1
|
Jiang T, Xu C, Liu H, Liu M, Wang M, Jiang J, Zhang G, Yang C, Huang J, Lou Z. Linderae Radix Ethanol Extract Alleviates Diet-Induced Hyperlipidemia by Regulating Bile Acid Metabolism Through gut Microbiota. Front Pharmacol 2021; 12:627920. [PMID: 33679408 PMCID: PMC7925880 DOI: 10.3389/fphar.2021.627920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia is a common metabolic disorder and regarded as one of the main risk factors for cardiovascular disease. The gut microbiota has been identified as a potential contributor to hyperlipidemia as it can greatly regulate bile acid metabolism. Linderae radix is a natural medicine widely used in the treatment of a variety of diseases and is also a common drug for hyperlipidemia. Recently, the lipid-lowering effect of Linderae radix are receiving increasing attention but the underlying mechanism remains unknown. The study aimed to investigate the effects of Linderae radix ethanol extract (LREE) on gut microbiota in rats with hyperlipidemia syndrome. We established a hyperlipidemia rat model using a high-fat diet and used LREE as the intervention. Blood lipid levels and pathological examination were measured to assess the effects of LREE on hyperlipidemia. The gut microbiota was determined by 16s rDNA sequencing and the bile acid metabolism-related proteins were detected by western blot to discover the underlying correlations. The results show that LREE lowered TC, TG, and LDL levels effectively, and it also alleviated liver injury by reducing ALT and AST activity. Meanwhile, LREE improved gut microbiota disturbance caused by HFD via increasing intestinal microbiota diversity and changing the abundance of the Firmicutes, Bacteroidetes, and Actinobacteria. In addition, LREE can increase bile acid reabsorption and promote fecal excretion through farnesoid X receptor (FXR), apical sodium-dependent bile acid transporter (ASBT), organic solute transporter alpha (OST-α), and cytochrome P450 family 7 Subfamily A Member 1 (CYP7A1) thus restoring abnormal bile acid metabolism caused by hyperlipidemia.
Collapse
Affiliation(s)
- Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuyun Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifang Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Muyi Liu
- Biological Sciences Department, Computer Science Department, Purdue University, West Lafayette, IN, United States
| | - Minmin Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiarui Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianbo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Biological Sciences Department, Computer Science Department, Purdue University, West Lafayette, IN, United States
| | - Zhaohuan Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Russo S, De Azevedo WF. Advances in the Understanding of the Cannabinoid Receptor 1 – Focusing on the Inverse Agonists Interactions. Curr Med Chem 2019; 26:1908-1919. [DOI: 10.2174/0929867325666180417165247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Background:
Cannabinoid Receptor 1 (CB1) is a membrane protein prevalent in
the central nervous system, whose crystallographic structure has recently been solved. Studies
will be needed to investigate CB1 complexes with its ligands and its role in the development
of new drugs.
Objective:
Our goal here is to review the studies on CB1, starting with general aspects and
focusing on the recent structural studies, with emphasis on the inverse agonists bound structures.
Methods:
We start with a literature review, and then we describe recent studies on CB 1 crystallographic
structure and docking simulations. We use this structural information to depict
protein-ligand interactions. We also describe the molecular docking method to obtain complex
structures of CB 1 with inverse agonists.
Results:
Analysis of the crystallographic structure and docking results revealed the residues
responsible for the specificity of the inverse agonists for CB 1. Most of the intermolecular interactions
involve hydrophobic residues, with the participation of the residues Phe 170 and
Leu 359 in all complex structures investigated in the present study. For the complexes with
otenabant and taranabant, we observed intermolecular hydrogen bonds involving residues His
178 (otenabant) and Thr 197 and Ser 383 (taranabant).
Conclusion:
Analysis of the structures involving inverse agonists and CB 1 revealed the pivotal
role played by residues Phe 170 and Leu 359 in their interactions and the strong intermolecular
hydrogen bonds highlighting the importance of the exploration of intermolecular interactions
in the development of novel inverse agonists.
