1
|
Rocha J, Shapiro LR, Chimileski S, Kolter R. Complementary roles of EPS, T3SS and Expansin for virulence of Erwinia tracheiphila, the causative agent of cucurbit wilt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600446. [PMID: 38979168 PMCID: PMC11230154 DOI: 10.1101/2024.06.24.600446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Erwinia tracheiphila (Smith) is a recently emerged plant pathogen that causes severe economic losses in cucurbit crops in temperate Eastern North America. E. tracheiphila is xylem restricted, and virulence is thought to be related to Exopolysaccharides (EPS) and biofilm formation, which occlude the passage of sap in xylem vessels and causes systemic wilt. However, the role of EPS and biofilm formation, and their contribution to disease in relation to other virulence loci are unknown. Here, we use deletion mutants to explore the roles of EPS, Hrp Type III secretion system (Hrp T3SS) and Expansin in plant colonization and virulence. Then, we quantify the expression of the genes encoding these factors during infection. Our results show that Exopolysaccharides are essential for E. tracheiphila survival in host plants, while Hrp T3SS and Expansin are dispensable for survival but needed for systemic wilt symptom development. EPS and Hrp T3SS display contrasting expression patterns in the plant, reflecting their relevance in different stages of the infection. Finally, we show that expression of the eps and hrpT3SS operons is downregulated in mildly increased temperatures, suggesting a link between expression of these virulence factors and geographic restriction of E. tracheiphila to temperate regions. Our work highlights how E. tracheiphila virulence is a complex trait where several loci are coordinated during infection. These results further shed light into the relationship between virulence factors and the ecology of this pathosystem, which will be essential for developing sustainable management strategies for this emerging pathogen.
Collapse
Affiliation(s)
- Jorge Rocha
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Progama de Agricultura en Zonas Áridas; Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, La Paz, B.C.S. México 23096
| | - Lori R Shapiro
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| | - Scott Chimileski
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory; Woods Hole, MA, US 02543
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| |
Collapse
|
2
|
Shao J, Zhang ZJ, Shi Y, Jiang WQ, Siddique F, Chen L, Liu G, Zhu J, Luo XF, Liu YQ, An JX, Yang CJ, Cui ZN. Application and Mechanism of Cryptolepine and Neocryptolepine Derivatives as T3SS Inhibitors for Control of Bacterial Leaf Blight on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6988-6997. [PMID: 38506764 DOI: 10.1021/acs.jafc.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is extremely harmful to rice production. The traditional control approach is to use bactericides that target key bacterial growth factors, but the selection pressure on the pathogen makes resistant strains the dominant bacterial strains, leading to a decline in bactericidal efficacy. Type III secretion system (T3SS) is a conserved and critical virulence factor in most Gram-negative bacteria, and its expression or absence does not affect bacterial growth, rendering it an ideal target for creating drugs against Gram-negative pathogens. In this work, we synthesized a range of derivatives from cryptolepine and neocryptolepine. We found that compound Z-8 could inhibit the expression of Xoo T3SS-related genes without affecting the growth of bacteria. an in vivo bioassay showed that compound Z-8 could effectively reduce the hypersensitive response (HR) induced by Xoo in tobacco and reduce the pathogenicity of Xoo in rice. Furthermore, it exhibited synergy in control of bacterial leaf blight when combined with the quorum quenching bacterial F20.
Collapse
Affiliation(s)
- Jiang Shao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yu Shi
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Qi Jiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Faisal Siddique
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liangye Chen
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiakai Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Koroleva EA, Goryainova OS, Ivanova TI, Rutovskaya MV, Zigangirova NA, Tillib SV. Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation. Int J Mol Sci 2024; 25:2047. [PMID: 38396724 PMCID: PMC10889375 DOI: 10.3390/ijms25042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.
Collapse
Affiliation(s)
- Ekaterina A. Koroleva
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Tatiana I. Ivanova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Marina V. Rutovskaya
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Naylia A. Zigangirova
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Guo H, Geddes EJ, Opperman TJ, Heuck AP. Cell-Based Assay to Determine Type 3 Secretion System Translocon Assembly in Pseudomonas aeruginosa Using Split Luciferase. ACS Infect Dis 2023; 9:2652-2664. [PMID: 37978950 DOI: 10.1021/acsinfecdis.3c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multi-drug-resistant Pseudomonas aeruginosa poses a serious threat to hospitalized patients. This organism expresses an arsenal of virulence factors that enables it to readily establish infections and disseminate in the host. The Type 3 secretion system (T3SS) and its associated effectors play a crucial role in the pathogenesis of P. aeruginosa, making them attractive targets for the development of novel therapeutic agents. The T3SS translocon, composed of PopD and PopB, is an essential component of the T3SS secretion apparatus. In the properly assembled translocon, the N-terminus of PopD protrudes into the cytoplasm of the target mammalian cell, which can be exploited as a molecular indicator of functional translocon assembly. In this article, we describe a novel whole-cell-based assay that employs the split NanoLuc luciferase detection system to provide a readout for translocon assembly. The assay demonstrates a favorable signal/noise ratio (13.6) and robustness (Z' = 0.67), making it highly suitable for high-throughput screening of small-molecule inhibitors targeting T3SS translocon assembly.
Collapse
Affiliation(s)
- Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Emily J Geddes
- Microbiotix, Inc., Worcester, Massachusetts 01605, United States
| | | | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Gao D, Li H, Shao J, He L, Fu C, Lai H, O'Neill Rothenberg D, Xu X, Song G, Deng X, Cui ZN. Novel Ethyl-3-Aryl-2-Nitroacrylate Derivatives as Potential T3SS Inhibitors against Xanthomonas oryzae pv. oryzae on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37285515 DOI: 10.1021/acs.jafc.3c00838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a highly destructive bacterial disease. Traditional prevention methods have utilized antibiotics to target bacterial growth, which has accelerated the emergence of resistant strains. New prevention techniques are developing agents such as type III secretion system (T3SS) inhibitors that target bacterial virulence factors without affecting bacterial growth. To explore novel T3SS inhibitors, a series of ethyl-3-aryl-2-nitroacrylate derivatives were designed and synthesized. Preliminary screening of T3SS inhibitors was based on the inhibition of the hpa1 gene promoter and showed no effect on bacterial growth. Compounds B9 and B10, obtained in the primary screening, significantly inhibited the hypersensitive response (HR) in tobacco and the expression of T3SS genes in the hrp cluster including key regulatory genes. In vivo bioassays showed that T3SS inhibitors obviously inhibited BLB and appeared to be more effective when combined with quorum quenching bacteria F20.
