were then incubated with cells as well as intravenously injected into the mice to uncover their potential in vitro and in vivo toxicity. Results were promising as CM-BNNS exhibited better dispersion and stability compared with pristine BNNS. In vitro data demonstrated the relatively enhanced biosafety of CM-BNNS. The red blood cell membrane coating endowed BNNS with markedly prolonged blood circulation and decreased accumulation in the lung. In addition, CM-BNNS showed no adverse effects on all the evaluated hematic parameters and tissues of treated mice at a dose of 10 mg/kg. Taken together, our work demonstrated the optimal biocompatibility of CM-BNNS and pave the way for their future biomedical applications.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yajing Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Chunyi Zhi
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowlong, Hong Kong Special Administrative Region
| | - Yunxi Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Josephson L, Liang SH, Zhang MR. Boron agents for neutron capture therapy. Coord Chem Rev 2020; 405:213139. [DOI: 10.1016/j.ccr.2019.213139] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Zhang T, Li G, Li S, Wang Z, He D, Wang Y, Zhang J, Li J, Bai Z, Zhang Q, Liu B, Zhao Q, Liu Y, Zhang H. Asialoglycoprotein receptor targeted micelles containing carborane clusters for effective boron neutron capture therapy of hepatocellular carcinoma. Colloids Surf B Biointerfaces 2019; 182:110397. [DOI: 10.1016/j.colsurfb.2019.110397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
|
11
|
Feng S, Zhang H, Xu S, Zhi C, Nakanishi H, Gao XD. Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:552-560. [PMID: 30606565 DOI: 10.1016/j.msec.2018.11.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
Biomedical application of boron nitride (BN) nanomaterials has recently attracted considerable attentions. BN nanospheres (BNNS) could safely deliver anti-cancer drug into tumor cells, which makes them potential nanocarrier for cancer therapy. However, the poor dispersity in physiological environments and low drug loading capacity severely limit their further applications. Herein, we developed a novel drug delivery system based on folate-conjugated mesoporous silica (MS)-functionalized BNNS (BNMS-FA). Dispersity and drug loading capacity of BNNS were highly improved by MS modification. BNMS-FA complexes were nontoxic up to a concentration of 100 μg/mL, and could be specifically internalized by HeLa and MCF-7 cells via folate receptor-mediated endocytosis. Doxorubicin (DOX) could be loaded onto BNMS-FA complexes with high efficiency via π-π stacking and hydrogen bonding, and showed a sustained release pattern under different pH conditions. BNMS-FA/DOX complexes exhibited superior drug internalization and antitumor efficacy over free DOX, BNNS/DOX and BNMS/DOX complexes, which were considered promising for targeted cancer therapy.
Collapse
Affiliation(s)
- Shini Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunyi Zhi
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowlong, Hong Kong, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
13
|
Feng S, Zhang H, Zhi C, Gao XD, Nakanishi H. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int J Nanomedicine 2018; 13:641-652. [PMID: 29440891 PMCID: PMC5798544 DOI: 10.2147/ijn.s153476] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Anticancer drug-delivery systems (DDSs) capable of responding to the physiological stimuli and efficiently releasing drugs inside tumor cells are highly desirable for effective cancer therapy. Herein, pH-responsive, charge-reversal poly(allylamine hydrochlorid)−citraconic anhydride (PAH-cit) functionalized boron nitride nanospheres (BNNS) were fabricated and used as a carrier for the delivery and controlled release of doxorubicin (DOX) into cancer cells. Methods BNNS was synthesized through a chemical vapor deposition method and then functionalized with synthesized charge-reversal PAH-cit polymer. DOX@PAH-cit–BNNS complexes were prepared via step-by-step electrostatic interactions and were fully characterized. The cellular uptake of DOX@PAH-cit–BNNS complexes and DOX release inside cancer cells were visualized by confocal laser scanning microscopy. The in vitro anticancer activity of DOX@ PAH-cit–BNNS was examined using CCK-8 and live/dead viability/cytotoxicity assay. Results The PAH-cit–BNNS complexes were nontoxic to normal and cancer cells up to a concentration of 100 µg/mL. DOX was loaded on PAH-cit–BNNS complexes with high efficiency. In a neutral environment, the DOX@PAH-cit–BNNS was stable, whereas the loaded DOX was effectively released from these complexes at low pH condition due to amide hydrolysis of PAH-cit. Enhanced cellular uptake of DOX@PAH-cit–BNNS complexes and DOX release in the nucleus of cancer cells were revealed by confocal microscopy. Additionally, the effective delivery and release of DOX into the nucleus of cancer cells led to high therapeutic efficiency. Conclusion Our findings indicated that the newly developed PAH-cit–BNNS complexes are promising as an efficient pH-responsive DDS for cancer therapy.