Collapse
Affiliation(s)
- Silvana Russo
- Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Walter Filgueira De Azevedo
- Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| |
Collapse
|
3
|
Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front Pharmacol 2019; 10:207. [PMID: 30949045 PMCID: PMC6435594 DOI: 10.3389/fphar.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
Collapse
Affiliation(s)
- Vincenzo Micale
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,National Institute Mental Health, Klecany, Czechia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | | | - Carsten T Wotjak
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
4
|
Mallipeddi S, Janero DR, Zvonok N, Makriyannis A. Functional selectivity at G-protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochem Pharmacol 2017; 128:1-11. [PMID: 27890725 PMCID: PMC5470118 DOI: 10.1016/j.bcp.2016.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
The phenomenon of functional selectivity, whereby a ligand preferentially directs the information output of a G-protein coupled receptor (GPCR) along (a) particular effector pathway(s) and away from others, has redefined traditional GPCR signaling paradigms to provide a new approach to structure-based drug design. The two principal cannabinoid receptors (CBRs) 1 and 2 belong to the class-A GPCR subfamily and are considered tenable therapeutic targets for several indications. Yet conventional orthosteric ligands (agonists, antagonists/inverse agonists) for these receptors have had very limited clinical utility due to their propensity to incite on-target adverse events. Chemically distinct classes of cannabinergic ligands exhibit signaling bias at CBRs towards individual subsets of signal transduction pathways. In this review, we discuss the known signaling pathways regulated by CBRs and examine the current evidence for functional selectivity at CBRs in response to endogenous and exogenous cannabinergic ligands as biased agonists. We further discuss the receptor and ligand structural features allowing for selective activation of CBR-dependent functional responses. The design and development of biased ligands may offer a pathway to therapeutic success for novel CBR-targeted drugs.
Collapse
Affiliation(s)
- Srikrishnan Mallipeddi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - Nikolai Zvonok
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
5
|
Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A, Laprairie RB, Stahl EL, Ho JH, Zvonok N, Zhou H, Kufareva I, Wu B, Zhao Q, Hanson MA, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ. Crystal Structure of the Human Cannabinoid Receptor CB 1. Cell 2016; 167:750-762.e14. [PMID: 27768894 DOI: 10.1016/j.cell.2016.10.004] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.
Collapse
Affiliation(s)
- Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kiran Vemuri
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Mengchen Pu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Anisha Korde
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Robert B Laprairie
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jo-Hao Ho
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Nikolai Zvonok
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Han Zhou
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Irina Kufareva
- University of California, San Diego, La Jolla, CA 92093, USA
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Laura M Bohn
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
7
|
Janero DR, Yaddanapudi S, Zvonok N, Subramanian KV, Shukla VG, Stahl E, Zhou L, Hurst D, Wager-Miller J, Bohn LM, Reggio PH, Mackie K, Makriyannis A. Molecular-interaction and signaling profiles of AM3677, a novel covalent agonist selective for the cannabinoid 1 receptor. ACS Chem Neurosci 2015; 6:1400-10. [PMID: 25978068 DOI: 10.1021/acschemneuro.5b00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptor's ligand-interaction landscape and molecular pharmacology constitute a prime contemporary research focus. For this purpose, we report utilization of AM3677, a designer endocannabinoid (anandamide) analogue derivatized with a reactive electrophilic isothiocyanate functionality, as a covalent, CB1R-selective chemical probe. The data demonstrate that reaction of AM3677 with a cysteine residue in transmembrane helix 6 of human CB1R (hCB1R), C6.47(355), is a key feature of AM3677's ligand-binding motif. Pharmacologically, AM3677 acts as a high-affinity, low-efficacy CB1R agonist that inhibits forskolin-stimulated cellular cAMP formation and stimulates CB1R coupling to G protein. AM3677 also induces CB1R endocytosis and irreversible receptor internalization. Computational docking suggests the importance of discrete hydrogen bonding and aromatic interactions as determinants of AM3677's topology within the ligand-binding pocket of active-state hCB1R. These results constitute the initial identification and characterization of a potent, high-affinity, hCB1R-selective covalent agonist with utility as a pharmacologically active, orthosteric-site probe for providing insight into structure-function correlates of ligand-induced CB1R activation and the molecular features of that activation by the native ligand, anandamide.