Collapse
Affiliation(s)
- Dongni Gao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Shao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lulu He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Fu
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hongyu Lai
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Gao ZY, Song YL, Li XT, Li TH, Lu CH, Shen YM. Effects of hydrolysable tannins from Terminalia citrina on type III secretion system (T3SS) and their intestinal metabolite urolithin B represses Salmonella T3SS through Hha–H-NS–HilD–HilC–RtsA–HilA regulatory pathway. Microb Pathog 2022; 173:105837. [DOI: 10.1016/j.micpath.2022.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
|
7
|
Selim H, Radwan TEE, Reyad AM. Regulation of T3SS synthesis, assembly and secretion in Pseudomonas aeruginosa. Arch Microbiol 2022; 204:468. [PMID: 35810403 PMCID: PMC9271453 DOI: 10.1007/s00203-022-03068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
AbstractT3SS is an important virulence factor of Pseudomonas aeruginosa and has a central role in the infection process. However, the functional regulation of the T3SS by environmental signals is poorly understood. In our lab, we use fluorescence microscopy to study protein kinetics in real-time in live cells. In P. aeruginosa, results have shown that T3SS appears as bright foci at the cell membrane with no specific arrangement. In addition, T3SS is tightly controlled as it appears under a limited time period with the highest intensity at 3 h then disappears. Surprisingly, only 2.5% of the all assembled T3SS in the population have detectable ExoS synthesis. While T3SS assembly and ExoS synthesis increased under high salt concentration, they unexpectedly were not affected by different cyclic di-GMP levels. On the other hand, T3SS itself has an effect on the cyclic di-GMP levels inside the cell. Data have shown that despite T3SS in P. aeruginosa and Yersinia enterocolitica belong to the same the group, the two systems differentiate greatly in activity and regulation. We can conclude that every T3SS is unique and thus further studies are needed to elucidate the functional regulation of each system to better help effective inhibitor design.
Collapse
|
8
|
Hu A, Hu M, Chen S, Xue Y, Tan X, Zhou J. Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Front Microbiol 2022; 13:839025. [PMID: 35273588 PMCID: PMC8901885 DOI: 10.3389/fmicb.2022.839025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Jothi R, Hari Prasath N, Gowrishankar S, Pandian SK. Bacterial Quorum-Sensing Molecules as Promising Natural Inhibitors of Candida albicans Virulence Dimorphism: An In Silico and In Vitro Study. Front Cell Infect Microbiol 2021; 11:781790. [PMID: 34926324 PMCID: PMC8677694 DOI: 10.3389/fcimb.2021.781790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Farnesol, a self-secreted quorum-sensing molecule (QSM) of Candida albicans, has been known to limit yeast-to-hyphal transition by blocking the RAS1-cAMP-PKA pathway. In a similar fashion, certain bacterial QSMs have also been reported to be successful in attenuating C. albicans biofilm and hyphal formation at relatively high cell density. This prompted us to investigate the antihyphal efficacy of certain bacterial QSMs through virtual docking against seminal drug targets, viz., CYCc and RAS1, that have been reported to be the hallmark players in C. albicans dimorphic virulence cascade. Against this backdrop, 64 QSMs belonging to five different bacterial QS signaling systems were subjected to initial virtual screening with farnesol as reference. Data of the virtual screening unveiled QSMs belonging to diketopiperazines (DKPs), i.e., 3-benzyl-6-isobutylidene-2,5-piperazinedione (QSSM 1157) and cyclo(l-Pro-l-Leu) (QSSM 1112), as potential inhibitors of CYCc and RAS1 with binding energies of -8.2 and -7.3 kcal mol-1, respectively. Further, the molecular dynamics simulations (for 50 ns) of CYCc-QSSM 1157 and RAS1-QSSM 1112 complexes revealed the mean ligand root mean square deviation (RMSD) values of 0.35 and 0.27 Å, respectively, which endorsed the rigid nature, less fluctuation in binding stiffness, and conformation of binding complexes. Furthermore, the identified two QSMs were found to be good in solubility, absorption, and permeation and less toxic in nature, as revealed by pharmacokinetics and toxicity analyses. In addition, the in vitro antihyphal assays using liquid and solid media, germ-tube experiment, and microscopic analysis strongly validated DKP-QSSM 1112 as a promising inhibitor of hyphal transition. Taken together, the present study unequivocally proves that DKPs can be used as potent inhibitors of C. albicans virulence dimorphism.
Collapse
|
10
|
Identification of Translocation Inhibitors Targeting the Type III Secretion System of Enteropathogenic Escherichia coli. Antimicrob Agents Chemother 2021; 65:e0095821. [PMID: 34543097 DOI: 10.1128/aac.00958-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with enteropathogenic Escherichia coli (EPEC) cause severe diarrhea in children. The noninvasive bacteria adhere to enterocytes of the small intestine and use a type III secretion system (T3SS) to inject effector proteins into host cells to modify and exploit cellular processes in favor of bacterial survival and replication. Several studies have shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore, the loss of T3SS-mediated effector translocation results in increased immune recognition and clearance of the bacteria. The T3SS is, therefore, considered a promising target for antivirulence strategies and novel therapeutics development. Here, we report the results of a high-throughput screening assay based on the translocation of the EPEC effector protein Tir (translocated intimin receptor). Using this assay, we screened more than 13,000 small molecular compounds of six different compound libraries and identified three substances which showed a significant dose-dependent effect on translocation without adverse effects on bacterial or eukaryotic cell viability. In addition, these substances reduced bacterial binding to host cells, effector-dependent cell detachment, and abolished attaching and effacing lesion formation without affecting the expression of components of the T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial motility or Shiga-toxin expression were observed. In summary, we have identified three new compounds that strongly inhibit T3SS-mediated translocation of effectors into mammalian cells, which could be valuable as lead substances for treating EPEC and enterohemorrhagic E. coli infections.
