1
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ghosh S, Guleria A, Patra S, Chakraborty A, Barick KC, Kumar C, Singh K, Rakshit S, Chakravarty R. Protein-functionalized and intrinsically radiolabeled [ 188Re]ReO x nanoparticles: advancing cancer therapy through concurrent radio-photothermal effects. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07074-9. [PMID: 39856453 DOI: 10.1007/s00259-025-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE Enhancing therapeutic effectiveness is crucial for translating anticancer nanomedicines from laboratory to clinical settings. In this study, we have developed radioactive rhenium oxide nanoparticles encapsulated in human serum albumin ([188Re]ReOx-HSA NPs) for concurrent radiotherapy (RT) and photothermal therapy (PTT), aiming to optimize treatment outcomes. METHODS [188Re]ReOx-HSA NPs were synthesized by a controlled reduction of 188ReO4- in HSA medium and extensively characterized. The anticancer effect of [188Re]ReOx-HSA NPs was demonstrated in vitro in murine melanoma (B16F10) cell line. In vivo SPECT/CT imaging, autoradiography and biodistribution studies were performed after intratumoral injection of [188Re]ReOx-HSA NPs in melanoma tumor-bearing C57BL/6 mice. The potential of [188Re]ReOx-HSA NPs for combined RT and PTT treatment was also demonstrated in the aforesaid mice model. RESULTS [188Re]ReOx-HSA NPs (size 4-6 nm) were synthesized with high colloidal and radiochemical stability. Upon laser (808 nm) exposure on B16F10 cells incubated with [188Re]ReOx-HSA NPs, only < 20% of cells were alive demonstrating high therapeutic efficacy under in vitro settings. Uniform dose distribution and retention of the radiolabeled NPs in the tumor volume were observed via SPECT/CT imaging and autoradiography studies. Tumor growth in mice model was significantly arrested with ~ 1.85 MBq dose of [188Re]ReOx-HSA NPs and simultaneous laser irradiation, demonstrating synergistic benefit of RT and PTT. CONCLUSIONS These results demonstrate that intrinsically radiolabeled [188Re]ReOx-HSA NPs having unique features such as high photothermal effects and favorable nuclear decay characteristics for combined RT/PTT, hold great promise for clinical translation.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Apurav Guleria
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Kanhu Charan Barick
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Kang S, Skapek S, Krishnan S, Gambhir SS, Zeng Y, Zhou Q, Zaman R. A Novel Approach to Harnessing Acoustic A-Lines to Detect Circulating Tumor Cells in Flowing Blood. NANO LETTERS 2024; 24:15615-15622. [PMID: 39556103 DOI: 10.1021/acs.nanolett.4c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Circulating tumor cells (CTCs) are associated with tumor burden and treatment response and, as hallmarks of the initiation of tumor dissemination, can predict the likelihood of metastatic progression before widespread tumors can be detected by standard anatomic imaging. However, early diagnosis of recurrence through the detection of CTCs is limited by their low prevalence in blood and the limited sensitivity of existing technologies. To address these challenges, we investigated the use of ultrasound and targeted microbubbles (MBs) for early CTC detection. While MBs have been used in cardiovascular/molecular tumor imaging, there is limited research on their acoustic properties when bound to CTCs. We developed a hydrophone system for detecting characteristic A-lines from CTCs encapsulating MBs. Our study is the first to identify distinctive characteristics in the acoustic frequency response of MBs bound to different cancer CTCs using in vitro suspensions and in vivo mice that will benefit metastatic cancer detection and management.
Collapse
Affiliation(s)
- Shu Kang
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Stephen Skapek
- Department of Pediatrics, Division of Hematology/Oncology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Sunil Krishnan
- Lilian L. Smith Department of Neurosurgery, UT Health Science Center, Houston, Texas 77054, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Raiyan Zaman
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75235, United States
| |
Collapse
|
4
|
Iacob R, Manolescu D, Stoicescu ER, Cerbu S, Bardan R, Ghenciu LA, Cumpănaș A. The Diagnostic Value of bpMRI in Prostate Cancer: Benefits and Limitations Compared to mpMRI. Bioengineering (Basel) 2024; 11:1006. [PMID: 39451382 PMCID: PMC11505328 DOI: 10.3390/bioengineering11101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Prostate cancer is the second most common cancer in men and a leading cause of death worldwide. Early detection is vital, as it often presents with vague symptoms such as nocturia and poor urinary stream. Diagnostic tools like PSA tests, ultrasound, PET-CT, and mpMRI are essential for prostate cancer management. The PI-RADS system helps assess malignancy risk based on imaging. While mpMRI, which includes T1, T2, DWI, and dynamic contrast-enhanced imaging (DCE), is the standard, bpMRI offers a contrast-free alternative using only T2 and DWI. This reduces costs, acquisition time, and the risk of contrast-related side effects but has limitations in detecting higher-risk PI-RADS 3 and 4 lesions. This study compared bpMRI's diagnostic accuracy to mpMRI, focusing on prostate volume and PI-RADS scoring. Both methods showed strong inter-rater agreement for prostate volume (ICC 0.9963), confirming bpMRI's reliability in this aspect. However, mpMRI detected more complex conditions, such as periprostatic fat infiltration and iliac lymphadenopathy, which bpMRI missed. While bpMRI offers advantages like reduced cost and no contrast use, it is less effective for higher-risk lesions, making mpMRI more comprehensive.
Collapse
Affiliation(s)
- Roxana Iacob
- Doctoral School, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Diana Manolescu
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.M.); (S.C.)
| | - Emil Robert Stoicescu
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.M.); (S.C.)
- Research Center for Pharmaco-Toxicological Evaluations, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Simona Cerbu
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.M.); (S.C.)
| | - Răzvan Bardan
- Department of Urology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.B.); (A.C.)
| | - Laura Andreea Ghenciu
- Department of Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Alin Cumpănaș
- Department of Urology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.B.); (A.C.)
| |
Collapse
|
5
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Payne MM, Mali I, Shrestha TB, Basel MT, Timmerman S, Pyle M, Sebek J, Prakash P, Bossmann SH. T 1-mapping characterization of two tumor types. BIOPHYSICAL REPORTS 2024; 4:100157. [PMID: 38795740 PMCID: PMC11229382 DOI: 10.1016/j.bpr.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
T1 mapping is a quantitative method to characterize tissues with magnetic resonance imaging in a quick and efficient manner. It utilizes the relaxation rate of protons to depict the underlying structures within the imaging frame. While T1-mapping techniques are used with some frequency in areas such as cardiac imaging, their application for understanding malignancies and identifying tumor structures has yet to be thoroughly investigated. Utilizing a saturation recovery method to acquire T1 maps for two different tumor models has revealed that longitudinal relaxation mapping is sensitive enough to distinguish between normal and malignant tissue. This is seen even with decreased signal/noise ratios using small voxel sizes to obtain high-resolution images. In both tumor models, it was revealed that relaxation mapping recorded significantly different relaxation values between regions encapsulating the tumor, muscle, kidney, or spleen, as well as between the cell lines themselves. This indicates a potential future application of relaxation mapping as a method to fingerprint various stages of tumor development and may prove a useful measure to identify micro-metastases.
Collapse
Affiliation(s)
- Macy Marie Payne
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ivina Mali
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Tej B Shrestha
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Matthew T Basel
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Sarah Timmerman
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Marla Pyle
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas
| | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
7
|
Zhao P, Wu T, Tian Y, You J, Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv Drug Deliv Rev 2024; 209:115323. [PMID: 38653402 DOI: 10.1016/j.addr.2024.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 200000, China
| | - Jia You
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Wang Z, Ren X, Li Y, Qiu L, Wang D, Liu A, Liang H, Li L, Yang B, Whittaker AK, Liu Z, Jin S, Lin Q, Wang T. Reactive Oxygen Species Amplifier for Apoptosis-Ferroptosis Mediated High-Efficiency Radiosensitization of Tumors. ACS NANO 2024; 18:10288-10301. [PMID: 38556985 DOI: 10.1021/acsnano.4c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Insufficient reactive oxygen species (ROS) production and radioresistance have consistently contributed to the failure of radiotherapy (RT). The development of a biomaterial capable of activating ROS-induced apoptosis and ferroptosis is a potential strategy to enhance RT sensitivity. To achieve precision and high-efficiency RT, the theranostic nanoplatform Au/Cu nanodots (Au/CuNDs) were designed for dual-mode imaging, amplifying ROS generation, and inducing apoptosis-ferroptosis to sensitize RT. A large amount of ROS is derived from three aspects: (1) When exposed to ionizing radiation, Au/CuNDs effectively absorb photons and emit various electrons, which can interact with water to produce ROS. (2) Au/CuNDs act as a catalase-like to produce abundant ROS through Fenton reaction with hydrogen peroxide overexpressed of tumor cells. (3) Au/CuNDs deplete overexpressed glutathione, which causes the accumulation of ROS. Large amounts of ROS and ionizing radiation further lead to apoptosis by increasing DNA damage, and ferroptosis by enhancing lipid peroxidation, significantly improving the therapeutic efficiency of RT. Furthermore, Au/CuNDs serve as an excellent nanoprobe for high-resolution near-infrared fluorescence imaging and computed tomography of tumors. The promising dual-mode imaging performance shows their potential application in clinical cancer detection and imaging-guided precision RT, minimizing damage to adjacent normal tissues during RT. In summary, our developed theranostic nanoplatform integrates dual-mode imaging and sensitizes RT via ROS-activated apoptosis-ferroptosis, offering a promising prospect for clinical cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ze Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Yunfeng Li
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Ling Qiu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhongshan Liu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
9
|
Lazovic J, Goering E, Wild AM, Schützendübe P, Shiva A, Löffler J, Winter G, Sitti M. Nanodiamond-Enhanced Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310109. [PMID: 38037437 DOI: 10.1002/adma.202310109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Nanodiamonds (ND) hold great potential for diverse applications due to their biocompatibility, non-toxicity, and versatile functionalization. Direct visualization of ND by means of non-invasive imaging techniques will open new venues for labeling and tracking, offering unprecedented and unambiguous detection of labeled cells or nanodiamond-based drug carrier systems. The structural defects in diamonds, such as vacancies, can have paramagnetic properties and potentially act as contrast agents in magnetic resonance imaging (MRI). The smallest nanoscale diamond particles, detonation ND, are reported to effectively reduce longitudinal relaxation time T1 and provide signal enhancement in MRI. Using in vivo, chicken embryos, direct visualization of ND is demonstrated as a bright signal with high contrast to noise ratio. At 24 h following intravascular application marked signal enhancement is noticed in the liver and the kidneys, suggesting uptake by the phagocytic cells of the reticuloendothelial system (RES), and in vivo labeling of these cells. This is confirmed by visualization of nanodiamond-labeled macrophages as positive (bright) signal, in vitro. Macrophage cell labeling is not associated with significant increase in pro-inflammatory cytokines or marked cytotoxicity. These results indicate nanodiamond as a novel gadolinium-free contrast-enhancing agent with potential for cell labeling and tracking and over periods of time.