Collapse
Affiliation(s)
- David R. Janero
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Suma Yaddanapudi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kumar V. Subramanian
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vidyanand G. Shukla
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Edward Stahl
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lei Zhou
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dow Hurst
- Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - James Wager-Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Laura M. Bohn
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Patricia H. Reggio
- Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Hjorth S, Karlsson C, Jucaite A, Varnäs K, Wählby Hamrén U, Johnström P, Gulyás B, Donohue SR, Pike VW, Halldin C, Farde L. A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates. Neuropharmacology 2015; 101:519-30. [PMID: 25791528 DOI: 10.1016/j.neuropharm.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/05/2015] [Accepted: 03/07/2015] [Indexed: 01/14/2023]
Abstract
There is a medical need for safe and efficacious anti-obesity drugs with acceptable side effect profiles. To mitigate the challenge posed by translating target interaction across species and balancing beneficial vs. adverse effects, a positron emission tomography (PET) approach could help guide clinical dose optimization. Thus, as part of a compound differentiation effort, three novel selective CB1 receptor (CB1R) antagonists, developed by AstraZeneca (AZ) for the treatment of obesity, were compared with two clinically tested reference compounds, rimonabant and taranabant, with regard to receptor occupancy relative to dose and exposure. A total of 42 PET measurements were performed in 6 non-human primates using the novel CB1R antagonist radioligand [(11)C]SD5024. The AZ CB1R antagonists bound in a saturable manner to brain CB1R with in vivo affinities similar to that of rimonabant and taranabant, compounds with proven weight loss efficacy in clinical trials. Interestingly, it was found that exposures corresponding to those needed for optimal clinical efficacy of rimonabant and taranabant resulted in a CB1R occupancy typically around ∼20-30%, thus much lower than what would be expected for classical G-protein coupled receptor (GPCR) antagonists in other therapeutic contexts. These findings are also discussed in relation to emerging literature on the potential usefulness of 'neutral' vs. 'classical' CB1R (inverse agonist) antagonists. The study additionally highlighted the usefulness of the radioligand [(11)C]SD5024 as a specific tracer for CB1R in the primate brain, though an arterial input function would ideally be required in future studies to further assure accurate quantitative analysis of specific binding.
Collapse
Affiliation(s)
- Stephan Hjorth
- Biosciences, CVMD Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Cecilia Karlsson
- CVMD Translational Medicine Unit, Early Clinical Development, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden.
| | - Aurelija Jucaite
- AstraZeneca Translational Science Centre and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Varnäs
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Wählby Hamrén
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Peter Johnström
- AstraZeneca Translational Science Centre and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Balázs Gulyás
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sean R Donohue
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christer Halldin
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- AstraZeneca Translational Science Centre and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Janero DR, Makriyannis A. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems. ACS Chem Neurosci 2014; 5:1097-106. [PMID: 24866555 DOI: 10.1021/cn5000875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential (TRP) cation channels are critical components of cellular biosignaling networks. These plasma-membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid chemical classes, the overlap establishing a physiological connectivity between these two ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer ligands that interact with cannabinoid receptors and/or TRP channels as xenobiotics. Functional interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen (paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., Δ(9)-tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential themselves or promote the use of other addictive substances, suggesting the therapeutic potential for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the possibility of dual-acting ligands as drugs.