Collapse
|
11
|
Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil H. Bacterial proteomics and its application for pathogenesis studies. Curr Pharm Biotechnol 2021; 23:1245-1256. [PMID: 34503411 DOI: 10.2174/1389201022666210908153234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which leads to preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, to study bacterial proteins, macromolecules are involved in the bacteria's structures and functions. These protein-based methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions such as biofilm formation, antibiotic resistance, and adaptation to the environment, which are helpful in promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis that causes rapid, easy, and accurate diagnosis of the infections.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsaneh Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Aghazadeh
- Microbiome and Health Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Hossein Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614711. Iran
| |
Collapse
|
12
|
Zigangirova NA, Nesterenko LN, Sheremet AB, Soloveva AV, Luyksaar SI, Zayakin ES, Balunets DV, Gintsburg AL. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J Antibiot (Tokyo) 2021; 74:244-254. [PMID: 33479520 DOI: 10.1038/s41429-020-00396-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 01/29/2023]
Abstract
Therapeutic strategies that target bacterial virulence have received considerable attention. The type III secretion system (T3SS) is important for bacterial virulence and represents an attractive therapeutic target. Recently, we developed a new small-molecule inhibitor belonging to a class 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones, Fluorothiazinon (FT-previously called CL-55). FT effectively suppressed T3SS of Chlamydia spp., Pseudomonas aeruginosa, and Salmonella without affecting bacterial growth in vitro. FT was previously characterized by low toxicity, stability, and therapeutic efficacy in animal models. Salmonella T3SS inhibition by FT was studied using in vitro assays for effector proteins detection and estimation of salmonella replication in peritoneal macrophages. The antibacterial effect of FT in vivo was investigated in murine models of salmonella chronic systemic and acute infection. Oral administration of the virulent strain of Salmonella enterica serovar Typhimurium to mice-induced chronic systemic infection with the pathogen persistence in different lymphoid organs such as spleens, Peyer's plaques, and mesenteric lymph nodes. We found that FT suppressed orally induced salmonella infection both with therapeutic and prophylactic administration. Treatment by FT at a dose of 50 mg/kg for 4 days starting from day 7 post-infection (therapy) as well as for 4 days before infection (prevention) led to practically complete eradication of salmonella in mice. FT shows a strong potential for antibacterial therapy and could be used as a substance in the design of antibacterial drugs for pharmaceutical intervention including therapy of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Nailya A Zigangirova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia.
| | - Ludmila N Nesterenko
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| | - Anna B Sheremet
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| | - Anna V Soloveva
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| | - Sergey I Luyksaar
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| | - Egor S Zayakin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| | - Denis V Balunets
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| | - Alexandr L Gintsburg
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, Gamaleya str.18, Moscow, 123098, Russia
| |
Collapse
|
13
|
Lv Q, Lv Y, Dou X, Wassy SL, Jia G, Wei L, Yu Q, Deng X, Zhang C, Wang J. Myricetin inhibits the type III secretion system of Salmonella enterica serovar typhimurium by downregulating the Salmonella pathogenic island I gene regulatory pathway. Microb Pathog 2021; 150:104695. [PMID: 33418000 DOI: 10.1016/j.micpath.2020.104695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/29/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Based on the in-depth study of type III secretion systems (T3SS) in pathogenic bacteria, approaches targeting T3SS have become new alternative strategies to combat drug-resistant bacterial infections. As an important food-borne pathogen, Salmonella enterica serovar Typhimurium (S. Typhimurium) injects effector proteins into host cells through the T3SS to disrupt cell signaling and host responses. In this study, myricetin was screened for its ability to block the translocation function of effector proteins (SipA/SipB) using cell biology and molecular biology methods. It exerted strong effects on inhibiting the expression of Salmonella pathogenicity island 1 (SPI-1)-associated effector proteins without affecting S. Typhimurium growth and thus prevented S. Typhimurium from invading HeLa cells and ultimately inhibited S. Typhimurium-mediated cell damage. In an animal experiment, myricetin comprehensively protected mice from death and pathological damage. A further analysis of the mechanism of action showed that myricetin interfered with the regulatory network of SPI-1-related genes, resulting in a significant decrease in the levels of key effector proteins, and thus inhibited T3SS-mediated virulence. In summary, this study provides a solution for clinical resistance to S. Typhimurium infection and potential candidate compounds. Myricetin, a potential T3SS inhibitor, possesses effective biological activity and exerts protective effects in vitro and in vivo. Myricetin will likely be developed as a novel type of antibiotic targeting S. Typhimurium infections in the future.
Collapse
Affiliation(s)
- Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanzhi Lv
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xinyi Dou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Soromou Lanan Wassy
- Higher Institute of Sciences and Veterinary Medicine (ISSMV) of Dalaba, B.P 09, Guinea
| | - Guobin Jia
- HeBei Yuan Zheng Pharmaceutical CO., LTD, Shijiazhuang, Hebei, China
| | - Lijuan Wei
- Hebei Veterinary Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuanjin Zhang
- Shandong Veterinary Drug Quality Inspection Institute, Jinan, China.
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
14
|
High-resolution view of the type III secretion export apparatus in situ reveals membrane remodeling and a secretion pathway. Proc Natl Acad Sci U S A 2019; 116:24786-24795. [PMID: 31744874 DOI: 10.1073/pnas.1916331116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type III protein secretion systems are essential virulence factors for many important pathogenic bacteria. The entire protein secretion machine is composed of several substructures that organize into a holostructure or injectisome. The core component of the injectisome is the needle complex, which houses the export apparatus that serves as a gate for the passage of the secreted proteins through the bacterial inner membrane. Here, we describe a high-resolution structure of the export apparatus of the Salmonella type III secretion system in association with the needle complex and the underlying bacterial membrane, both in isolation and in situ. We show the precise location of the core export apparatus components within the injectisome and bacterial envelope and demonstrate that their deployment results in major membrane remodeling and thinning, which may be central for the protein translocation process. We also show that InvA, a critical export apparatus component, forms a multiring cytoplasmic conduit that provides a pathway for the type III secretion substrates to reach the entrance of the export gate. Combined with structure-guided mutagenesis, our studies provide major insight into potential mechanisms of protein translocation and injectisome assembly.
Collapse
|
15
|
Ngo TD, Plé S, Thomas A, Barette C, Fortuné A, Bouzidi Y, Fauvarque MO, Pereira de Freitas R, Francisco Hilário F, Attrée I, Wong YS, Faudry E. Chimeric Protein-Protein Interface Inhibitors Allow Efficient Inhibition of Type III Secretion Machinery and Pseudomonas aeruginosa Virulence. ACS Infect Dis 2019; 5:1843-1854. [PMID: 31525902 DOI: 10.1021/acsinfecdis.9b00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen naturally resistant to many common antibiotics and acquires new resistance traits at an alarming pace. Targeting the bacterial virulence factors by an antivirulence strategy, therefore, represents a promising alternative approach besides antibiotic therapy. The Type III secretion system (T3SS) of P. aeruginosa is one of its main virulence factors. It consists of more than 20 proteins building a complex syringe-like machinery enabling the injection of toxin into host cells. Previous works showed that disrupting interactions between components of this machinery efficiently lowers the bacterial virulence. Using automated target-based screening of commercial and in-house libraries of small molecules, we identified compounds inhibiting the protein-protein interaction between PscE and PscG, the two cognate chaperones of the needle subunit PscF of P. aeruginosa T3SS. Two hits were selected and assembled using Split/Mix/Click chemistry to build larger hybrid analogues. Their efficacy and toxicity were evaluated using phenotypic analysis including automated microscopy and image analysis. Two nontoxic hybrid leads specifically inhibited the T3SS and reduced the ex vivo cytotoxicity of bacteria and their virulence in Galleria mellonella.