Collapse
Affiliation(s)
- Jelena Lazovic
- Medical Systems Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Eberhard Goering
- Solid State Spectroscopy Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Medical Systems Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Peter Schützendübe
- Modern Magnetic Systems Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anitha Shiva
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, 89081, Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081, Ulm, Germany
| | - Metin Sitti
- College of Engineering and School of Medicine, Koç University, Istanbul, 34450, Turkey
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
10
|
Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci Prog 2024; 107:368504241228076. [PMID: 38332327 PMCID: PMC10854387 DOI: 10.1177/00368504241228076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
X-ray computed tomography (CT) and magnetic resonance (MR) imaging are essential tools in modern medical diagnosis and treatment. However, traditional contrast agents are inadequate in the diagnosis of various health conditions. Consequently, the development of targeted nano-contrast agents has become a crucial area of focus in the development of medical image-enhancing contrast agents. To fully understand the current development of nano-contrast agents, this review provides an overview of the preparation methods and research advancements in CT nano-contrast agents, MR nano-contrast agents, and CT/MR multimodal nano-contrast agents described in previous publications. Due to the physicochemical properties of nanomaterials, such as self-assembly and surface modifiability, these specific nano-contrast agents can greatly improve the targeting of lesions through various preparation methods and clearly highlight the distinction between lesions and normal tissues in both CT and MR. As a result, they have the potential to be used in the early stages of disease to improve diagnostic capacity and level in medical imaging.
Collapse
Affiliation(s)
- Jianjun Lai
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhizeng Luo
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
| | - Liting Chen
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
11
|
Wada S, Yoshimura S, Toyoda K, Nakai M, Sasahara Y, Miwa K, Koge J, Ishigami A, Shiozawa M, Ogasawara K, Kitazono T, Nogawa S, Iwanaga Y, Miyamoto Y, Minematsu K, Koga M. Characteristics and outcomes of unknown onset stroke: The Japan Stroke Data Bank. J Neurol Sci 2023; 453:120798. [PMID: 37729754 DOI: 10.1016/j.jns.2023.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Clinical outcomes of unknown onset stroke (UOS) are influenced by the enlargement of the therapeutic time window for reperfusion therapy. This study aimed to investigate and describe the characteristics and clinical outcomes of patients with UOS. METHODS Patients with acute ischemic stroke (AIS) who were admitted within 24 h of their last known well time, from January 2017 to December 2020, were included. Data were obtained from a long-lasting nationwide hospital-based multicenter prospective registry: the Japan Stroke Data Bank. The co-primary outcomes were the National Institutes of Stroke Scale (NIHSS) scores on admission and unfavorable outcomes at discharge, corresponding to modified Rankin Scale (mRS) scores of 3-6. RESULTS Overall, 26,976 patients with AIS were investigated. Patients with UOS (N = 5783, 78 ± 12 years of age) were older than patients with known onset stroke (KOS) (N = 21,193, 75 ± 13 years of age). Age, female sex, higher premorbid mRS scores, atrial fibrillation, and congestive heart failure were associated with UOS in multivariate analysis. UOS was associated with higher NIHSS scores (median = 8 [interquartile range [IQR]: 3-19] vs. 4 [1-10], adjusted incidence rate ratio = 1.37 [95% CI: 1.35-1.38]) and unfavorable outcomes (52.1 vs. 33.6%, adjusted odds ratio = 1.27 [1.14-1.40]). Intergroup differences in unfavorable outcomes were attenuated among females (1.12 [0.95-1.32] vs. males 1.38 [1.21-1.56], P = 0.040) and in the subgroup that received reperfusion therapy (1.10 [0.92-1.33] vs. those who did not receive therapy 1.23 [1.08-1.39], P = 0.012). CONCLUSIONS UOS was associated with unfavorable outcomes but to a lesser degree among females and patients receiving reperfusion therapy.
Collapse
Affiliation(s)
- Shinichi Wada
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sohei Yoshimura
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Michikazu Nakai
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yusuke Sasahara
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kaori Miwa
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Junpei Koge
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akiko Ishigami
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masayuki Shiozawa
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University Hospital, Yahaba, Iwate, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Nogawa
- Department of Neurology, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan
| | - Yoshitaka Iwanaga
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshihiro Miyamoto
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
12
|
Gregory AV, Denic A, Moustafa A, Dasaraju PG, Poudyal B, Augustine JJ, Mullan AF, Korfiatis P, Rule AD, Kline TL. The Number and Size of Individual Kidney Medullary Pyramids is Associated with Clinical Characteristics, Kidney Biopsy Findings, and CKD Outcomes among Kidney Donors. J Am Soc Nephrol 2023; 34:1752-1763. [PMID: 37562061 PMCID: PMC10561778 DOI: 10.1681/asn.0000000000000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
SIGNIFICANCE STATEMENT Segmentation of multiple structures in cross-sectional imaging is time-consuming and impractical to perform manually, especially if the end goal is clinical implementation. In this study, we developed, validated, and demonstrated the capability of a deep learning algorithm to segment individual medullary pyramids in a rapid, accurate, and reproducible manner. The results demonstrate that cortex volume, medullary volume, number of pyramids, and mean pyramid volume is associated with patient clinical characteristics and microstructural findings and provide insights into the mechanisms that may lead to CKD. BACKGROUND The kidney is a lobulated organ, but little is known regarding the clinical importance of the number and size of individual kidney lobes. METHODS After applying a previously validated algorithm to segment the cortex and medulla, a deep-learning algorithm was developed and validated to segment and count individual medullary pyramids on contrast-enhanced computed tomography images of living kidney donors before donation. The association of cortex volume, medullary volume, number of pyramids, and mean pyramid volume with concurrent clinical characteristics (kidney function and CKD risk factors), kidney biopsy morphology (nephron number, glomerular volume, and nephrosclerosis), and short- and long-term GFR <60 or <45 ml/min per 1.73 m 2 was assessed. RESULTS Among 2876 living kidney donors, 1132 had short-term follow-up at a median of 3.8 months and 638 had long-term follow-up at a median of 10.0 years. Larger cortex volume was associated with younger age, male sex, larger body size, higher GFR, albuminuria, more nephrons, larger glomeruli, less nephrosclerosis, and lower risk of low GFR at follow-up. Larger pyramids were associated with older age, female sex, larger body size, higher GFR, more nephrons, larger glomerular volume, more nephrosclerosis, and higher risk of low GFR at follow-up. More pyramids were associated with younger age, male sex, greater height, no hypertension, higher GFR, lower uric acid, more nephrons, less nephrosclerosis, and a lower risk of low GFR at follow-up. CONCLUSIONS Cortex volume and medullary pyramid volume and count reflect underlying variation in nephron number and nephron size as well as merging of pyramids because of age-related nephrosclerosis, with loss of detectable cortical columns separating pyramids.
Collapse
Affiliation(s)
| | - Aleksandar Denic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amr Moustafa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Bhavya Poudyal
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Aidan F. Mullan
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | | | - Andrew D. Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Timothy L. Kline
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Lacharie M, Villa A, Milidonis X, Hasaneen H, Chiribiri A, Benedetti G. Role of pulmonary perfusion magnetic resonance imaging for the diagnosis of pulmonary hypertension: A review. World J Radiol 2023; 15:256-273. [PMID: 37823020 PMCID: PMC10563854 DOI: 10.4329/wjr.v15.i9.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Among five types of pulmonary hypertension, chronic thromboembolic pulmonary hypertension (CTEPH) is the only curable form, but prompt and accurate diagnosis can be challenging. Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH, however these are limited by radiation exposure, subjective qualitative bias, and lack of cardiac functional assessment. This review aims to assess the methodology, diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages, limitations and future research scope.