Collapse
Affiliation(s)
- David R. Janero
- Center for Drug Discovery and Departments of Chemistry
and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry
and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115-5000, United States
- King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| |
Collapse
|
10
|
Janero DR. Medications development for substance-use disorders: contextual influences (dis)incentivizing pharmaceutical-industry positioning. Expert Opin Drug Discov 2014; 9:1265-79. [PMID: 25162124 DOI: 10.1517/17460441.2014.951631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The significant contribution of substance-use disorders (SUDs) to the global-disease burden and associated unmet medical needs has not engendered a commensurate level of pharma-industry research and development (R&D) for novel SUD therapeutics invention. Analysis of contextual factors shaping this position suggests potential routes toward incentivizing R&D commitment for that purpose. AREAS COVERED This article considers multiple primary factors that have consorted to disincentivize pharma industry's operating in the SUD space: ill-understood pathology; variegated treatments and patient profiles; involved clinical trials; and - with particular reference to SUDs-negative cultural/business stigmas and shallow commercial precedent. Industry incentivization for SUD drug innovation requires progress on several fronts, including: translational experimental data and systems; personalized, holistic SUD treatment approaches; interactions among pharma, nonindustry constituencies, and the medical profession with vested interests in countering negative stereotypes and expanding SUD treatment options; and public-private alliances focused on improving SUD pharmacotherapy. EXPERT OPINION Given the well-entrenched business stance whereby the prospect of future profits in major markets largely determines drug-company R&D investment trajectory, strategic initiatives offering substantial reductions in the risks and opportunity (i.e., time and money) costs associated with SUD drug discovery are likely to be the most potent drivers for encouraging mainstream industry positioning in this therapeutic area. Such initiatives could originate from front-loaded R&D operational and back-loaded patent, regulatory, marketing and health-care policy reforms. These may be too involved and protracted for the turbulent pharmaceutical industry to entertain amid its recent retrenchment from psychiatric/CNS diseases and intense pressures to increase productivity and shareholder value.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
11
|
Makriyannis A. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 2014; 57:3891-911. [PMID: 24707904 DOI: 10.1021/jm500220s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
My involvement with the field of cannabinoids spans close to 3 decades and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and biotransformation. I was fortunate enough to start at the beginning of this new era and participate in a number of the new discoveries. It has been a very exciting journey. With coverage of some key aspects of my work during this period of "modern cannabinoid research," this Award Address, in part historical, intends to give an account of how the field grew, the key discoveries, and the most promising directions for the future.
Collapse
Affiliation(s)
- Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Janero DR. Synthetic agents in the context of metabolic/bariatric surgery: expanding the scope and impact of diabetes drug discovery. Expert Opin Drug Discov 2014; 9:221-8. [DOI: 10.1517/17460441.2014.876988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, and Health Sciences Entrepreneurs, 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000, USA ;
| |
Collapse
|
13
|
Chang CP, Wu CH, Song JS, Chou MC, Wong YC, Lin Y, Yeh TK, Sadani AA, Ou MH, Chen KH, Chen PH, Kuo PC, Tseng CT, Chang KH, Tseng SL, Chao YS, Hung MS, Shia KS. Discovery of 1-(2,4-dichlorophenyl)-N-(piperidin-1-yl)-4-((pyrrolidine-1-sulfonamido)methyl)-5-(5-((4-(trifluoromethyl)phenyl)ethynyl)thiophene-2-yl)-1H-pyrazole-3-carboxamide as a novel peripherally restricted cannabinoid-1 receptor antagonist with significant weight-loss efficacy in diet-induced obese mice. J Med Chem 2013; 56:9920-33. [PMID: 24224693 DOI: 10.1021/jm401158e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
After extensive synthetic efforts, we found that many structurally diverse bioisosteres could be generated via derivatizing the C-4 alkyl chain on the pyrazole ring of compound 3 (B/P = 1/33) with different electronegative groups. Especially when a sulfonamide or sulfamide moiety was added, resulting compounds exhibited not only potent CB1R activity but also a desired tPSA value over 90 Å(2), a threshold considered to possess a low probability to cross BBB, leading to the identification of compound 4 (B/P = 1/64) as a peripherally restricted CB1R antagonist. Apart from its significant weight-loss efficacy in DIO mice, compound 4 also displays 163 clean off-target profiles and is currently under development for treating obesity and the related metabolic syndrome.
Collapse
Affiliation(s)
- Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Lipids Health Dis 2013; 12:171. [PMID: 24209497 PMCID: PMC3827997 DOI: 10.1186/1476-511x-12-171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
Along with rising numbers of patients with metabolic syndrome, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased in proportion with the obesity epidemic. While there are no established treatments for NAFLD, current research is targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. This review discusses some of these emerging molecular mechanisms and their therapeutic implications for the treatment of NAFLD. The basic research that has identified potential molecular targets for pharmacotherapy will be outlined.