Collapse
Affiliation(s)
- Shini Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, People's Republic of China
| | - Chunyi Zhi
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
14
|
Yanagie H, Dewi N, Higashi S, Ikushima I, Seguchi K, Mizumachi R, Murata Y, Morishita Y, Shinohara A, Mikado S, Yasuda N, Fujihara M, Sakurai Y, Mouri K, Yanagawa M, Iizuka T, Suzuki M, Sakurai Y, Masunaga SI, Tanaka H, Matsukawa T, Yokoyama K, Fujino T, Ogura K, Nonaka Y, Sugiyama H, Kajiyama T, Yui S, Nishimura R, Ono K, Takamoto S, Nakajima J, Ono M, Eriguchi M, Hasumi K, Takahashi H. Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy. Br J Radiol 2017; 90:20170004. [PMID: 28406315 DOI: 10.1259/bjr.20170004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. METHODS We prepared the 10BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 1012 n cm-2. Morphological and pathological analyses were performed on Day 14 after neutron irradiation. RESULTS Biodistribution results have revealed that 10B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. CONCLUSION Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure.
Collapse
Affiliation(s)
- Hironobu Yanagie
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan.,2 Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Novriana Dewi
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan.,3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Syushi Higashi
- 4 Department of Surgery, Kojinkai Medical City East Hospital, Miyazaki, Japan
| | - Ichiro Ikushima
- 5 Department of Radiology, Miyakonojyo Metropolitan Hospital, Miyazaki, Japan
| | - Koji Seguchi
- 4 Department of Surgery, Kojinkai Medical City East Hospital, Miyazaki, Japan
| | - Ryoji Mizumachi
- 6 Department of Pharmacology, Kumamoto Institute Branch, LSI Medience Co. Ltd, Kumamoto, Japan
| | - Yuji Murata
- 6 Department of Pharmacology, Kumamoto Institute Branch, LSI Medience Co. Ltd, Kumamoto, Japan
| | - Yasuyuki Morishita
- 7 Department of Human and Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuko Shinohara
- 8 Department of Humanities, The Graduate School of Seisen University, Tokyo, Japan
| | - Shoji Mikado
- 9 Department of Physics, College of Industrial Technology, Nihon University, Chiba, Japan
| | - Nakahiro Yasuda
- 10 Research Institute of Nuclear Engineering, University of Fukui, Fukui, Japan
| | | | - Yuriko Sakurai
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan.,3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Kikue Mouri
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan.,3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Yanagawa
- 12 Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Tomoya Iizuka
- 13 Department of Veterinary Surgery, The University of Tokyo Veterinary Hospital, Tokyo, Japan
| | - Minoru Suzuki
- 14 Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | | | - Hiroki Tanaka
- 14 Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Takehisa Matsukawa
- 15 Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhito Yokoyama
- 15 Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Fujino
- 16 Department of Pathological Diagnosis, Comprehensive Cancer Center, Saitama Medical University International Medical Center, Saitama, Japan
| | - Koichi Ogura
- 9 Department of Physics, College of Industrial Technology, Nihon University, Chiba, Japan
| | - Yasumasa Nonaka
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hirotaka Sugiyama
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tetsuya Kajiyama
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Sho Yui
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Ryohei Nishimura
- 13 Department of Veterinary Surgery, The University of Tokyo Veterinary Hospital, Tokyo, Japan
| | - Koji Ono
- 14 Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Sinichi Takamoto
- 17 Department of Cardiac Surgery, Mitsui Memorial Hospital, Tokyo, Japan
| | - Jun Nakajima
- 3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan.,18 Department of Pulmonary Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Minoru Ono
- 3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan.,19 Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Masazumi Eriguchi
- 1 Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, Tokyo, Japan.,20 Department of Surgery, Shin-Yamanote Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | | | - Hiroyuki Takahashi
- 2 Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,3 Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Mi P, Yanagie H, Dewi N, Yen HC, Liu X, Suzuki M, Sakurai Y, Ono K, Takahashi H, Cabral H, Kataoka K, Nishiyama N. Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. J Control Release 2017; 254:1-9. [DOI: 10.1016/j.jconrel.2017.03.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 01/15/2023]
|
16
|
Wang J, Chen L, Ye J, Li Z, Jiang H, Yan H, Stogniy MY, Sivaev IB, Bregadze VI, Wang X. Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging. Biomacromolecules 2017; 18:1466-1472. [PMID: 28351146 DOI: 10.1021/acs.biomac.6b01845] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jianling Wang
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of
Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leifeng Chen
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of
Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Ye
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of
Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiyong Li
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of
Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of
Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Yan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Marina Yu. Stogniy
- A. N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Igor B. Sivaev
- A. N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Vladimir I Bregadze