Collapse
Affiliation(s)
- Miriam Lacharie
- Oxford Centre of Magnetic Resonance Imaging, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Adriana Villa
- Department of Diagnostic and Interventional Radiology, German Oncology Centre, Limassol 4108, Cyprus
| | - Xenios Milidonis
- Deep Camera MRG, CYENS Centre of Excellence, Nicosia, Cyprus, Nicosia 1016, Cyprus
| | - Hadeer Hasaneen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Kings Coll London, Div Imaging Sci, St Thomas Hospital, London WC2R 2LS, United Kingdom
| | - Giulia Benedetti
- Department of Cardiovascular Imaging and Biomedical Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
14
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
15
|
Baier J, Rix A, Darguzyte M, Girbig RM, May JN, Palme R, Tolba R, Kiessling F. Repeated Contrast-Enhanced Micro-CT Examinations Decrease Animal Welfare and Influence Tumor Physiology. Invest Radiol 2023; 58:327-336. [PMID: 36730911 DOI: 10.1097/rli.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Computed tomography (CT) imaging is considered relatively safe and is often used in preclinical research to study physiological processes. However, the sum of low-dose radiation, anesthesia, and animal handling might impact animal welfare and physiological parameters. This is particularly relevant for longitudinal studies with repeated CT examinations. Therefore, we investigated the influence of repeated native and contrast-enhanced (CE) CT on animal welfare and tumor physiology in regorafenib-treated and nontreated tumor-bearing mice. MATERIAL AND METHODS Mice bearing 4T1 breast cancer were divided into 5 groups: (1) no imaging, (2) isoflurane anesthesia only, (3) 4 mGy CT, (4) 50 mGy CT, and (5) CE-CT (iomeprol). In addition, half of each group was treated with the multikinase inhibitor regorafenib. Mice were imaged 3 times within 1 week under isoflurane anesthesia. Behavioral alterations were investigated by score sheet evaluation, rotarod test, heart rate measurements, and fecal corticosterone metabolite analysis. Tumor growth was measured daily with a caliper. Tumors were excised at the end of the experiment and histologically examined for blood vessel density, perfusion, and cell proliferation. RESULTS According to the score sheet, animals showed a higher burden after anesthesia administration and in addition with CT imaging ( P < 0.001). Motor coordination was not affected by native CT, but significantly decreased after CE-CT in combination with the tumor therapy ( P < 0.001). Whereas tumor growth and blood vessel density were not influenced by anesthesia or imaging, CT-scanned animals had a higher tumor perfusion ( P < 0.001) and a lower tumor cell proliferation ( P < 0.001) for both radiation doses. The most significant difference was observed between the control and CE-CT groups. CONCLUSION Repeated (CE-) CT imaging of anesthetized animals can lead to an impairment of animal motor coordination and, thus, welfare. Furthermore, these standard CT protocols seem to be capable of inducing alterations in tumor physiology when applied repetitively. These potential effects of native and CE-CT should be carefully considered in preclinical oncological research.
Collapse
Affiliation(s)
- Jasmin Baier
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Anne Rix
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Milita Darguzyte
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Renée Michèle Girbig
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Jan-Niklas May
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Fabian Kiessling
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| |
Collapse
|
16
|
Wang Z, Liu A, Li X, Guan L, Xing H, He L, Fang L, Zvyagin AV, Yang X, Yang B, Lin Q. Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer. Talanta 2023; 256:124255. [PMID: 36652761 DOI: 10.1016/j.talanta.2023.124255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The high incidence and complex subtypes of prostate cancer put forward higher requirements for accurate diagnosis. Furthermore, advanced prostate cancer is prone to metastasis. Single biological imaging mode faces a challenge of sensitive and fast bioimaging of metastasic prostate cancer. Thus, exploring a nanoprobe with multi-mode imaging function has an important impact on preoperative imaging and intraoperative visualization guide of metastatic prostate cancer. Herein, based on the optical properties and X-ray attenuation capability of Au nanodots as well as the slow electronic relaxation of Gd3+, we designed and fabricated the multifunctional nanoprobe Au/Gd nanodots for multi-mode imaging and accurate diagnosis of bone metastatic prostate cancer. The results showed that multiple imaging modes complement each other to achieve high-precision of metastasic prostate cancer detection and accurately guide treatment. In addition, in vitro/vivo experiments showed that Au/Gd nanodots had good biocompatibility and biosafety. Therefore, the prepared multifunctional nanoprobe may provide new strategies and insights for precise diagnosis of metastatic prostate cancer in clinical practice.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Huiyuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Liang He
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, PR China.
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, PR China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia; Australia and Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Xiaoyu Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
17
|
Location of Hyperintense Vessels on FLAIR Associated with the Location of Perfusion Deficits in PWI. J Clin Med 2023; 12:jcm12041554. [PMID: 36836089 PMCID: PMC9962403 DOI: 10.3390/jcm12041554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Perfusion imaging is preferred for identifying hypoperfusion in the management of acute ischemic stroke, but it is not always feasible/available. An alternative method for quantifying hypoperfusion, using FLAIR-hyperintense vessels (FHVs) in various vascular regions, has been proposed, with evidence of a statistical relationship with perfusion-weighted imaging (PWI) deficits and behavior. However, additional validation is needed to confirm that areas of suspected hypoperfusion (per the location of FHVs) correspond to the location of perfusion deficits in PWI. We examined the association between the location of FHVs and perfusion deficits in PWI in 101 individuals with acute ischemic stroke, prior to the receipt of reperfusion therapies. FHVs and PWI lesions were scored as present/absent in six vascular regions (i.e., the ACA, PCA, and (four sub-regions of) the MCA territories). Chi-square analyses showed a significant relationship between the two imaging techniques for five vascular regions (the relationship in the ACA territory was underpowered). These results suggest that for most areas of the brain, the general location of FHVs corresponds to hypoperfusion in those same vascular territories in PWI. In conjunction with prior work, results support the use of estimating the amount and location of hypoperfusion using FLAIR imaging when perfusion imaging is not available.
Collapse
|
18
|
Tarantino S, Caricato AP, Rinaldi R, Capomolla C, De Matteis V. Cancer Treatment Using Different Shapes of Gold-Based Nanomaterials in Combination with Conventional Physical Techniques. Pharmaceutics 2023; 15:500. [PMID: 36839822 PMCID: PMC9968101 DOI: 10.3390/pharmaceutics15020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The conventional methods of cancer treatment and diagnosis, such as radiotherapy, chemotherapy, and computed tomography, have developed a great deal. However, the effectiveness of such methods is limited to the possible failure or collateral effects on the patients. In recent years, nanoscale materials have been studied in the field of medical physics to develop increasingly efficient methods to treat diseases. Gold nanoparticles (AuNPs), thanks to their unique physicochemical and optical properties, were introduced to medicine to promote highly effective treatments. Several studies have confirmed the advantages of AuNPs such as their biocompatibility and the possibility to tune their shapes and sizes or modify their surfaces using different chemical compounds. In this review, the main properties of AuNPs are analyzed, with particular focus on star-shaped AuNPs. In addition, the main methods of tumor treatment and diagnosis involving AuNPs are reviewed.
Collapse
Affiliation(s)
- Simona Tarantino
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Paola Caricato
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
- National Institute of Nuclear Physics (INFN), Section of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Caterina Capomolla
- “Vito Fazzi” Hospital of Lecce, Oncological Center, Piazza Filippo Muratore 1, 73100 Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
19
|
Ji C, Li J, Mei J, Su W, Dai H, Li F, Liu P. Advanced Nanomaterials for the Diagnosis and Treatment of Renal Cell Carcinoma. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Ji
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyang Mei
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weiran Su
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huili Dai
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
20
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Attia MF, Akasov R, Elbaz NM, Owens TC, Curtis EC, Panda S, Santos-Oliveira R, Alexis F, Kievit FM, Whitehead DC. Radiopaque Iodosilane-Coated Lipid Hybrid Nanoparticle Contrast Agent for Dual-Modality Ultrasound and X-ray Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54389-54400. [PMID: 36449986 DOI: 10.1021/acsami.2c09104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid nanoemulsions, and a series of HSLNEs by a low-energy spontaneous nanoemulsification process. The formation of a silica shell requires sonication to hydrolyze and polymerize/condensate the iodomethyltrimethoxysilane at the oil/water interface of the nanoemulsion droplets. The resulting nanoemulsions (NEs) exhibited a homogeneous spherical morphology under transmission electron microscopy. The particles had diameters ranging from 20 to 120 nm with both negative and positive surface charges in the absence and presence of cetyltrimethylammonium bromide (CTAB), respectively. Unlike CTAB-coated nanoformulations, the CTAB-free NEs showed excellent biocompatibility in murine RAW macrophages and human U87-MG cell lines in vitro. The maximum tolerated dose assessment was evaluated to verify their safety profiles in vivo. In vitro X-ray and ultrasound imaging and in vivo computed tomography were used to monitor both iodinated SNPs and HSLNEs, validating their significant contrast-enhancing properties and suggesting their potential as dual-modality clinical agents in the future.