Collapse
Affiliation(s)
- Tuan-Dung Ngo
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Sophie Plé
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Aline Thomas
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, Genetics & Chemogenomics, 17 avenue des Martyrs, Grenoble 38054, France
| | - Antoine Fortuné
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Younes Bouzidi
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Marie-Odile Fauvarque
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, Genetics & Chemogenomics, 17 avenue des Martyrs, Grenoble 38054, France
| | - Rossimiriam Pereira de Freitas
- Universidade Federal de Minas Gerais, Departamento de Química, UFMG, Av Pres Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Flaviane Francisco Hilário
- Universidade Federal de Ouro Preto, Departamento de Química, ICEB, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Ina Attrée
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Eric Faudry
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| |
Collapse
|
16
|
Ugboko HU, Nwinyi OC, Oranusi SU, Fatoki TH, Akinduti PA, Enibukun JM. In Silico Screening and Analysis of Broad-Spectrum Molecular Targets and Lead Compounds for Diarrhea Therapy. Bioinform Biol Insights 2019; 13:1177932219884297. [PMID: 31695343 PMCID: PMC6820192 DOI: 10.1177/1177932219884297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Diarrhoeal disease kills about 1.5 million human beings per year across the continents. The enterotoxigenic Escherichia coli (ETEC) pathotype has been noted as a major cause of diarrheal disease in human and livestock. The aim of this study is to identify broad-spectrum molecular targets in bacteria and broad-spectrum lead compounds (functional inhibitors) with high efficacy and no significant adverse implication on human systems, in relevance to diarrhea therapy through computational approaches which include phylogenetics, target prediction, molecular docking, and molecular flexibility dynamic simulations. Three molecular target genes, murA, dxr, and DnaE, which code for uridine diphosphate-N-acetylglucosamine-1-carboxyvinyltransferase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase, and deoxyribonucleic acid polymerase III alpha subunit, respectively, were found to be highly conserved in 7 diarrhea-causing microbes. In addition, 21 potential compounds identified showed varied degree of affinity to these enzymes. At free energy cutoff of -8.0 kcal/mol, the highest effective molecular target was DNA polymerase III alpha subunit (PDB ID: 4JOM) followed by UDP-N-acetylglucosamine-1-carboxyvinyltransferase (PDB ID: 5UJS), and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PDB ID: 1ONN), while the highest effective lead compound was N-coeleneterazine followed by amphotericin B, MMV010576, MMV687800, MMV028694, azithromycin, and diphenoxylate. The flexibility dynamics of DNA polymerase III alpha subunit unraveled the atomic fluctuation which potentially implicated Asp593 as unstable active site amino acid residue. In conclusion, bacteria DnaE gene or its protein is a highly promising molecular target for the next generation of antibacterial drugs of the class of N-coeleneterazine.
Collapse
Affiliation(s)
- Harriet U Ugboko
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Obinna C Nwinyi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Solomon U Oranusi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Toluwase H Fatoki
- Enzyme Biotechnology and Pharmaceutics Research Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Paul A Akinduti
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Jesupemi M Enibukun
- Molecular Biology and Environmental Microbiology Research Unit, Department of Microbiology, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
17
|
Liu Y, Zhang Y, Zhou Y, Wang T, Deng X, Chu X, Zhou T. Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins. Vet Microbiol 2019; 239:108463. [PMID: 31767076 DOI: 10.1016/j.vetmic.2019.108463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
The increasing understanding of bacterial pathogenesis has revealed many new targets for the development of non-traditional antibacterial drugs. Interference with bacterial virulence has become a new strategy to treat bacteria-mediated diseases. As an important food-borne pathogen, Salmonella enterica serovar Typhimurium uses type III secretion system (T3SS) to facilitate invasion of host cells. In this study, we identified cinnamaldehyde as a Salmonella pathogenicity island 1 (SPI-1) inhibitor which blocks the secretion of several SPI-1 associated effector proteins and consequently exhibits a strong inhibitory effect on SPI-1-mediated invasion of HeLa cells. Further study revealed that cinnamaldehyde significantly reduced the transcription of some SPI-1 genes, such as sipA and sipB, in S. Typhimurium by affecting multiple SPI-1 regulator genes. In an animal infection model, cinnamaldehyde effectively protected infected mice against S. Typhimurium-induced mortality and pathological damages. In summary, this study presented an effective SPI-1 inhibitor, cinnamaldehyde, which reduces the expression of SPI-1 effector proteins by regulating the transcription of main regulator genes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yong Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Tingting Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiao Chu
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, China.
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical Uniersity, No. 48 People's Street, Liaoning, China.
| |
Collapse
|
18
|
Jiang S, Li H, Ahmed W, Xiang X, Song G, Cui ZN. Discovery of Ethyl 2-Nitro-3-Arylacrylates Molecules as T3SS Inhibitor Reducing the Virulence of Plant Pathogenic Bacteria Xanthomonas. Front Microbiol 2019; 10:1874. [PMID: 31481941 PMCID: PMC6710329 DOI: 10.3389/fmicb.2019.01874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a gram-negative pathogen which causes leaf blight disease. Known traditional bactericides are not much more effective in inhibiting this bacteria than before. Selecting the virulence factor of the bacteria as the target without affecting their growth has been considered as a novel method for developing new anti-microbial drugs. Type III secretion systems (T3SS) are one of the important and highly conserved virulence factors in most gram-negative pathogens, which has been considered as an effective target to develop new anti-microbial drugs. In order to discover potential anti-microbial drugs against Xoo pathogens, a series of ethyl 2-nitro-3-arylacrylates compounds were screened. Among them, the compounds I-9, I-12, and I-13 could highly inhibit the promoter activity of a harpin gene hpa1, which were used to further check for the influence on bacterial growth and on the hypersensitive response (HR) caused by Xoo bacteria on non-host plants. The results showed that above compounds could reduce HR without affecting bacterial growth and survival. Moreover, qRT-PCR analysis indicated that treatment with the three inhibitors (I-9, I-12, and I-13) could suppress the expression of the Xoo T3SS in different extent. The mRNA levels of representative genes in the hrp cluster, including the key regulatory genes hrpG and hrpX, were decreased. Last but not least, in vivo test ensured that the above compounds reduced the disease symptoms of Xoo on the rice and Xcc on the Chinese radish.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Kumar A, Ellermann M, Sperandio V. Taming the Beast: Interplay between Gut Small Molecules and Enteric Pathogens. Infect Immun 2019; 87:e00131-19. [PMID: 31262983 PMCID: PMC6704596 DOI: 10.1128/iai.00131-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The overuse of antibiotics has led to the evolution of drug-resistant bacteria that are becoming increasingly dangerous to human health. According to the Centers for Disease Control and Prevention, antibiotic-resistant bacteria cause at least 2 million illnesses and 23,000 deaths in the United States annually. Traditionally, antibiotics are bactericidal or bacteriostatic agents that place selective pressure on bacteria, leading to the expansion of antibiotic-resistant strains. In addition, antibiotics that are effective against some pathogens can also exacerbate their pathogenesis and may lead to severe progression of the disease. Therefore, alternative strategies are needed to treat antibiotic-resistant bacterial infections. One novel approach is to target bacterial virulence to prevent or limit pathogen colonization, while also minimizing tissue damage and disease comorbidities in the host. This review focuses on the interactions between enteric pathogens and naturally occurring small molecules in the human gut as potential therapeutic targets for antivirulence strategies. Individual small molecules in the intestines modulate enteric pathogen virulence and subsequent intestinal fitness and colonization. Targeted interruption of pathogen sensing of these small molecules could therefore attenuate their virulence. This review highlights the paths of discovery for new classes of antimicrobials that could potentially mitigate the urgent problem of antibiotic resistance.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa Ellermann
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Gibbs ME, Lountos GT, Gumpena R, Waugh DS. Crystal structure of UDP-glucose pyrophosphorylase from Yersinia pestis, a potential therapeutic target against plague. Acta Crystallogr F Struct Biol Commun 2019; 75:608-615. [PMID: 31475928 PMCID: PMC6718147 DOI: 10.1107/s2053230x19011154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Å resolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.