- A. N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Xuemei Wang
- State
Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of
Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
17
|
Dewi N, Mi P, Yanagie H, Sakurai Y, Morishita Y, Yanagawa M, Nakagawa T, Shinohara A, Matsukawa T, Yokoyama K, Cabral H, Suzuki M, Sakurai Y, Tanaka H, Ono K, Nishiyama N, Kataoka K, Takahashi H. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol 2016; 142:767-75. [PMID: 26650198 DOI: 10.1007/s00432-015-2085-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. METHODS In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. RESULTS The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. CONCLUSION The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.
Collapse
Affiliation(s)
- Novriana Dewi
- Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Peng Mi
- Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki, 212-0013, Japan
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hironobu Yanagie
- Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | - Yuriko Sakurai
- Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuyuki Morishita
- Department of Human and Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masashi Yanagawa
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11 Inadacho, Obihiro, Hokkaido, 080-0834, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Atsuko Shinohara
- Department of Humanities, Graduate School of Seisen University, 3-16-21 Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-8642, Japan
| | - Takehisa Matsukawa
- Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minoru Suzuki
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Yoshinori Sakurai
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Koji Ono
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Nobuhiro Nishiyama
- Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki, 212-0013, Japan
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki, 212-0013, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Takahashi
- Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
18
|
Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy. ACS NANO 2015; 9:5913-21. [PMID: 26033034 DOI: 10.1021/acsnano.5b00532] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.
Collapse
Affiliation(s)
- Peng Mi
- †Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
- ‡Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- §Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Novriana Dewi
- ⊥Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hironobu Yanagie
- ⊥Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Kokuryo
- ∥Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Minoru Suzuki
- #Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- #Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yanmin Li
- ∇Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ichio Aoki
- ∥Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Koji Ono
- #Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroyuki Takahashi
- ⊥Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- ∇Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuhiro Nishiyama
- †Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
- ‡Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kazunori Kataoka
- †Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
- §Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- ∇Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- ⊗Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
20
|
WITHDRAWN: Selective enhancement of boron accumulation in tumours with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion as a novel boron carrier in VX-2 rabbit hepatic cancer model for neutron capture therapy. Pharmacotherapy 2015. [DOI: 10.1016/j.biopha.2014.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Blood–brain barrier (BBB) toxicity and permeability assessment after L-(4-10Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model. Brain Res 2014; 1583:34-44. [DOI: 10.1016/j.brainres.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
|
22
|
Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:541-9. [PMID: 24961208 DOI: 10.1007/s13246-014-0284-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study is to compare dose enhancement of various agents, nanoparticles and chemotherapy drugs for neutron capture therapy. A (252)Cf source was simulated to obtain its dosimetric parameters, including air kerma strength, dose rate constant, radial dose function and total dose rates. These results were compared with previously published data. Using (252)Cf as a neutron source, the in-tumour dose enhancements in the presence of atomic (10)B, (157)Gd and (33)S agents; (10)B, (157)Gd, (33)S nanoparticles; and Bortezomib and Amifostine chemotherapy drugs were calculated and compared in neutron capture therapy. Monte Carlo code MCNPX was used for simulation of the (252)Cf source, a soft tissue phantom, and a tumour containing each capture agent. Dose enhancement for 100, 200 and 500 ppm of the mentioned media was calculated. Calculated dosimetric parameters of the (252)Cf source were in agreement with previously published values. In comparison to other agents, maximum dose enhancement factor was obtained for 500 ppm of atomic (10)B agent and (10)B nanoparticles, equal to 1.06 and 1.08, respectively. Additionally, Bortezomib showed a considerable dose enhancement level. From a dose enhancement point of view, media containing (10)B are the best agents in neutron capture therapy. Bortezomib is a chemotherapy drug containing boron and can be proposed as an agent in boron neutron capture therapy. However, it should be noted that other physical, chemical and medical criteria should be considered in comparing the mentioned agents before their clinical use in neutron capture therapy.