Collapse
|
15
|
Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 2013; 28 Suppl 1:68-76. [PMID: 23855299 DOI: 10.1111/jgh.12212] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non-alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma. The course of NAFLD is highly variable, and only a minority of patients (2-3%) progress to end-stage liver disease. However, due to a dramatic increase of the risk factors for NAFLD, that is obesity and insulin resistance/type 2 diabetes, that affect 15-30% and 7-15% of subjects, in most industrialized countries, respectively, NAFLD has become the most frequent liver disease and is even considered a pace setter of the metabolic syndrome. Sedentary lifestyle, modern Western nutrition, and genetic predispositions have been identified as major causes of NAFLD. These lead to liver injury via insulin resistance and an excess of free fatty acids in hepatocytes, resulting in oxidant stress and lipotoxicity that promote the activation of intracellular stress kinases and apoptosis or necroapoptosis (NASH). The damaged hepatocytes directly trigger inflammation and fibrogenesis, but can also lead to the emergence of fibrogenic progenitor cells. Moreover, NASH is linked to inflammation in peripheral adipose tissues that involves mainly macrophages and humoral factors, such as adipokines and cytokines. The most efficient treatment is by weight loss and exercise, but (adjunctive) pharmacological strategies are urgently needed. Here, we highlight the aspects of NAFLD epidemiology and pathophysiology that are beginning to lead to novel pharmacological approaches to address this growing health-care challenge.
Collapse
Affiliation(s)
- Detlef Schuppan
- Molecular and Translational Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | | |
Collapse
|
16
|
The cannabinoid Δ(9)-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr Diabetes 2013; 3:e68. [PMID: 23712280 PMCID: PMC3671751 DOI: 10.1038/nutd.2013.9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Cannabinoid type-1 (CB1) receptor inverse agonists improve type 2 diabetes and dyslipidaemia but were discontinued due to adverse psychiatric effects. Δ9-Tetrahydrocannabivarin (THCV) is a neutral CB1 antagonist producing hypophagia and body weight reduction in lean mice. We investigated its effects in dietary-induced (DIO) and genetically (ob/ob) obese mice. Methods: We performed two dose-ranging studies in DIO mice; study 1: 0.3, 1, 2.5, 5 and 12.5 mg kg−1, oral twice daily for 30 days and study 2: 0.1, 0.5, 2.5 and 12.5 mg kg−1, oral, once daily for 45 days. One pilot (study 3: 0.3 and 3 mg kg−1, oral, once daily) and one full dose-ranging (study 4: 0.1, 0.5, 2.5 and 12.5 mg kg−1, oral, once daily) studies in ob/ob mice for 30 days. The CB1 inverse agonist, AM251, oral, 10 mg kg−1 once daily or 5 mg kg−1 twice daily was used as the positive control. Cumulative food and water intake, body weight gain, energy expenditure, glucose and insulin levels (fasting or during oral glucose tolerance tests), plasma high-density lipoprotein and total cholesterol, and liver triglycerides were measured. HL-5 hepatocytes or C2C12 myotubes made insulin-resistant with chronic insulin or palmitic acid were treated with 0, 1, 3 and 10 μℳ THCV or AM251. Results: THCV did not significantly affect food intake or body weight gain in any of the studies, but produced an early and transient increase in energy expenditure. It dose-dependently reduced glucose intolerance in ob/ob mice and improved glucose tolerance and increased insulin sensitivity in DIO mice, without consistently affecting plasma lipids. THCV also restored insulin signalling in insulin-resistant hepatocytes and myotubes. Conclusions: THCV is a new potential treatment against obesity-associated glucose intolerance with pharmacology different from that of CB1 inverse agonists/antagonists.
Collapse
|
17
|
Janero DR. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists. Expert Opin Emerg Drugs 2012; 17:17-29. [DOI: 10.1517/14728214.2012.660916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|