Collapse
Affiliation(s)
- Morgan E. Gibbs
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rajesh Gumpena
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Synthesis and bioactivity of 1,3-thiazolidine-2-thione derivatives against type III secretion system of Xanthomonas oryzae. Bioorg Med Chem 2019; 27:3364-3371. [PMID: 31204227 DOI: 10.1016/j.bmc.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022]
Abstract
Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of 1,3-thiazolidine-2-thione derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth. The results indicated that treatment of Xoo with the title compound III-7 did not affect bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the inhibitor. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
|
22
|
Abstract
Antibiotic resistance is a major public health threat that has stimulated the scientific community to search for nontraditional therapeutic targets. Because virulence, but not the growth, of many Gram-negative bacterial pathogens depends on the multicomponent type three secretion system injectisome (T3SSi), the T3SSi has been an attractive target for identifying small molecules, peptides, and monoclonal antibodies that inhibit its function to render the pathogen avirulent. While many small-molecule lead compounds have been identified in whole-cell-based high-throughput screens (HTSs), only a few protein targets of these compounds are known; such knowledge is an important step to developing more potent and specific inhibitors. Evaluation of the efficacy of compounds in animal studies is ongoing. Some efforts involving the development of antibodies and vaccines that target the T3SSi are further along and include an antibody that is currently in phase II clinical trials. Continued research into these antivirulence therapies, used alone or in combination with traditional antibiotics, requires combined efforts from both pharmaceutical companies and academic labs.
Collapse
|
23
|
Fan S, Tian F, Fang L, Yang CH, He C. Transcriptional responses of Xanthomonas oryzae pv. oryzae to type III secretion system inhibitor ortho-coumaric acid. BMC Microbiol 2019; 19:163. [PMID: 31307395 PMCID: PMC6631524 DOI: 10.1186/s12866-019-1532-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background We previously identified a plant-derived phenolic compound ortho-coumaric acid (OCA) as an inhibitor of type III secretion system (T3SS) of Xanthomonas oryzae pv. oryzae (Xoo), the pathogen causing bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. However, the molecular mechanisms by which OCA suppresses T3SS and the transcriptional responses to the OCA treatments in Xoo remains unclear. Results The present study conducted the RNA-seq-based transcriptomic analysis to reveal changes in gene expression in Xoo in response to 30 min, 1 h, 3 h, and 6 h of OCA treatment. Results showed that OCA significantly inhibited the expression of T3SS genes after 30 min, and the inhibition also existed after 1 h, 3 h, and 6 h. After treatment for 30 min, membrane proteins in the functional category of cellular process was the predominant group affected, indicating that Xoo was in the early stress stage. Over time, more differentially-expressed genes (DEGs) gathered in the functional category of biological process. Analysis of common DEGs at all four of time points revealed the core elements of Xoo during the response to OCA treatment. Notable, a multidrug transporter cluster that consisted of a MarR-family protein (PXO_RS13760), a multidrug RND transporter (PXO_RS13755), a multidrug transporter (PXO_RS13750), and an MFS transporter (PXO_RS13745) were significantly up-regulated at all four of the time points. Although these three transporter genes were not upregulated by OCA in the PXO_RS13760 deletion mutant, the deficiency of PXO_RS13760 in Xoo did not affect T3SS transcript, and OCA still had the ability to inhibit the expression of T3SS in the mutant, suggesting that the MarR-family protein was involved in bacterial responses to OCA, but not direct OCA inhibition of T3SS in Xoo. Conclusions We analyzed the transcriptome of Xoo during OCA treatment at both early and late stages, which revealed the landscape of Xoo responses to OCA at the whole-genome transcription level. A multidrug transporter cluster was identified to be involved in the response process, but had no direct relation to T3SS in Xoo. Electronic supplementary material The online version of this article (10.1186/s12866-019-1532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan, 250014, Shandong Province, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liwei Fang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Slater SL, Sågfors AM, Pollard DJ, Ruano-Gallego D, Frankel G. The Type III Secretion System of Pathogenic Escherichia coli. Curr Top Microbiol Immunol 2019; 416:51-72. [PMID: 30088147 DOI: 10.1007/82_2018_116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the elaboration of a type III secretion system (T3SS). Few strains also encode a second T3SS, named ETT2. Through the integration of coordinated intracellular and extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as well as the plasma membrane of the host cell. As such, the T3SS serves as a conduit, allowing the chaperone-regulated translocation of effector proteins directly into the host cytosol to subvert eukaryotic cell processes. Recent technological advances revealed high structural resolution of the T3SS apparatus and how it could be exploited to treat enteric disease. This chapter summarises the current knowledge of the structure and function of the E. coli T3SSs.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Agnes M Sågfors
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Dominic J Pollard
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
25
|
Lv Q, Chu X, Yao X, Ma K, Zhang Y, Deng X. Inhibition of the type III secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium. J Cell Mol Med 2019; 23:4679-4688. [PMID: 31066220 PMCID: PMC6584516 DOI: 10.1111/jcmm.14354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022] Open
Abstract
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections.