Collapse
Affiliation(s)
- Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Roman Akasov
- Federal Scientific Research Centre "Crystallography and Photonics" of RAS, 59 Leninsky Avenue, Moscow119333, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, Moscow119991, Russia
| | - Nancy M Elbaz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina27599, United States
| | - Tyler C Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Evan C Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Soham Panda
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Argonauta Nuclear Reactor Center, Rio de Janeiro21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro23070-200, Brazil
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito170901, Ecuador
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
22
|
Perelli F, Turrini I, Giorgi MG, Renda I, Vidiri A, Straface G, Scatena E, D’Indinosante M, Marchi L, Giusti M, Oliva A, Grassi S, De Luca C, Catania F, Vizzielli G, Restaino S, Gullo G, Eleftheriou G, Mattei A, Signore F, Lanzone A, Scambia G, Cavaliere AF. Contrast Agents during Pregnancy: Pros and Cons When Really Needed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16699. [PMID: 36554582 PMCID: PMC9779218 DOI: 10.3390/ijerph192416699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 05/13/2023]
Abstract
Many clinical conditions require radiological diagnostic exams based on the emission of different kinds of energy and the use of contrast agents, such as computerized tomography (CT), positron emission tomography (PET), magnetic resonance (MR), ultrasound (US), and X-ray imaging. Pregnant patients who should be submitted for diagnostic examinations with contrast agents represent a group of patients with whom it is necessary to consider both maternal and fetal effects. Radiological examinations use different types of contrast media, the most used and studied are represented by iodinate contrast agents, gadolinium, fluorodeoxyglucose, gastrographin, bariumsulfate, and nanobubbles used in contrast-enhanced ultrasound (CEUS). The present paper reports the available data about each contrast agent and its effect related to the mother and fetus. This review aims to clarify the clinical practices to follow in cases where a radiodiagnostic examination with a contrast medium is indicated to be performed on a pregnant patient.
Collapse
Affiliation(s)
- Federica Perelli
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy
| | - Irene Turrini
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy
| | - Maria Gabriella Giorgi
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy
| | - Irene Renda
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Annalisa Vidiri
- School of Medicine, Catholic University of the Sacred Hearth, 00168 Rome, Italy
| | - Gianluca Straface
- Obstetrics and Gynecology Unit, Policlinico Abano Terme, 35031 Abano Terme, Italy
| | - Elisa Scatena
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy
| | - Marco D’Indinosante
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy
| | - Laura Marchi
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy
| | - Marco Giusti
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simone Grassi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carmen De Luca
- Teratology Information Service, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Catania
- Department of Obstetrics and Gynecology, Ospedale “Santa Maria Alla Gruccia”, 52025 Montevarchi, Italy
| | - Giuseppe Vizzielli
- Department of Medicinal Area (DAME) Clinic of Obstetrics and Gynecology, Santa Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Stefano Restaino
- Department of Medicinal Area (DAME) Clinic of Obstetrics and Gynecology, Santa Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Giuseppe Gullo
- IVF Public Center, Azienda Ospedaliera Ospedali Riuniti (AOOR) Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| | - Georgios Eleftheriou
- Poison Control Center and Teratology Information Service, Hospital Papa Giovanni XIII, 24127 Bergamo, Italy
| | - Alberto Mattei
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy
| | - Fabrizio Signore
- Obstetrics and Gynecology Unit, Santo Eugenio Hospital, 00144 Rome, Italy
- School of Medicine, Unicamillus University Rome, 00131 Rome, Italy
| | - Antonio Lanzone
- School of Medicine, Catholic University of the Sacred Hearth, 00168 Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Scambia
- School of Medicine, Catholic University of the Sacred Hearth, 00168 Rome, Italy
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Franca Cavaliere
- School of Medicine, Catholic University of the Sacred Hearth, 00168 Rome, Italy
- Division of Gynecology and Obstetrics Fatebenefratelli Isola Tiberina, 00186 Rome, Italy
| |
Collapse
|
23
|
Exploring EPR Parameters of 187Re Complexes for Designing New MRI Probes: From the Gas Phase to Solution and a Model Protein Environment. J CHEM-NY 2022. [DOI: 10.1155/2022/7056284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is one of the major types of cancer around the world, and early diagnosis is essential for successful treatment. New contrast agents (CAs), with reduced toxicology, are needed to improve diagnosis. One of the most promising Magnetic Resonance Imaging (MRI) CA is based on rhenium conjugated with a benzothiazole derivate (ReABT). In this sense, DFT has been used to evaluate the best methodology for calculating the hyperfine coupling constant (Aiso) of ReABT. Then, a thermodynamic analysis was performed to confirm the stability of the complex. Furthermore, a docking study of ReABT at the enzyme PI3K active site and Aiso calculations of ReABT in the enzyme environment were carried out. The best methodology for the Aiso calculation of ReABT was using the M06L functional, SARC-ZORA-TZVP (for Re) and TZVP (for all other atoms) basis set, relativistic Hamiltonian, and the CPCM solvation model with water as the solvent which confirm that the relativistic effects are important for calculating the Aiso values. In addition, thermodynamic analysis indicates that ReABT presents a higher stability and a lower toxicity than Gd-based CAs. The docking studies point out that ReABT interacts with amino acids residues of alanine, aspartate, and lysine from the PI3K active site. Considering the enzyme environment, Aiso values decrease significantly. These findings indicate that the CA candidate ReABT could be a good candidate for a new contrast agent.
Collapse
|
24
|
Illg C, Krauss S, Lauer H, Daigeler A, Schäfer RC. Precision of Dynamic Infrared Thermography in Anterolateral Thigh Flap Planning: Identification of the Perforator Fascia Passage. J Reconstr Microsurg 2022. [DOI: 10.1055/s-0042-1758183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract
Background The anterolateral thigh (ALT) flap is commonly utilized in reconstructive surgery. Preoperative perforator mapping facilitates dissection. Dynamic infrared thermography can be applied to identify ALT perforators. However, its accuracy has not been evaluated in detail before. Therefore, this study aimed to assess the precision of dynamic infrared thermography in ALT perforator localization.
Methods The survey site was defined as a 25 × 8 cm rectangle on the anterolateral thigh and a coordinate system was established. The area was examined consecutively by dynamic infrared thermography with a FLIR ONE camera after 2-minute fan precooling. Two surgeons then independently performed color duplex ultrasound on the basis of the identified hotpots.
Results Twenty-four healthy subjects were examined. About 74.8% of perforators were musculocutaneous or musculoseptocutaneous. The mean distance between study area center and perforator or hotspot center was 51.8 ± 27.3 and 46.5 ± 26.2 mm, respectively. The mean distance from hotspot center to sonographic perforator fascia passage was 15.9 ± 9.9 mm with a maximum of 48.4 mm. The positive predictive value of thermographic ALT perforator identification was 93%.
Conclusion Thermographic hotspot and perforator location diverge widely in ALT flaps. Dynamic infrared thermography can therefore not be used as standalone technique for preoperative ALT perforator identification. However, the application before color duplex ultrasound examination is a reasonable upgrade and can visualize angiosomes and facilitate the examination.
