1
|
Han Z, Dong Q, Lu X, Liu S, Yang Y, Shao F, Tian L. TSH upregulates CYP4B1 through the PI3K/AKT/CREB pathway to promote cardiac hypertrophy. J Endocrinol Invest 2025:10.1007/s40618-025-02554-z. [PMID: 40056338 DOI: 10.1007/s40618-025-02554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/09/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Subclinical hypothyroidism (SCH) is closely associated with heart failure and cardiac hypertrophy, yet the underlying mechanism remains unclear. METHODS Cardiomyocytes treated with thyroid-stimulating hormone (TSH) were used as an in vitro model. Cardiac-specific TSHR knockout mice (CKO) were treated with isoproterenol (ISO) to induce cardiac hypertrophy in vivo. Serum FT4, TSH levels, heart weight, body weight and tibial length of mice were evaluated. Heart function was analyzed by M-mode cardiac ultrasonography. The pathological changes in cardiac tissues were detected by immunohistochemistry, hematoxylin-eosin and WGA staining. mRNA levels of ANP, BNP, α-MHC and β-MHC were evaluated by RT-PCR. Western blot was used to detect pathway related proteins. Besides, the transcriptome sequencing analysis and dual-luciferase reporter assays were used to verify the relevant molecular mechanisms. RESULTS TSH significantly promotes cardiomyocyte hypertrophy in cardiomyocytes. Meanwhile, cardiac-specific TSHR knockout significantly reduced ISO-induced cardiac hypertrophy. This was demonstrated by reductions in cell sizes, decreased HW/BW and HW/TL ratios, along with improved expression of hypertrophic genes. Further transcriptome sequencing results showed that TSH can significantly promote the expression of CYP4B1 in vitro. And the knockdown of CYP4B1 repressed TSH-induced cardiomyocyte hypertrophy. Further mechanistic studies revealed that TSH regulated the expression of CYP4B1 hypertrophy through the PI3K/AKT/CREB signaling pathway. Subsequently, the dual-luciferase assays demonstrated that CREB promotes the transcription of CYP4B1 by binding to its promoter region. CONCLUSION Overall, our findings highlight the direct impact of TSH/TSHR on cardiomyocyte hypertrophy and proposed CYP4B1 as a promising target for mitigating cardiac hypertrophy in SCH patients.
Collapse
Affiliation(s)
- Ziqi Han
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Qianqian Dong
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao Lu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Shanshan Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yanlong Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Feifei Shao
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Limin Tian
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
2
|
Liao J, Zhang Y, Ma C, Wu G, Zhang W. Microbiome-metabolome reveals that the Suxiao Jiuxin pill attenuates acute myocardial infarction associated with fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116529. [PMID: 37086873 DOI: 10.1016/j.jep.2023.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Suxiao Jiuxin pill (SJP) is a Chinese medical patent drug on the national essential drug list of China, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been elucidated clearly, especially its relationship with the gut microbiota. AIM OF THE STUDY This study aimed to investigate the cardioprotective effect of SJP against isoproterenol-induced acute myocardial infarction (AMI) by integrating the gut microbiome and metabolome. METHODS A rat model of AMI was generated using isoproterenol. Firstly, the effect of antibiotic (ABX) treatment on the blood absorption and excretion of the main components of SJP were studied. Secondly, 16S rRNA sequencing and untargeted metabolomics were used to discover the improvement of SJP treatment on gut microbiota and host metabolism in AMI rats. Finally, targeted metabolomics was used to verify the effects of SJP treatment on host metabolism in AMI rats. RESULT The results showed that ABX treatment could affect the blood absorption and fecal excretion of the main active components of SJP. At the same time, SJP can restore the richness and diversity of gut microbiota, and multiple gut microbiota (including Jeotgalicoccus, Lachnospiraceae, and Blautia) are significantly associated with fatty acids. Untargeted metabolomics also found that SJP could restore the levels of various fatty acid metabolites in serum and cecal contents (p < 0.01, FC > 1.5 and VIP >1). Targeted metabolomics further confirmed that 41, 21, and 39 fatty acids were significantly altered in serum, cecal contents, and heart samples, respectively. Interestingly, these fatty acids belong to the class of eicosanoids, and SJP can significantly downregulate these eicosanoids in AMI rats. CONCLUSION The results of this study suggest that SJP may exert its cardioprotective effects by remodeling the gut microbiota and host fatty acid metabolism.