Collapse
Affiliation(s)
- Qianghua Lv
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xinyu Yao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Kelong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yong Zhang
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
26
|
Swietnicki W, Czarny A, Antkowiak L, Zaczynska E, Kolodziejczak M, Sycz J, Stachowicz L, Alicka M, Marycz K. Identification of a potent inhibitor of type II secretion system from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2019; 513:688-693. [PMID: 30987825 DOI: 10.1016/j.bbrc.2019.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen infecting human population. The pathogen is becoming a serious health problem due to its ability to evade normal immune response of the host and multiple drug resistance to many antibiotics. The pathogen has 2 major virulence systems of which the type III secretion system (T3SS) is of major concern to humans. A third system, type 2 secretion system (T2SS), is common to bacteria and used to secrete exotoxin A (ExoA) responsible for human cell destruction. To help bypass the drug resistance, a strategy to block the T2SS based on a low similarity between human ATPases and the essential ATPases of the T3SS and T2SS of P. aeruginosa, was used. An in silico-optimized inhibitor of T3SS, made directly from the computer-optimized of previously published compounds and their combinatorial libraries, showed IC50 = 1.3 ± 0.2 μM in the T2SS ExoA secretion blocking test. The compound was non-toxic to human lung epithelial cell line A549 and could block cellular destruction of those cells in a cell infection model at 200 μM for at least 24 h. The compound could be a lead candidate for the development of T2SS virulence blockers of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, USA.
| | - Anna Czarny
- Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, USA
| | - Lukasz Antkowiak
- Faculty of Chemistry, Department of Biochemistry, Technical University of Wroclaw, Ul. C. K. Norwida 4/6, 50-373, Wroclaw, Poland
| | - Ewa Zaczynska
- Department of Experimental Therapy, Laboratory of Immunobiology, Institute of Immunology and Experimental Therapy PAS, 53-114, Wroclaw, Ul. R. Weigla 12, Poland
| | - Monika Kolodziejczak
- Faculty of Chemistry, Department of Biochemistry, Technical University of Wroclaw, Ul. C. K. Norwida 4/6, 50-373, Wroclaw, Poland
| | - Jordan Sycz
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Ul. C. K. Norwida 25, 50-375, Wroclaw, Poland
| | - Lukasz Stachowicz
- Department of Pharmacology, Silesian Medical University, Ul. Jednosci 8, 41-200, Sosnowiec, Poland
| | - Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Ul. C. K. Norwida 27B, 50-375, Wroclaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Ul. C. K. Norwida 27B, 50-375, Wroclaw, Poland; Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
27
|
Lombardi C, Tolchard J, Bouillot S, Signor L, Gebus C, Liebl D, Fenel D, Teulon JM, Brock J, Habenstein B, Pellequer JL, Faudry E, Loquet A, Attrée I, Dessen A, Job V. Structural and Functional Characterization of the Type Three Secretion System (T3SS) Needle of Pseudomonas aeruginosa. Front Microbiol 2019; 10:573. [PMID: 31001211 PMCID: PMC6455054 DOI: 10.3389/fmicb.2019.00573] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 01/23/2023] Open
Abstract
The type three secretion system (T3SS) is a macromolecular protein nano-syringe used by different bacterial pathogens to inject effectors into host cells. The extracellular part of the syringe is a needle-like filament formed by the polymerization of a 9-kDa protein whose structure and proper localization on the bacterial surface are key determinants for efficient toxin injection. Here, we combined in vivo, in vitro, and in silico approaches to characterize the Pseudomonas aeruginosa T3SS needle and its major component PscF. Using a combination of mutagenesis, phenotypic analyses, immunofluorescence, proteolysis, mass spectrometry, atomic force microscopy, electron microscopy, and molecular modeling, we propose a model of the P. aeruginosa needle that exposes the N-terminal region of each PscF monomer toward the outside of the filament, while the core of the fiber is formed by the C-terminal helix. Among mutations introduced into the needle protein PscF, D76A, and P47A/Q54A caused a defect in the assembly of the needle on the bacterial surface, although the double mutant was still cytotoxic on macrophages in a T3SS-dependent manner and formed filamentous structures in vitro. These results suggest that the T3SS needle of P. aeruginosa displays an architecture that is similar to that of other bacterial needles studied to date and highlight the fact that small, targeted perturbations in needle assembly can inhibit T3SS function. Therefore, the T3SS needle represents an excellent drug target for small molecules acting as virulence blockers that could disrupt pathogenesis of a broad range of bacteria.
Collapse
Affiliation(s)
- Charlotte Lombardi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - James Tolchard
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France
| | - Stephanie Bouillot
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Caroline Gebus
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - David Liebl
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Juliane Brock
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Eric Faudry
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France
| | - Ina Attrée
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Andréa Dessen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Viviana Job
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.,Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| |
Collapse
|
28
|
Tao H, Fan SS, Jiang S, Xiang X, Yan X, Zhang LH, Cui ZN. Small Molecule Inhibitors Specifically Targeting the Type III Secretion System of Xanthomonas oryzae on Rice. Int J Mol Sci 2019; 20:E971. [PMID: 30813400 PMCID: PMC6412923 DOI: 10.3390/ijms20040971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 11/24/2022] Open
Abstract
The initiative strategy for the development of novel anti-microbial agents usually uses the virulence factors of bacteria as a target, without affecting their growth and survival. The type III secretion system (T3SS), one of the essential virulence factors in most Gram-negative pathogenic bacteria because of its highly conserved construct, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) causes leaf blight diseases and is one of the most important pathogens on rice. To find potential anti-virulence agents against this pathogen, a number of natural compounds were screened for their effects on the T3SS of Xoo. Three of 34 compounds significantly inhibited the promoter activity of the harpin gene, hpa1, and were further checked for their impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with CZ-1, CZ-4 and CZ-9 resulted in an obviously attenuated HR without affecting bacterial growth and survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hypersensitive response and pathogenicity (hrp) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Su-Su Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Abstract
Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
31
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
32
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [PMID: 29936031 DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
33
|
Shimizu T, Otonari S, Suzuki J, Uda A, Watanabe K, Watarai M. Expression of Francisella pathogenicity island protein intracellular growth locus E (IglE) in mammalian cells is involved in intracellular trafficking, possibly through microtubule organizing center. Microbiologyopen 2018; 8:e00684. [PMID: 29978561 PMCID: PMC6460260 DOI: 10.1002/mbo3.684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis is the causative agent of the infectious disease tularemia and is designated a category A bioterrorism agent. The type VI secretion system encoded by the Francisella pathogenicity island (FPI) is necessary for intracellular growth; however, the functions of FPI proteins are largely unknown. In this study, we found that the FPI protein intracellular growth locus E (IglE) showed a unique localization pattern compared to other FPI proteins. Deleting iglE from Francisella tularensis subsp. novicida (F. novicida) decreased intracellular growth. Immunoprecipitation and pull‐down assays revealed that IglE was associated with β‐tubulin. Additionally, GFP‐fused IglE colocalized with microtubule organizing centers (MTOCs) in 293T cells. The iglE deletion mutant was transferred with dynein toward MTOCs and packed into lysosome‐localizing areas. Conversely, the wild‐type F. novicida exhibited intracellular growth distant from MTOCs. In addition, IglE expressed in 293T cells colocalized with dynein. These results suggest that IglE helps to prevent dynein‐ and MTOC‐mediated intracellular trafficking in host cells to inhibit the transport of F. novicida toward lysosomes.