Collapse
Affiliation(s)
- Claudius Illg
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sabrina Krauss
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Henrik Lauer
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ruth Christine Schäfer
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
25
|
Valimukhametova AR, Zub OS, Lee BH, Fannon O, Nguyen S, Gonzalez-Rodriguez R, Akkaraju GR, Naumov AV. Dual-Mode Fluorescence/Ultrasound Imaging with Biocompatible Metal-Doped Graphene Quantum Dots. ACS Biomater Sci Eng 2022; 8:4965-4975. [PMID: 36179254 PMCID: PMC11338274 DOI: 10.1021/acsbiomaterials.2c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sonography offers many advantages over standard methods of diagnostic imaging due to its non-invasiveness, substantial tissue penetration depth, and low cost. The benefits of ultrasound imaging call for the development of ultrasound-trackable drug delivery vehicles that can address a variety of therapeutic targets. One disadvantage of the technique is the lack of high-precision imaging, which can be circumvented by complementing ultrasound contrast agents with visible and, especially, near-infrared (NIR) fluorophores. In this work, we, for the first time, develop a variety of lightly metal-doped (iron oxide, silver, thulium, neodymium, cerium oxide, cerium chloride, and molybdenum disulfide) nitrogen-containing graphene quantum dots (NGQDs) that demonstrate high-contrast properties in the ultrasound brightness mode and exhibit visible and/or near-infrared fluorescence imaging capabilities. NGQDs synthesized from glucosamine precursors with only a few percent metal doping do not introduce additional toxicity in vitro, yielding over 80% cell viability up to 2 mg/mL doses. Their small (<50 nm) sizes warrant effective cell internalization, while oxygen-containing surface functional groups decorating their surfaces render NGQDs water soluble and allow for the attachment of therapeutics and targeting agents. Utilizing visible and/or NIR fluorescence, we demonstrate that metal-doped NGQDs experience maximum accumulation within the HEK-293 cells 6-12 h after treatment. The successful 10-fold ultrasound signal enhancement is observed at 0.5-1.6 mg/mL for most metal-doped NGQDs in the vascular phantom, agarose gel, and animal tissue. A combination of non-invasive ultrasound imaging with capabilities of high-precision fluorescence tracking makes these metal-doped NGQDs a viable agent for a variety of theragnostic applications.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olga S Zub
- Alfa Radiology Management, Inc, Plano, Texas 75023, United States
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Roberto Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giridhar R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
26
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
27
|
Qiu JJ, Yin J, Ji L, Lu CY, Li K, Zhang YG, Lin YX. Differential diagnosis of hepatocellular carcinoma and hepatic hemangioma based on maximum wavelet-coefficient statistics: Novel radiomics features from plain CT. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Nosrati H, Salehiabar M, Mozafari F, Charmi J, Erdoğan N, Ghaffarlou M, Abhari F, Danafar H, Ramazani A, Ertas YN. Preparation and evaluation of Bismuth Sulfide and Magnetite based Theranostic Nanohybrid as Drug Carrier and Dual MRI/CT Contrast Agent. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hamed Nosrati
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT) University of Zanjan Zanjan Iran
| | - Marziyeh Salehiabar
- ERNAM—Nanotechnology Research and Application Center Erciyes University Kayseri Turkey
| | - Faezeh Mozafari
- Zanjan Pharmaceutical Biotechnology Research Center Zanjan University of Medical Sciences Zanjan Iran
| | - Jalil Charmi
- ERNAM—Nanotechnology Research and Application Center Erciyes University Kayseri Turkey
| | - Nuri Erdoğan
- Department of Radiology Erciyes University School of Medicine Kayseri Turkey
| | | | - Fatemeh Abhari
- Zanjan Pharmaceutical Biotechnology Research Center Zanjan University of Medical Sciences Zanjan Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center Zanjan University of Medical Sciences Zanjan Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT) University of Zanjan Zanjan Iran
- Department of Chemistry, Faculty of Science University of Zanjan Zanjan Iran
| | - Yavuz Nuri Ertas
- ERNAM—Nanotechnology Research and Application Center Erciyes University Kayseri Turkey
- Department of Biomedical Engineering Erciyes University Kayseri Turkey
| |
Collapse
|
29
|
Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J Control Release 2022; 349:475-485. [PMID: 35839934 DOI: 10.1016/j.jconrel.2022.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
Bismuth-based compounds are considered to be the best candidates for computed tomography (CT) imaging of gastrointestinal (GI) tract due to high X-ray absorption. Here, we report the introduction of polymer-coated bismuth oxychloride (BiOCl) nanosheets for highly efficient CT imaging in healthy mice and animal with colitis. We demonstrate simple, low cost and fast aqueous synthesis protocol which provides gram-quantity yield of chemically stable BiOCl nanosheets. The developed contrast gives 2.55-fold better CT enhancement compared to conventional contrast with negligible in vivo toxicity. As a major finding we report a regioselective CT imaging of GI tract by using nanoparticles coated with differentially charged polymers. Coating of nanoparticles with a positively charged polymer leads to their fast accumulation in small intestine, while the coating with negatively charged polymers stimulates prolonged stomach retention. We propose that this effect may be explained by a pH-controlled aggregation of nanoparticles in stomach. This feature may become the basis for advancement in clinical diagnosis of entire GI tract.
Collapse
|
30
|
Jeong Y, Jin M, Kim KS, Na K. Biocompatible carbonized iodine-doped dots for contrast-enhanced CT imaging. Biomater Res 2022; 26:27. [PMID: 35752823 PMCID: PMC9233767 DOI: 10.1186/s40824-022-00277-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Computed tomography (CT) imaging has been widely used for the diagnosis and surveillance of diseases. Although CT is attracting attention due to its reasonable price, short scan time, and excellent diagnostic ability, there are severe drawbacks of conventional CT contrast agents, such as low sensitivity, serious toxicity, and complicated synthesis process. Herein, we describe iodine-doped carbon dots (IDC) for enhancing the abilities of CT contrast agents. Method IDC was synthesized by one-pot hydrothermal synthesis for 4 h at 180 ℃ and analysis of its structure and size distribution with UV–Vis, XPS, FT-IR, NMR, TEM, and DLS. Furthermore, the CT values of IDC were calculated and compared with those of conventional CT contrast agents (Iohexol), and the in vitro and in vivo toxicities of IDC were determined to prove their safety. Results IDC showed improved CT contrast enhancement compared to iohexol. The biocompatibility of the IDC was verified via cytotoxicity tests, hemolysis assays, chemical analysis, and histological analysis. The osmotic pressure of IDC was lower than that of iohexol, resulting in no dilution-induced contrast decrease in plasma. Conclusion Based on these results, the remarkable CT contrast enhancement and biocompatibility of IDC can be used as an effective CT contrast agent for the diagnosis of various diseases compared with conventional CT contrast agents. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00277-3.
Collapse
Affiliation(s)
- Yohan Jeong
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea.,Department of Research and Developmnet, SML Genetree, Seoul, 06741, Republic of Korea.,Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea
| | - Minyoung Jin
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea.,Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea. .,Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do, 14662, Republic of Korea.
| |
Collapse
|
31
|
Chen X, Li M, Guo R, Liu W, Li J, Zong X, Chen Q, Wang J. The diagnostic performance of contrast-enhanced CT versus extracellular contrast agent-enhanced MRI in detecting hepatocellular carcinoma: direct comparison and a meta-analysis. Abdom Radiol (NY) 2022; 47:2057-2070. [PMID: 35312822 DOI: 10.1007/s00261-022-03484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
To compare the diagnostic value of contrast-enhanced computed tomography (CT) with extracellular contrast agent-enhanced magnetic resonance imaging (ECA-MRI) for the detection of hepatocellular carcinoma (HCC). Pubmed, Embase, Web of Science and Cochrane Library were searched (1/5/2021) for studies comparing contrast-enhanced CT with ECA-MRI in patients suspected of HCC. Studies without head-to-head comparison were excluded. The pooled sensitivity, specificity and summary area under the curve (sAUC) of contrast-enhanced CT and ECA-MRI in detecting HCC was calculated based on bivariate random effects model. Heterogeneity test included threshold effect analysis and meta-regression. Subgroup analyses were conducted according to lesion size (< 20 mm or ≥ 20 mm). Overall, 10 articles containing 1333 patients were deemed suitable for inclusion in this meta-analysis. ECA-MRI displayed increased sensitivity to contrast-enhanced CT in detecting HCC (0.77 vs. 0.63, P < 0.01). The difference in specificity between ECA-MRI and contrast-enhanced CT was not statistically significant (0.93 vs. 0.94, P = 0.25). ECA-MRI yielded higher diagnostic accuracy (sAUCs = 0.88 vs. 0.80, P < 0.01). In the subgroup analysis with a lesion size < 20 mm, ECA-MRI allowed significant gains of accuracy compared to contrast-enhanced CT (0.79 vs. 0.72, P = 0.02). ECA-MRI also outperformed contrast-enhanced CT in patients with lesion size ≥ 20 mm (sAUCs = 0.96 vs. 0.93, P = 0.04). ECA-MRI provided higher sensitivity and accuracy than contrast-enhanced CT in detecting HCC, especially lesions size < 20 mm.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Mingkai Li
- Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Ruomi Guo
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Weimin Liu
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jianwen Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xiaodan Zong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Qilong Chen
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
32
|
Bunker LD, Walker A, Meier E, Goldberg E, Leigh R, Hillis AE. Hyperintense vessels on imaging account for neurological function independent of lesion volume in acute ischemic stroke. Neuroimage Clin 2022; 34:102991. [PMID: 35339984 PMCID: PMC8957047 DOI: 10.1016/j.nicl.2022.102991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Studies have revealed variable significance of FLAIR hyperintense vessels (FHV). We found number and location of FHV are associated with functional deficits. Functional measures correlated with FHV independently of lesion volume.
In acute ischemic stroke, reported relationships between lesion metrics and behavior have largely focused on lesion volume and location. However, hypoperfusion has been shown to correlate with deficits in the acute stage. Hypoperfusion is typically identified using perfusion imaging in clinical settings, which requires contrast. Unfortunately, contrast is contraindicated for some individuals. An alternative method has been proposed to identify hypoperfusion using hyperintense vessels on fluid-attenuated inversion recovery (FLAIR) imaging. This study aimed to validate the clinical importance of considering hypoperfusion when accounting for behavior in acute stroke and demonstrate the clinical utility of scoring the presence of hyperintense vessels to quantify it. One hundred and fifty-three participants with acute ischemic stroke completed a battery of commonly-used neurological and behavioral measures. Clinical MRIs were used to determine lesion volume and to score the presence of hyperintense vessels seen on FLAIR images to estimate severity of hypoperfusion in six different vascular regions. National Institutes of Health Stroke Scale (NIHSS) scores, naming accuracy (left hemisphere strokes), and language content produced during picture description were examined in relation to lesion volume, hypoperfusion, and demographic variables using correlational analyses and multivariable linear regression. Results showed that lesion volume and hypoperfusion, in addition to demographic variables, were independently associated with performance on NIHSS, naming, and content production. Specifically, hypoperfusion in the frontal lobe independently correlated with NIHSS scores, while hypoperfusion in parietal areas independently correlated with naming accuracy and content production. These results correspond to previous reports associating hypoperfusion with function, confirming that hypoperfusion is an important consideration—beyond lesion volume—when accounting for behavior in acute ischemic stroke. Quantifying hypoperfusion using FLAIR hyperintense vessels can be an essential clinical tool when other methods of identifying hypoperfusion are unavailable or time prohibitive.