Collapse
|
23
|
Yanagie H, Higashi S, Seguchi K, Ikushima I, Fujihara M, Nonaka Y, Oyama K, Maruyama S, Hatae R, Suzuki M, Masunaga SI, Kinashi T, Sakurai Y, Tanaka H, Kondo N, Narabayashi M, Kajiyama T, Maruhashi A, Ono K, Nakajima J, Ono M, Takahashi H, Eriguchi M. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion. Appl Radiat Isot 2014; 88:32-7. [PMID: 24559940 DOI: 10.1016/j.apradiso.2014.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a (10)BSH-containing water-in-oil-in-water emulsion ((10)BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that (10)BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC.
Collapse
Affiliation(s)
- Hironobu Yanagie
- Department of Innovative Cancer Therapeutics: Alpha particle and Immuno-therapeutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; Department of Nuclear Engineering & Management, Graduate School of Engineering, The University of Tokyo, Japan; Cooperative Unit of Medicine & Engineering, The University of Tokyo Hospital, Tokyo, Japan.
| | - Syushi Higashi
- Department of Surgery, Kojin-kai Medical City East Hospital, Miyazaki, Japan
| | - Koji Seguchi
- Department of Surgery, Kojin-kai Medical City East Hospital, Miyazaki, Japan
| | - Ichiro Ikushima
- Department of Innovative Cancer Therapeutics: Alpha particle and Immuno-therapeutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; Kyushu Medical & Industrial Sources Foundation, Miyazaki, Japan; Department of Radiology, Miyakonojyo Metropolitan Hospital, Miyazaki, Japan
| | | | | | - Kazuyuki Oyama
- Department of Radiology, Shin-Yamate Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Syoji Maruyama
- Department of Surgery, Shin-Yamate Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Ryo Hatae
- Department of Surgery, Shin-Yamate Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minoru Suzuki
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Tomoko Kinashi
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Hiroki Tanaka
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Natsuko Kondo
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Tetsuya Kajiyama
- Department of Innovative Cancer Therapeutics: Alpha particle and Immuno-therapeutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | - Koji Ono
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Jun Nakajima
- Cooperative Unit of Medicine & Engineering, The University of Tokyo Hospital, Tokyo, Japan; Department of Respiratory Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Minoru Ono
- Cooperative Unit of Medicine & Engineering, The University of Tokyo Hospital, Tokyo, Japan; Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Nuclear Engineering & Management, Graduate School of Engineering, The University of Tokyo, Japan; Cooperative Unit of Medicine & Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Masazumi Eriguchi
- Department of Surgery, Shin-Yamate Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
24
|
Abstract
INTRODUCTION Development of drug delivery systems for brain delivery is one of the most challenging research topics in pharmaceutical areas, mainly due to the presence of the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma thus limiting the brain uptake of the majority of therapeutic agents. Among the several carriers, which have been studied to overcome this problem, liposomes have gained increasing attention as promising strategies for brain-targeted drug delivery. The most advantageous features of liposomes are their ability to incorporate and deliver large amounts of drug and the possibility to decorate their surface with different ligands. AREAS COVERED The purpose of this review is to explore the different approaches studied to transport and deliver therapeutics and imaging agents to the brain by using liposomes. In the first part of the review, particular attention is paid to describe the anatomy of the BBB and different physiological transport mechanisms available for drug permeation. In the second part, the different strategies for the delivery of a drug to the brain using liposomes are reviewed for each transport mechanism. EXPERT OPINION Over the last decade, there have been significant developments concerning liposomal brain delivery systems conjugated with selected ligands with high specificity and low immunogenicity. An universally useful liposomal formulation for brain targeting does not exist but liposome design must be modulated by the appropriate choice of the specific homing device and transport mechanism.