Collapse
Affiliation(s)
- Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Shiho Otonari
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
34
|
Gao X, Mu Z, Yu X, Qin B, Wojdyla J, Wang M, Cui S. Structural Insight Into Conformational Changes Induced by ATP Binding in a Type III Secretion-Associated ATPase From Shigella flexneri. Front Microbiol 2018; 9:1468. [PMID: 30013545 PMCID: PMC6036117 DOI: 10.3389/fmicb.2018.01468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Gram-negative bacteria utilize the type III secretion system (T3SS) to inject effector proteins into the host cell cytoplasm, where they subvert cellular functions and assist pathogen invasion. The conserved type III-associated ATPase is critical for the separation of chaperones from effector proteins, the unfolding of effector proteins and translocating them through the narrow channel of the secretion apparatus. However, how ATP hydrolysis is coupled to the mechanical work of the enzyme remains elusive. Herein, we present a complete description of nucleoside triphosphate binding by surface presentation antigens 47 (Spa47) from Shigella flexneri, based on crystal structures containing ATPγS, a catalytic magnesium ion and an ordered water molecule. Combining the crystal structures of Spa47-ATPγS and unliganded Spa47, we propose conformational changes in Spa47 associated with ATP binding, the binding of ATP induces a conformational change of a highly conserved luminal loop, facilitating ATP hydrolysis by the Spa47 ATPase. Additionally, we identified a specific hydrogen bond critical for ATP recognition and demonstrated that, while ATPγS is an ideal analog for probing ATP binding, AMPPNP is a poor ATP mimic. Our findings provide structural insight pertinent for inhibitor design.
Collapse
Affiliation(s)
- Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhixia Mu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Yu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Qin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Justyna Wojdyla
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Xiang X, Tao H, Jiang S, Zhang LH, Cui ZN. Synthesis and bioactivity of thiazolidin-2-cyanamide derivatives against type III secretion system of Xanthomonas oryzae on rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:89-97. [PMID: 30033022 DOI: 10.1016/j.pestbp.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most Important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with the title compounds II-2, II-3 and II-4 resulted in significantly attenuated HR without affecting bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
Affiliation(s)
- Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
36
|
Getino M, de la Cruz F. Natural and Artificial Strategies To Control the Conjugative Transmission of Plasmids. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0015-2016. [PMID: 29327679 PMCID: PMC11633558 DOI: 10.1128/microbiolspec.mtbp-0015-2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/19/2022] Open
Abstract
Conjugative plasmids are the main carriers of transmissible antibiotic resistance (AbR) genes. For that reason, strategies to control plasmid transmission have been proposed as potential solutions to prevent AbR dissemination. Natural mechanisms that bacteria employ as defense barriers against invading genomes, such as restriction-modification or CRISPR-Cas systems, could be exploited to control conjugation. Besides, conjugative plasmids themselves display mechanisms to minimize their associated burden or to compete with related or unrelated plasmids. Thus, FinOP systems, composed of FinO repressor protein and FinP antisense RNA, aid plasmids to regulate their own transfer; exclusion systems avoid conjugative transfer of related plasmids to the same recipient bacteria; and fertility inhibition systems block transmission of unrelated plasmids from the same donor cell. Artificial strategies have also been designed to control bacterial conjugation. For instance, intrabodies against R388 relaxase expressed in recipient cells inhibit plasmid R388 conjugative transfer; pIII protein of bacteriophage M13 inhibits plasmid F transmission by obstructing conjugative pili; and unsaturated fatty acids prevent transfer of clinically relevant plasmids in different hosts, promoting plasmid extinction in bacterial populations. Overall, a number of exogenous and endogenous factors have an effect on the sophisticated process of bacterial conjugation. This review puts them together in an effort to offer a wide picture and inform research to control plasmid transmission, focusing on Gram-negative bacteria.
Collapse
Affiliation(s)
- María Getino
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| |
Collapse
|
37
|
A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 2017; 8:15940. [PMID: 28653671 PMCID: PMC5490264 DOI: 10.1038/ncomms15940] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion ‘injectisome’. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol. Binding to the injectisome stabilizes these cytosolic complexes, whereas the free cytosolic complexes, which include the type III secretion ATPase, constitute a highly dynamic and adaptive network. The extracellular calcium concentration, which triggers activation of the T3SS, directly influences the cytosolic complexes, possibly through the essential component SctK/YscK, revealing a potential mechanism involved in the regulation of type III secretion. Bacterial type III secretion systems (T3SS) play important roles in pathogenesis. Here, Diepold et al. show the dynamic nature of complexes formed of essential T3SS components in live bacteria, and that extracellular calcium concentrations influence these cytosolic complexes likely via SctK/YscK.
Collapse
|
38
|
O'Meara CP, Armitage CW, Andrew DW, Kollipara A, Lycke NY, Potter AA, Gerdts V, Petrovsky N, Beagley KW. Multistage vaccines containing outer membrane, type III secretion system and inclusion membrane proteins protects against a Chlamydia genital tract infection and pathology. Vaccine 2017; 35:3883-3888. [PMID: 28602608 DOI: 10.1016/j.vaccine.2017.05.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
Abstract
Pathogens with a complex lifecycles can effectively evade host immunity in part due to each developmental stage expressing unique sets of antigens. Multisubunit vaccines incorporating signature antigens reflecting distinct developmental stages (multistage vaccines) have proven effective against viral, bacterial and parasitic infection at preventing pathogen evasion of host immunity. Chlamydia trachomatis is characterized by a biphasic extra/intracellular developmental cycle and an acute/persistent (latent) metabolic state; hence a multistage vaccine may prevent immune evasion and enhance clearance. Here we tested the efficacy of a multistage vaccine containing outer membrane (MOMP and PmpG), type three secretion system (T3SS) (CdsF and TC0873) and inclusion membrane proteins (IncA and TC0500) in mice against an intravaginal challenge with Chlamydia muridarum. Comparison of single (eg. MOMP) and double antigen vaccines (eg. MOMP and PmpG), largely targeting the extracellular stage, elicited significant yet comparable protection against vaginal shedding when compared to unimmunized control mice. Utilization of different adjuvants (ISCOMATRIX - IMX, PCEP/polyI:C/IDR1002 - VIDO, CTA1-DD and ADVAX) and numerous immunization routes (subcutaneous - SQ and intranasal - IN) further enhanced protection against infection. However, a multistage vaccine elicited significantly greater protection against vaginal shedding and upper genital tract pathology than vaccines targeting only extra- or intracellular stages. This indicates that protection elicited by a vaccine targeting extracellular chlamydial antigens could be improved by including chlamydial antigen expressed during intracellular phase.