Collapse
Affiliation(s)
- Lisa D Bunker
- Johns Hopkins University School of Medicine, Department of Neurology and Neuroscience, Baltimore, MD 21287, USA
| | - Alexandra Walker
- Johns Hopkins University School of Medicine, Department of Neurology and Neuroscience, Baltimore, MD 21287, USA
| | - Erin Meier
- Northeastern University Bouvé College of Health Sciences, Department of Communication Sciences and Disorders, Boston, MA 02115, USA
| | - Emily Goldberg
- University of Pittsburgh, Department of Communication Science and Disorders, Pittsburgh, PA 15260, USA
| | - Richard Leigh
- Johns Hopkins University School of Medicine, Department of Neurology and Neuroscience, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Johns Hopkins University School of Medicine, Department of Neurology and Neuroscience, Baltimore, MD 21287, USA. https://twitter.com/@HopkinsSKSI
| |
Collapse
|
33
|
Bougias H, Stogiannos N. Breast MRI: Where are we currently standing? J Med Imaging Radiat Sci 2022; 53:203-211. [DOI: 10.1016/j.jmir.2022.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
|
34
|
Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/ 31P magnetic resonance imaging. Sci Rep 2022; 12:2118. [PMID: 35136162 PMCID: PMC8826874 DOI: 10.1038/s41598-022-06125-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
We present the MR properties of a novel bio-responsive phosphorus probe doped with iron for dual proton and phosphorus magnetic resonance imaging (1H/31P-MRI), which provide simultaneously complementary information. The probes consist of non-toxic biodegradable calcium phytate (CaIP6) nanoparticles doped with different amounts of cleavable paramagnetic Fe3+ ions. Phosphorus atoms in the phytate structure delivered an efficient 31P-MR signal, with iron ions altering MR contrast for both 1H and 31P-MR. The coordinated paramagnetic Fe3+ ions broadened the 31P-MR signal spectral line due to the short T2 relaxation time, resulting in more hypointense signal. However, when Fe3+ was decomplexed from the probe, relaxation times were prolonged. As a result of iron release, intensity of 1H-MR, as well as the 31P-MR signal increase. These 1H and 31P-MR dual signals triggered by iron decomplexation may have been attributable to biochemical changes in the environment with strong iron chelators, such as bacterial siderophore (deferoxamine). Analysing MR signal alternations as a proof-of-principle on a phantom at a 4.7 T magnetic field, we found that iron presence influenced 1H and 31P signals and signal recovery via iron chelation using deferoxamine.
Collapse
|
35
|
Liefke J, Steding-Ehrenborg K, Asgeirsson D, Nordlund D, Kopic S, Morsing E, Hedström E. Non-contrast-enhanced magnetic resonance imaging can be used to assess renal cortical and medullary volumes—A validation study. Acta Radiol Open 2022; 11:20584601211072281. [PMID: 35096415 PMCID: PMC8796087 DOI: 10.1177/20584601211072281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) biomarkers can diagnose and prognosticate kidney disease. Renal volume validation studies are however scarce, and measurements are limited by use of contrast agent or advanced post-processing. Purpose To validate a widely available non-contrast-enhanced MRI method for quantification of renal cortical and medullary volumes in pigs; investigate observer variability of cortical and medullary volumes in humans; and present reference values for renal cortical and medullary volumes in adolescents. Materials and Methods Cortical and medullary volumes were quantified from transaxial in-vivo water-excited MR images in six pigs and 15 healthy adolescents (13–16years). Pig kidneys were excised, and renal cortex and medulla were separately quantified by the water displacement method. Both limits of agreement by the Bland-Altman method and reference ranges are presented as 2.5–97.5 percentiles. Results Agreement between MRI and ex-vivo quantification were -7 mL (-10–0 mL) for total parenchyma, -4 mL (-9–3 mL) for cortex, and -2 mL (-7–2 mL) for medulla. Intraobserver variability for pig and human kidneys were <5% for total parenchyma, cortex, and medulla. Interobserver variability for both pig and human kidneys were ≤4% for total parenchyma and cortex, and 6% and 12% for medulla. Reference ranges indexed for body surface area and sex were 54–103 mL/m2 (boys) and 56–103 mL/m2 (girls) for total parenchyma, 39–62 mL/m2 and 36–68 mL/m2 for cortex, and 16–45 mL/m2 and 17–42 mL/m2 for medulla. Conclusion The proposed widely available non-contrast-enhanced MRI method can quantify cortical and medullary renal volumes and can be directly implemented clinically.
Collapse
Affiliation(s)
- Jonas Liefke
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | | | - David Nordlund
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sascha Kopic
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Eva Morsing
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Erik Hedström
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Holman R, Lorton O, Guillemin PC, Desgranges S, Contino-Pépin C, Salomir R. Perfluorocarbon Emulsion Contrast Agents: A Mini Review. Front Chem 2022; 9:810029. [PMID: 35083198 PMCID: PMC8785234 DOI: 10.3389/fchem.2021.810029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Perfluorocarbon emulsions offer a variety of applications in medical imaging. The substances can be useful for most radiological imaging modalities; including, magnetic resonance imaging, ultrasonography, computed tomography, and positron emission tomography. Recently, the substance has gained much interest for theranostics, with both imaging and therapeutic potential. As MRI sequences improve and more widespread access to 19F-MRI coils become available, perfluorocarbon emulsions have great potential for new commercial imaging agents, due to high fluorine content and previous regulatory approval as antihypoxants and blood substitutes. This mini review aims to discuss the chemistry and physics of these contrast agents, in addition to highlighting some of the past, recent, and potential applications.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Ryan Holman,
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline C. Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Qiu YJ, Zhao GC, Shi SN, Zuo D, Zhang Q, Dong Y, Lou WH, Wang WP. Application of dynamic contrast enhanced ultrasound in distinguishing focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Clin Hemorheol Microcirc 2022; 81:149-161. [PMID: 35253737 DOI: 10.3233/ch-221390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the value of dynamic contrast enhanced ultrasound (DCE-US) in preoperative differential diagnosis of focal-type autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS From May 2016 to March 2020, patients with biopsy and histopathologically confirmed focal-type AIP (n = 9) were retrospectively included. All patients received contrast enhanced ultrasound (CEUS) examinations one week before surgery/biopsy. Dynamic analysis was performed by VueBox® software (Bracco, Italy). Eighteen cases of resection and histopathologically proved PDAC lesions were also included as control group. B mode ultrasound (BMUS) features, CEUS enhancement patterns, time intensity curves (TICs) and CEUS quantitative parameters were obtained and compared between AIP and PDAC lesions. RESULTS After injection of ultrasound contrast agents, most focal-type AIP lesions displayed hyper-enhancement (2/9, 22.2%) or iso-enhancement (6/9, 66.7%) during arterial phase of CEUS, while most of PDAC lesions showed hypo-enhancement (88.9%) (P < 0.01). During late phase, most of AIP lesions showed iso-enhancement (8/9, 88.9%), while most of PDAC lesions showed hypo-enhancement (94.4%) (P < 0.001). Compared with PDAC lesions, TICs of AIP lesions showed delayed and higher enhancement. Among all CEUS perfusion parameters, ratio of PE (peak enhancement), WiAUC (wash-in area under the curve), WiR (wash-in rate), WiPI (wash-in perfusion index, WiPI = WiAUC/ rise time), WoAUC (wash-out area under the curve), WiWoAUC (wash-in and wash-out area under the curve) and WoR (wash-out rate) between pancreatic lesion and surrounding normal pancreatic tissue were significantly higher in AIP lesions than PDAC lesions (P < 0.05). CONCLUSION DCE-US with quantitative analysis has the potential to make preoperative differential diagnosis between focal-type AIP and PDAC non-invasively.
Collapse
Affiliation(s)
- Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Chao Zhao
- Department of Pancreas Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai-Nan Shi
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Zuo
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Hui Lou
- Department of Pancreas Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Püllen L, Kaspar C, Panic A, Hess J, Reis H, Szarvas T, Radtke JP, Krafft U, Darr C, Hadaschik B, Tschirdewahn S. Retrograde Pyelography in the Presence of Urothelial Bladder Cancer Does Not Affect the Risk of Upper Tract Urothelial Cancer: A Retrospective Analysis of a Single-Centre Cohort. Urol Int 2021; 106:638-643. [PMID: 34758471 DOI: 10.1159/000519898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Patients with bladder cancer (BC) are at risk of developing upper tract urothelial carcinoma (UTUC). Therefore, CT urography is recommended for follow-up. To avoid intravenous contrast agents, retrograde pyelography (RPG) is an alternative. However, it is still unclear whether RPG increases the incidence of UTUC. The aim of this study was to investigate the impact of RPG in the presence of BC on the risk of developing UTUC. PATIENTS AND METHODS Retrospectively analysing a total of 3,680 RPGs between 2009 and 2016, all patients with simultaneous BC (group 1) and those without synchronous BC (group 2) during RPG were compared. All patients were risk stratified according to the EORTC bladder calculator. In patients without BC during RPG, risk stratification was based on the worst prior tumour characteristics. RESULTS A total of 145 patients with a history of BC were analysed. Of these, 112 patients underwent RPG with simultaneous BC. UTUC developed in 6 of 112 patients (5.4%) and 58.9% (66/112) had high-risk BC according to the EORTC bladder calculator. In the control group, one out of 33 (3%) patients with metachronous high-risk BC developed UTUC. CONCLUSIONS Using RPG in the presence of BC did not increase the risk of UTUC. Due to the predominant number of high-risk/high-grade tumours, individual tumour biology appears to be the primary driver for the development of UTUC.