Collapse
Affiliation(s)
- Francesco Lai
- University of Cagliari, Dipartimento di Scienze della Vita e dell'Ambiente, Via Ospedale 72, 09124 Cagliari, Italy
| | | | | |
Collapse
|
25
|
Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent. Biomed Pharmacother 2012; 67:451-7. [PMID: 23743325 DOI: 10.1016/j.biopha.2012.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/23/2012] [Indexed: 11/21/2022] Open
Abstract
Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.
Collapse
|
26
|
Abstract
INTRODUCTION Boron lies on the borderline between metals and non-metals in the periodic table. As such, it possesses peculiarities which render it suitable for a variety of applications in chemistry, technology and medicine. However, boron's peculiarities have been exploited only partially so far. AREAS COVERED In this review, the authors highlight selected areas of research which have witnessed new uses of boron compounds in recent times. The examples reported illustrate how difficulties in the synthesis and physicochemical characterization of boronated molecules, encountered in past years, can be overcome with positive effects in different fields. EXPERT OPINION Many potentialities of boron-based systems reside in the peculiar properties of both boron atoms (the ability to replace carbon atoms, electron deficiency) and of boronated compounds (hydrophobicity, lipophilicity, versatile stereochemistry). Taken in conjunction, these properties can provide innovative drugs. The authors highlight the need to further investigate the assembly of boronated compounds, in terms of drug design, since the mechanisms required to obtain supramolecular structures may be unconventional compared with the more standard molecules used. Furthermore, the authors propose that computational methods are a valuable tool for assessing the role of multicenter, quasi-aromatic bonds and its peculiar geometries.
Collapse
Affiliation(s)
- Laura Ciani
- University of Florence, Department of Chemistry & CSGI, Sesto Fiorentino, Italy.
| | | |
Collapse
|
27
|
|
28
|
Calabrese G, Nesnas JJ, Barbu E, Fatouros D, Tsibouklis J. The formulation of polyhedral boranes for the boron neutron capture therapy of cancer. Drug Discov Today 2011; 17:153-9. [PMID: 21978988 DOI: 10.1016/j.drudis.2011.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022]
Abstract
The early promise of boron neutron capture therapy as a method for the treatment of cancer has been inhibited by the inherent toxicity associated with therapeutically useful doses of ¹⁰B-containing pharmacophores, the need for target-tissue specificity and the challenges imposed by biological barriers. Although developments in the synthetic chemistry of polyhedral boranes have addressed issues of toxicity to a considerable extent, the optimisation of the transport and the delivery of boronated agents to the site of action--the subject of this review--is a challenge that is addressed by the development of innovative formulation strategies.
Collapse
Affiliation(s)
- Gianpiero Calabrese
- School of Pharmacy and Chemistry, Kingston University, Kingston-upon Thames KT1 2EE, UK.
| | | | | | | | | |
Collapse
|
29
|
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6:1017-32. [PMID: 19732031 DOI: 10.1517/17425240903167942] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Malignant brain tumors are among the most challenging to treat and at present there are no uniformly successful treatment strategies. Standard treatment regimens consist of maximal surgical resection followed by radiotherapy and chemotherapy. The limited survival advantage attributed to chemotherapy is partially due to low CNS penetration of antineoplastic agents across the blood-brain barrier (BBB). OBJECTIVE The objective of this paper is to review recent approaches to delivering anticancer drugs into primary brain tumors. METHODS Both preclinical and clinical strategies to circumvent the BBB are considered that include chemical modification and colloidal carriers. CONCLUSION Analysis of the available data indicates that new approaches may be useful for CNS delivery, yet an appreciation of pharmacokinetic issues and improved knowledge of tumor biology will be needed to affect significantly drug delivery to the target site.
Collapse
|
30
|
Feng B, Tomizawa K, Michiue H, Miyatake SI, Han XJ, Fujimura A, Seno M, Kirihata M, Matsui H. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 2009; 30:1746-55. [DOI: 10.1016/j.biomaterials.2008.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/04/2008] [Indexed: 12/01/2022]
|
31
|
|