Collapse
Affiliation(s)
- Jingyu Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chi Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Yu YD, Xue YT, Li Y. Identification and verification of feature biomarkers associated in heart failure by bioinformatics analysis. Sci Rep 2023; 13:3488. [PMID: 36859608 PMCID: PMC9977868 DOI: 10.1038/s41598-023-30666-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Heart failure is the final destination of most cardiovascular diseases, and its complex molecular mechanisms remain largely uncertain. This study aimed to systematically investigate the underlying molecular mechanisms and diagnostic and therapeutic targets of heart failure using bioinformatics. We obtained 8 healthy samples and 8 heart failure samples from GSE8331 and GSE76701. After removing the batch effect, we performed a differential analysis on it and obtained 185 differentially expressed ID. The results of enrichment analysis showed that the molecular mechanisms of heart failure were mostly related to immune, inflammation, and metabolism-related pathways. Immune cell infiltration analysis showed that the degree of infiltration of Tgd cells and Neurons was significantly enriched in heart failure samples, whereas pDCs and NKTs were in healthy tissue samples. We obtained Hub genes including EGR1, EGR2, FOS and FOSB by PPI network analysis. We established a 4-gene diagnostic model with Hub gene, and validated it in GSE21610 and GSE57338, and evaluated the discriminative ability of Hub gene by ROC curve. The 4-gene diagnostic model has an AUC value of 0.775 in GSE21610 and 0.877 in GSE57338. In conclusion, we explored the underlying molecular mechanisms of heart failure and the immune cell infiltration environment of failing myocardium by performing bioinformatic analysis of the GEO dataset. In addition, we identified EGR1, EGR2, FOS and FOSB as potential diagnostic biomarkers and therapeutic targets for heart failure. More importantly, a diagnostic model of heart failure based on these 4 genes was developed, which leads to a new understanding of the pathogenesis of heart failure and may be an interesting target for future in-depth research.
Collapse
Affiliation(s)
- Yi-ding Yu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 China
| | - Yi-tao Xue
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014 China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Investigation of doxorubicin combined with ciprofloxacin-induced cardiotoxicity: from molecular mechanism to fundamental heart function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022:10.1007/s00210-022-02331-2. [DOI: 10.1007/s00210-022-02331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
|
5
|
Gao L, Kong X, Wu W, Feng Z, Zhi H, Zhang Z, Long H, Lei M, Hou J, Wu W, Guo DA. Dissecting the Regulation of Arachidonic Acid Metabolites by Uncaria rhynchophylla (Miq). Miq. in Spontaneously Hypertensive Rats and the Predictive Target sEH in the Anti-Hypertensive Effect Based on Metabolomics and Molecular Docking. Front Pharmacol 2022; 13:909631. [PMID: 35712719 PMCID: PMC9196077 DOI: 10.3389/fphar.2022.909631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
Uncariarhynchophylla (Miq). Miq. (UR), as a traditional Chinese medicine, was employed in treating hypertension as a safe and effective therapy. The pharmacological properties of UR have characteristics of multiple biological targets and multiple functional pathways. Hypertension is related to impaired metabolic homeostasis and is especially associated with the abnormal regulation of arachidonic acid metabolites, the classical cardiovascular active compounds. This study aimed to examine the anti-hypertensive effect of UR extract (URE) and its regulating role in differential metabolic pathways. The results showed that daily administration of URE at a dose of 4 g crude drug/kg orally could exert hypotensive effects on spontaneously hypertensive rats (SHRs) for 8 weeks. Non-targeted metabolomics analysis of the plasma samples suggested that the anti-hypertension effect of URE in SHRs was associated with the reorganization of the perturbed metabolic network, such as the pathways of glycerophospholipid metabolism, linoleic acid metabolism, and arachidonic acid metabolism. For the targeted metabolomics, twenty-eight arachidonic acid metabolites in SHRs were quantitatively analyzed for the first time based on ultra-high performance liquid chromatography-tandem mass spectrometry method after URE administration. URE restored the functions of these cardiovascular active compounds and rebalanced the dynamics of arachidonic acid metabolic flux. Among them, the inhibition of soluble epoxide hydrolase (sEH) enzyme activity and up-regulation of vasodilators epoxyeicosatrienoic acids (EETs) were identified as contributors to the anti-hypertension effect of URE on SHRs, and sEH represented an attractive and promising drug-binding target of URE. With the molecular docking approach, 13 potential anti-hypertension ingredients as well as sEH inhibitors were discovered, which were worthy of further investigation and verification in future studies.