Collapse
Affiliation(s)
- Lukas Püllen
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,
| | - Cordelia Kaspar
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrej Panic
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Hess
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tibor Szarvas
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Semmelweis University, Budapest, Hungary
| | - Jan Philipp Radtke
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Krafft
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christopher Darr
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tschirdewahn
- Department of Urology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
39
|
Chen CW, Fang YF, Tseng YH, Wong MY, Lin YH, Hsu YC, Lin BS, Huang YK. Before and after Endovascular Aortic Repair in the Same Patients with Aortic Dissection: A Cohort Study of Four-Dimensional Phase-Contrast Magnetic Resonance Imaging. Diagnostics (Basel) 2021; 11:diagnostics11101912. [PMID: 34679608 PMCID: PMC8534695 DOI: 10.3390/diagnostics11101912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: We used four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) to evaluate the impact of an endovascular aortic repair (TEVAR) on aortic dissection. (2) Methods: A total of 10 patients received 4D PC-MRI on a 1.5-T MR both before and after TEVAR. (3) Results: The aortas were repaired with either a GORE TAG Stent (Gore Medical; n = 7) or Zenith Dissection Endovascular Stent (Cook Medical; n = 3). TEVAR increased the forward flow volume of the true lumen (TL) (at the abdominal aorta, p = 0.047). TEVAR also reduced the regurgitant fraction in the TL at the descending aorta but increased it in the false lumen (FL). After TEVAR, the stroke distance increased in the TL (at descending and abdominal aorta, p = 0.018 and 0.015), indicating more effective blood transport per heartbeat. Post-stenting quantitative flow revealed that the reductions in stroke volume, backward flow volume, and absolute stroke volume were greater when covered stents were used than when bare stents were used in the FL of the descending aorta. Bare stents had a higher backward flow volume than covered stents did. (4) Conclusions: TEVAR increased the stroke volume in the TL and increased the regurgitant fraction in the FL in patients with aortic dissection.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Diagnostic Radiology, Chia Yi Chang Gung Memorial Hospital, Putzu City 61363, Taiwan; (C.-W.C.); (Y.-C.H.)
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yueh-Fu Fang
- Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan; (Y.-F.F.); (Y.-H.T.)
- Department of Thoracic Medicine, Chang Gung University, College of Medicine, Taoyuan 33302, Taiwan
| | - Yuan-Hsi Tseng
- Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan; (Y.-F.F.); (Y.-H.T.)
- Department of Thoracic Medicine, Chang Gung University, College of Medicine, Taoyuan 33302, Taiwan
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Putzu City 61363, Taiwan; (M.Y.W.); (Y.-H.L.)
- Division of Thoracic and Cardiovascular Surgery, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Hui Lin
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Putzu City 61363, Taiwan; (M.Y.W.); (Y.-H.L.)
- Division of Thoracic and Cardiovascular Surgery, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Chen Hsu
- Department of Diagnostic Radiology, Chia Yi Chang Gung Memorial Hospital, Putzu City 61363, Taiwan; (C.-W.C.); (Y.-C.H.)
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
- Department of Medical Research, Chi-Mei Medical Center, Tainan 30010, Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Putzu City 61363, Taiwan; (M.Y.W.); (Y.-H.L.)
- Division of Thoracic and Cardiovascular Surgery, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
40
|
Alterations of Serum Biochemical and Urinary Parameters in a Canine Population before and after Intravenous Contrast Administration. Vet Sci 2021; 8:vetsci8080146. [PMID: 34437469 PMCID: PMC8402808 DOI: 10.3390/vetsci8080146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Intravenous iodinated contrast (IVIC) medium is routinely administered to dogs. Scattered information exists regarding the serum biochemical or urinary profiles associated with the administration of IVIC in dogs. The aim of the study was to describe, compare, and discuss from the perspective of previous studies the alterations in serum biochemical and urinary parameters before (T0) and within one week (T1) of the IVIC administration during routine computed tomography (CT) scan evaluation of 22 dogs. Mature dogs presenting for CT scan evaluation for preoperative oncology staging/surgical planning were included. T1 evaluation was performed within one week of IVIC administration. Statistically significant differences in serum total protein, albumin, chloride, calcium, and phosphorus concentrations, urine protein to creatinine ratio, and urine specific gravity were found between T1 and T0. At T1, the serum creatinine concentration was within reference ranges in all dogs but one. An increase in the urine protein to creatinine ratio was observed in four samples, one of which was non-proteinuric at T0. Changes in biochemistry and urine parameters between T0 and T1 were not considered clinically significant.
Collapse
|
41
|
Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3611. [PMID: 34203371 PMCID: PMC8269646 DOI: 10.3390/ma14133611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The focus of this review is on the physical and magnetic properties that are related to the efficiency of monometallic magnetic nanoparticles used in biomedical applications, such as magnetic resonance imaging (MRI) or magnetic nanoparticle hyperthermia, and how to model these by theoretical methods, where the discussion is based on the example of cobalt nanoparticles. Different simulation systems (cluster, extended slab, and nanoparticle models) are critically appraised for their efficacy in the determination of reactivity, magnetic behaviour, and ligand-induced modifications of relevant properties. Simulations of the effects of nanoscale alloying with other metallic phases are also briefly reviewed.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
| | - Nora H. de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1906539. [PMID: 32495404 PMCID: PMC8022883 DOI: 10.1002/adma.201906539] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
Gadolinium-based chelates are a mainstay of contrast agents for magnetic resonance imaging (MRI) in the clinic. However, their toxicity elicits severe side effects and the Food and Drug Administration has issued many warnings about their potential retention in patients' bodies, which causes safety concerns. Iron oxide nanoparticles (IONPs) are a potentially attractive alternative, because of their nontoxic and biodegradable nature. Studies in developing IONPs as T1 contrast agents have generated promising results, but the complex, interrelated parameters influencing contrast enhancement make the development difficult, and IONPs suitable for T1 contrast enhancement have yet to make their way to clinical use. Here, the fundamental principles of MRI contrast agents are discussed, and the current status of MRI contrast agents is reviewed with a focus on the advantages and limitations of current T1 contrast agents and the potential of IONPs to serve as safe and improved alternative to gadolinium-based chelates. The past advances and current challenges in developing IONPs as a T1 contrast agent from a materials science perspective are presented, and how each of the key material properties and environment variables affects the performance of IONPs is assessed. Finally, some potential approaches to develop high-performance and clinically relevant T1 contrast agents are discussed.
Collapse
Affiliation(s)
- Mike Jeon
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Mackenzie V Halbert
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zachary R Stephen
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
43
|
Toyama Y, Werner RA, Ruiz-Bedoya CA, Ordonez AA, Takase K, Lapa C, Jain SK, Pomper MG, Rowe SP, Higuchi T. Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon. Theranostics 2021; 11:6105-6119. [PMID: 33897902 PMCID: PMC8058716 DOI: 10.7150/thno.58682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with 11C, 68Ga, and 18F have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology.