Collapse
Affiliation(s)
- Connor P O'Meara
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia; Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Wüttemburg, Germany
| | - Charles W Armitage
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Dean W Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Avinash Kollipara
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Nils Y Lycke
- Mucosal Immunobiology and Vaccine Centre, University of Gothenburg, Sweden
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, Canada
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Adelaide, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| |
Collapse
|
39
|
In Situ Molecular Architecture of the Salmonella Type III Secretion Machine. Cell 2017; 168:1065-1074.e10. [PMID: 28283062 DOI: 10.1016/j.cell.2017.02.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/07/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
Abstract
Type III protein secretion systems have specifically evolved to deliver bacterially encoded proteins into target eukaryotic cells. The core elements of this multi-protein machine are the envelope-associated needle complex, the inner membrane export apparatus, and a large cytoplasmic sorting platform. Here, we report a high-resolution in situ structure of the Salmonella Typhimurium type III secretion machine obtained by high-throughput cryo-electron tomography and sub-tomogram averaging. Through molecular modeling and comparative analysis of machines assembled with protein-tagged components or from different deletion mutants, we determined the molecular architecture of the secretion machine in situ and localized its structural components. We also show that docking of the sorting platform results in significant conformational changes in the needle complex to provide the symmetry adaptation required for the assembly of the entire secretion machine. These studies provide major insight into the structure and assembly of a broadly distributed protein secretion machine.
Collapse
|
40
|
Visualization and characterization of individual type III protein secretion machines in live bacteria. Proc Natl Acad Sci U S A 2017; 114:6098-6103. [PMID: 28533372 PMCID: PMC5468683 DOI: 10.1073/pnas.1705823114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type III protein secretion machines have evolved to deliver bacterially encoded effector proteins into eukaryotic cells. Although electron microscopy has provided a detailed view of these machines in isolation or fixed samples, little is known about their organization in live bacteria. Here we report the visualization and characterization of the Salmonella type III secretion machine in live bacteria by 2D and 3D single-molecule switching superresolution microscopy. This approach provided access to transient components of this machine, which previously could not be analyzed. We determined the subcellular distribution of individual machines, the stoichiometry of the different components of this machine in situ, and the spatial distribution of the substrates of this machine before secretion. Furthermore, by visualizing this machine in Salmonella mutants we obtained major insights into the machine's assembly. This study bridges a major resolution gap in the visualization of this nanomachine and may serve as a paradigm for the examination of other bacterially encoded molecular machines.
Collapse
|
41
|
Fan S, Tian F, Li J, Hutchins W, Chen H, Yang F, Yuan X, Cui Z, Yang C, He C. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. MOLECULAR PLANT PATHOLOGY 2017; 18:555-568. [PMID: 27084974 PMCID: PMC6638228 DOI: 10.1111/mpp.12415] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeting of bacterial type III secretion systems (T3SSs), which are critical virulence factors in most Gram-negative pathogens, is regarded as an alternative strategy for the development of novel anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are two of the most important bacterial pathogens on rice, which cause leaf blight and leaf streak diseases, respectively. To identify potential anti-virulence drugs against these two pathogens, we screened a library of plant phenolic compounds and derivatives for their effects on the Xoo T3SS. Ten of 56 compounds significantly inhibited the promoter activity of a harpin gene, hpa1. These inhibitors were further tested for their impact on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results showed that pretreatment of Xoo with TS006 (o-coumaric acid, OCA), TS010, TS015 and TS018 resulted in significantly attenuated HR without affecting bacterial growth or survival. In addition, Cya translocation assays demonstrated that the translocation of two T3 effectors was suppressed by the four inhibitors. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced by treatment with the four inhibitors, suggesting that expression of the Xoo T3SS was suppressed. The expression of other virulence factors was not suppressed, which indicated possible T3SS-specific inhibition. Finally, we demonstrated that these inhibitors reduced the disease symptoms of Xoo and Xoc on the rice cultivar (Oryza sativa) IR24 to varying extents.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Jianyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - William Hutchins
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
42
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
43
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
44
|
Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Ariño J, Valls M. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Sci Rep 2016; 6:27058. [PMID: 27257085 PMCID: PMC4891724 DOI: 10.1038/srep27058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/12/2016] [Indexed: 01/31/2023] Open
Abstract
Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.
Collapse
Affiliation(s)
- Crina Popa
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Sergio Gil
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Keisuke Hashii
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Mitsuaki Tabuchi
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Med Chem 2016; 8:1133-51. [DOI: 10.4155/fmc-2016-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most efforts in the development of antimicrobials have focused on the screening of lethal targets. Nevertheless, the constant expansion of antimicrobial resistance makes the antibiotic resistance determinants themselves suitable targets for finding inhibitors to be used in combination with antibiotics. Among them, inhibitors of antibiotic inactivating enzymes and of multidrug efflux pumps are suitable candidates for improving the efficacy of antibiotics. In addition, the application of systems biology tools is helping to understand the changes in bacterial physiology associated to the acquisition of resistance, including the increased susceptibility to other antibiotics displayed by some antibiotic-resistant mutants. This information is useful for implementing novel strategies based in metabolic interventions or combination of antibiotics for improving the efficacy of antibacterial therapy.
Collapse
|
46
|
Lindgren AEG, Öberg CT, Hillgren JM, Elofsson M. Total Synthesis of the Resveratrol Oligomers (±)-Ampelopsin B and (±)-ϵ-Viniferin. European J Org Chem 2015. [PMCID: PMC4737285 DOI: 10.1002/ejoc.201501486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The total synthesis of the resveratrol dimers (±)‐ampelopsin B and (±)‐ϵ‐viniferin is reported. Highlights of the approach include the use of cyclopropylmethyl groups to protect aromatic alcohols. This group allows an acid promoted three‐step, one‐pot deprotection–epimerization–cyclization of an advanced intermediate to give (±)‐ampelopsin B. An important advantage with our strategy is the possibility of synthesizing analogs to these natural products to further study the chemistry and biology of resveratrol oligomers.
Collapse
Affiliation(s)
| | | | | | - Mikael Elofsson
- Department of Chemistry, Umeå University SE‐90187 Umeå, Sweden
| |
Collapse
|