Collapse
Affiliation(s)
- Lei Gao
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinqin Kong
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenyong Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijin Feng
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haijuan Zhi
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zijia Zhang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huali Long
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Lei
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinjun Hou
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jinjun Hou, ; Wanying Wu,
| | - Wanying Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jinjun Hou, ; Wanying Wu,
| | - De-an Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Xu X, Xie X, Zhang H, Wang P, Li G, Chen J, Chen G, Cao X, Xiong L, Peng F, Peng C. Water-soluble alkaloids extracted from Aconiti Radix lateralis praeparata protect against chronic heart failure in rats via a calcium signaling pathway. Biomed Pharmacother 2021; 135:111184. [PMID: 33418305 DOI: 10.1016/j.biopha.2020.111184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and β-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.
Collapse
MESH Headings
- Aconitum/chemistry
- Animals
- Apoptosis/drug effects
- Calcium Signaling/drug effects
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Chronic Disease
- Disease Models, Animal
- Fibrosis
- Heart Failure/drug therapy
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Solubility
- Solvents/chemistry
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water/chemistry
- Rats
Collapse
Affiliation(s)
- Xin Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaofang Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Huiqiong Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Pei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gangmin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Junren Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Guanru Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaoyu Cao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China.
| | - Cheng Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China.
| |
Collapse
|
7
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021; 11:jkaa014. [PMID: 33561224 PMCID: PMC7849908 DOI: 10.1093/g3journal/jkaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
8
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021. [PMID: 33561224 DOI: 10.1093/g3journal/jkaa014.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.,The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
9
|
Antidepressants and the Risk of Cardiovascular Events in Elderly Affected by Cardiovascular Disease: A Real-Life Investigation From Italy. J Clin Psychopharmacol 2020; 40:112-121. [PMID: 32134848 DOI: 10.1097/jcp.0000000000001189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study was to assess the possible relation between use of antidepressant (AD) drugs, that is, tricyclic ADs, selective serotonin reuptake inhibitors (SSRIs), and atypical ADs (AAs), and the risk of hospitalization for cardiovascular (CV) events among older patients with previous CV diseases. METHODS A nested case-control study was carried out among patients aged 65 years and older from 5 Italian health care territorial units who were discharged for CV disease during 2008 to 2010. The cohort was composed by 344,747 individuals, and of these, 97,739 (28%) experienced hospital admission for CV events (myocardial infarction, arrhythmia, stroke, heart failure) during follow-up (until 2014) and were included as cases. Up to 5 controls were randomly selected and matched to each. A conditional logistic regression was fitted to estimate the risk of CV events associated with ADs past or current use. A within-patient comparison was performed by the case-crossover design to account the effect of depression. FINDINGS Current users of SSRIs and AAs were at increased risk of CV events with odds ratios of 1.25 (95% confidence interval, 1.21-1.29) and 1.31 (1.25-1.37), respectively. An increased risk of arrhythmia and stroke was associated with current use of SSRIs and AAs, whereas an increased risk of heart failure was detected with current use of any ADs. The results were confirmed by the case-crossover approach. IMPLICATIONS Evidence that AD use is associated with an increased risk of CV events in accordance with specific mechanisms of action among older people with CV disease was added by this study.