Collapse
Affiliation(s)
- Yoshitaka Toyama
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Diagnostic Radiology, Tohoku University, Sendai, Japan
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg Germany
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University, Sendai, Japan
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G. Pomper
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P. Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
44
|
Kaku TS, Lim S. Protein nanoparticles in molecular, cellular, and tissue imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1714. [PMID: 33821568 DOI: 10.1002/wnan.1714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The quest to develop ideal nanoparticles capable of molecular, cellular, and tissue level imaging is ongoing. Since certain imaging probes and nanoparticles face drawbacks such as low aqueous solubility, increased ROS generation leading to DNA damage, apoptosis, and high cellular/organ toxicities, the development of versatile and biocompatible nanocarriers becomes necessary. Protein nanoparticles (PNPs) are one such promising class of nanocarriers that possess most of the desirable properties of an ideal nanocarrier for bioimaging applications. PNPs demonstrate high aqueous solubility, minimal cytotoxicity, and multi-cargo loading capacity. They are also amenable to surface-functionalization, as well as modulation of their hydrophobicity and hydrophilicity. The use of PNPs for bioimaging applications has made rapid advancements in the past two decades. Being comparatively less explored, the field opens up a plethora of opportunities and focus areas to engineer ideal bioimaging protein nanocarriers. The use of PNPs as carriers of their natural ligands as well as other heavy metals and fluorescent probes, along with drug molecules for combined theranostic applications has been reported. In addition, surface functionalization to impart specificity of targeting the PNPs has been shown to reduce nonspecific cellular interactions, thus reducing systemic toxicity. PNPs have been explored for their application in imaging of numerous cancers, cardiovascular diseases as well as imaging of the brain using near infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), ultrasound (US), and photoacoustic (PA) imaging. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Tanvi Sushil Kaku
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
45
|
Suárez-García S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a known deadliest disease that requires a judicious diagnostic, targeting, and treatment strategy for an early prognosis and selective therapy. The major pitfalls of the conventional approach are non-specificity in targeting, failure to precisely monitor therapy outcome, and cancer progression leading to malignancies. The unique physicochemical properties offered by nanotechnology derived nanocarriers have the potential to radically change the landscape of cancer diagnosis and therapeutic management. An integrative approach of utilizing both diagnostic and therapeutic functionality using a nanocarrier is termed as nanotheranostic. The nanotheranostics platform is designed in such a way that overcomes various biological barriers, efficiently targets the payload to the desired locus, and simultaneously supports planning, monitoring, and verification of treatment delivery to demonstrate an enhanced therapeutic efficacy. Thus, a nanotheranostic platform could potentially assist in drug targeting, image-guided focal therapy, drug release and distribution monitoring, predictionof treatment response, and patient stratification. A class of highly branched nanocarriers known as dendrimers is recognized as an advanced nanotheranostic platform that has the potential to revolutionize the oncology arena by its unique and exciting features. A dendrimer is a well-defined three-dimensional globular chemical architecture with a high level of monodispersity, amenability of precise size control, and surface functionalization. All the dendrimer properties exhibit a reproducible pharmacokinetic behavior that could ensure the desired biodistribution and efficacy. Dendrimers are thus being exploited as a nanotheranostic platform embodying a diverse class of therapeutic, imaging, and targeting moieties for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Vikrant Saluja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yachana Mishra
- Department of Zoology, Shri Shakti Degree College, Sankhahari, Ghatampur, Kanpur Nagar, Uttar Pradesh, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Namita Giri
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Pallavi Nayak
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
47
|
Lim HG, Kim H, Kim K, Park J, Kim Y, Yoo J, Heo D, Baik J, Park SM, Kim HH. Thermal Ablation and High-Resolution Imaging Using a Back-to-Back (BTB) Dual-Mode Ultrasonic Transducer: In Vivo Results. SENSORS (BASEL, SWITZERLAND) 2021; 21:1580. [PMID: 33668260 PMCID: PMC7956793 DOI: 10.3390/s21051580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
We present a back-to-back (BTB) structured, dual-mode ultrasonic device that incorporates a single-element 5.3 MHz transducer for high-intensity focused ultrasound (HIFU) treatment and a single-element 20.0 MHz transducer for high-resolution ultrasound imaging. Ultrasound image-guided surgical systems have been developed for lesion monitoring to ensure that ultrasonic treatment is correctly administered at the right locations. In this study, we developed a dual-element transducer composed of two elements that share the same housing but work independently with a BTB structure, enabling a mode change between therapy and imaging via 180-degree mechanical rotation. The optic fibers were embedded in the HIFU focal region of ex vivo chicken breasts and the temperature change was measured. Images were obtained in vivo mice before and after treatment and compared to identify the treated region. We successfully acquired B-mode and C-scan images that display the hyperechoic region indicating coagulation necrosis in the HIFU-treated volume up to a depth of 10 mm. The compact BTB dual-mode ultrasonic transducer may be used for subcutaneous thermal ablation and monitoring, minimally invasive surgery, and other clinical applications, all with ultrasound only.
Collapse
Affiliation(s)
- Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
| | - Hyunhee Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Kyungmin Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Yeonggeun Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Jinhee Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Dasom Heo
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Jinhwan Baik
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
48
|
von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. [Chemical exchange saturation transfer (CEST) : Magnetic resonance imaging in diagnostic oncology]. Radiologe 2021; 61:43-51. [PMID: 33337509 DOI: 10.1007/s00117-020-00786-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential. METHODS This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date. RESULTS AND CONCLUSION CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention. KEY POINTS CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.
Collapse
Affiliation(s)
- N von Knebel Doeberitz
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - S Maksimovic
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - L Loi
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - D Paech
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
49
|
Chen CW, Tseng YH, Lin CC, Kao CC, Wong MY, Ting H, Huang YK. Aortic dissection assessment by 4D phase-contrast MRI with hemodynamic parameters: the impact of stent type. Quant Imaging Med Surg 2021; 11:490-501. [PMID: 33532250 DOI: 10.21037/qims-20-670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background To explore the diagnostic performance of 4-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) in evaluating aortic dissection in different clinical scenarios. Methods The study group comprised 32 patients with a known aortic dissection who each underwent computed tomography angiography (CTA), and then 4D PC-MRI with a 1.5-T MR scanner. The 4D PC-MRI images were compared with the CTA images to evaluate the aortic size, branch identification, and iliac and femoral arterial access. Results The patients were divided into three groups: (I) patients diagnosed with Type B aortic dissection but did not undergo intervention (n=8); (II) patients with residual aortic dissection after open repair of Type A dissection (n=7); (III) patients who underwent endovascular aortic repair with or without open surgery (n=17). Without radiation or contrast media injection, 4D PC-MRI provided similar aortic images for patients in Group 1 and most of those in Group 2. In Group 3, stainless steel stents affected image quality in three patients. High-quality 4D PC-MRI images were obtained for the remaining 14 patients in Group 3, who had non-stainless steel stents, and provided major aortic information comparable to that provided by CTA with contrast media. The hemodynamic parameters of true and false lumens were evaluated between three patients with Type B aortic dissections and three patients who underwent thoracic endovascular aortic repair for their aortic dissection. The stroke volume was higher in the true lumen of the patients with stent-grafts than in the patients with Type B aortic dissection without intervention. The regurgitant fraction, an indicator of nonlaminar flow, was higher in the false lumens than in the true lumens. All 32 patients in this study tolerated 4D PC-MRI without adverse events. Conclusions 4D PC-MRI is radiation- and contrast media-free option for imaging aortic dissection. It not only provided images comparable in quality to those obtained with CTA but also provided information on hemodynamic parameters, including endoleak detection after thoracic endovascular aortic repair. 4D PC-MRI was safe and accurate in evaluating chronic Type B aortic dissection and residual aortic dissection after surgery for acute Type A aortic dissection. Therefore, it could be a potential tool in treating pathology in aortic dissection, especially for patients with malperfusion syndrome of visceral vessels and in young patients with renal function impairment. However, certain endograft materials, especially stainless steel, may prevent the further application of 4D PC-MRI and should be avoided.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Institute of Medicine, Chung Shan Medical University, Taichung.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital Chiayi Branch, College of Medicine, Chang Gung University, Chiayi and Taoyuan
| | - Yuan-Hsi Tseng
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Chiayi.,Chang Gung University, College of Medicine, Taoyuan
| | - Chien-Chao Lin
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Chiayi.,Chang Gung University, College of Medicine, Taoyuan
| | - Chih-Chen Kao
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Chiayi.,Chang Gung University, College of Medicine, Taoyuan
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Chiayi
| | - Hua Ting
- Institute of Medicine, Chung Shan Medical University, Taichung
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chia Yi Chang Gung Memorial Hospital, Chiayi.,Chang Gung University, College of Medicine, Taoyuan
| |
Collapse
|
50
|
Wu PH, Bedoya M, White J, Brace CL. Feature-based automated segmentation of ablation zones by fuzzy c-mean clustering during low-dose computed tomography. Med Phys 2021; 48:703-714. [PMID: 33237594 PMCID: PMC8594246 DOI: 10.1002/mp.14623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Intra-procedural monitoring and post-procedural follow-up is necessary for a successful ablation treatment. An imaging technique which can assess the ablation geometry accurately is beneficial to monitor and evaluate treatment. In this study, we developed an automated ablation segmentation technique for serial low-dose, noisy ablation computed tomography (CT) or contrast-enhanced CT (CECT). METHODS Low-dose, noisy temporal CT and CECT volumes were acquired during microwave ablation on normal porcine liver (four with non-contrast CT and eight with CECT). Highly constrained backprojection (HYPR) processing was used to recover ablation zone information compromised by low-dose noise. First-order statistic features and normalized fractional Brownian features (NBF) were used to segment ablation zones by fuzzy c-mean clustering. After clustering, the segmented ablation zone was refined by cyclic morphological processing. Automatic and manual segmentations were compared to gross pathology with Dice's coefficient (morphological similarity), while cross-sectional dimensions were compared by percent difference. RESULTS Automatic and manual segmentations of the ablation zone were very similar to gross pathology (Dice Coefficients: Auto.-Path. = 0.84 ± 0.02; Manu.-Path. = 0.76 ± 0.03, P = 0.11). The differences in ablation area, major diameter and minor diameter were 17.9 ± 3.2%, 11.1 ± 3.2% and 16.2 ± 3.4%, respectively, when comparing automatic segmentation to gross pathology, which were lower than the differences of 32.9 ± 16.8%, 13.0 ± 9.8% and 21.8 ± 5.8% when comparing manual segmentation to gross pathology. Manual segmentations tended to overestimate gross pathology when ablation area was less than 15 cm2 , but the automated segmentation tended to underestimate gross pathology when ablation zone is larger than 20 cm2 . CONCLUSION Fuzzy c-means clustering may be used to aid automatic segmentation of ablation zones without prior information or user input, making serial CT/CECT has more potential to assess treatments intra-procedurally.
Collapse
Affiliation(s)
- Po-hung Wu
- Department of Electrical and Computer Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Mariajose Bedoya
- Department of Medical Physics, University of Wisconsin - Madison, 1111 Highland Ave, Rm 1005, Madison, WI 53705, USA
| | - Jim White
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Christopher L. Brace
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|