Collapse
|
10
|
Tang HY, Wang CH, Ho HY, Lin JF, Lo CJ, Huang CY, Cheng ML. Characteristic of Metabolic Status in Heart Failure and Its Impact in Outcome Perspective. Metabolites 2020; 10:E437. [PMID: 33138215 PMCID: PMC7692076 DOI: 10.3390/metabo10110437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic alterations have been documented in peripheral tissues in heart failure (HF). Outcomes might be improved by early identification of risk. However, the prognostic information offered is still far from enough. We hypothesized that plasma metabolic profiling potentially provides risk stratification for HF patients. Of 61 patients hospitalized due to acute decompensated HF, 31 developed HF-related events in one year after discharge (Event group), and the other 30 patients did not (Non-event group). The plasma collected during hospital admission was analyzed by an ultra-high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOFMS)-based metabolomic approach. The orthogonal projection to latent structure discriminant analysis (OPLS-DA) reveals that the metabolomics profile is able to distinguish between events in HF. Levels of 19 metabolites including acylcarnitines, lysophospholipids, dimethylxanthine, dimethyluric acid, tryptophan, phenylacetylglutamine, and hypoxanthine are significantly different between patients with and without event (p < 0.05). Established risk prediction models of event patients by using receiver operating characteristics analysis reveal that the combination of tetradecenoylcarnitine, dimethylxanthine, phenylacetylglutamine, and hypoxanthine has better discrimination than B-type natriuretic peptide (BNP) (AUC 0.871 and 0.602, respectively). These findings suggest that metabolomics-derived metabolic profiling have the potential of identifying patients with high risk of HF-related events and provide insights related to HF outcome.
Collapse
Affiliation(s)
- Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung City 20401, Taiwan;
| | - Hung-Yao Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Jui-Fen Lin
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Cheng-Yu Huang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
11
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|
13
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
14
|
Effects of dronedarone, amiodarone and their active metabolites on sequential metabolism of arachidonic acid to epoxyeicosatrienoic and dihydroxyeicosatrienoic acids. Biochem Pharmacol 2017; 146:188-198. [DOI: 10.1016/j.bcp.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
|
15
|
Iyngkaran P, Thomas MC, Johnson R, French J, Ilton M, McDonald P, Hare DL, Fatkin D. Contextualizing Genetics for Regional Heart Failure Care. Curr Cardiol Rev 2016; 12:231-242. [PMID: 27280306 PMCID: PMC5011192 DOI: 10.2174/1573403x12666160606123103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) is a chronic and often devastating cardiovascular disorder with no cure. There has been much advancement in the last two decades that has seen improvements in morbidity and mortality. Clinicians have also noted variations in the responses to therapies. More detailed observations also point to clusters of diseases, phenotypic groupings, unusual severity and the rates at which CHF occurs. Medical genetics is playing an increasingly important role in answering some of these observations. This developing field in many respects provides more information than is currently clinically applicable. This includes making sense of the established single gene mutations or uncommon private mutations. In this thematic series which discusses the many factors that could be relevant for CHF care, once established treatments are available in the communities; this section addresses a contextual role for medical genetics.
Collapse
|
16
|
Korobkova EA. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases. Chem Res Toxicol 2015; 28:1359-90. [PMID: 26042469 DOI: 10.1021/acs.chemrestox.5b00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and (2) the mechanisms of the regulation of CYP gene expression mediated by polyphenols. The structure-activity relationship relevant to the ability of polyphenols to affect the activity of CYP is analyzed. The application of polyphenol-CYP interactions to diseases is discussed.
Collapse
Affiliation(s)
- Ekaterina A Korobkova
- John Jay College of Criminal Justice, The Department of Sciences, City University of New York, 524 W 59th Street, New York, New York 10019, United States
| |
Collapse
|
17
|
Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:854265. [PMID: 26146529 PMCID: PMC4471379 DOI: 10.1155/2015/854265] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/07/2015] [Indexed: 01/04/2023]
Abstract
Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.
Collapse
|