1
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
2
|
Age-related changes in tau and autophagy in human brain in the absence of neurodegeneration. PLoS One 2023; 18:e0262792. [PMID: 36701399 PMCID: PMC9879510 DOI: 10.1371/journal.pone.0262792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
Tau becomes abnormally hyper-phosphorylated and aggregated in tauopathies like Alzheimers disease (AD). As age is the greatest risk factor for developing AD, it is important to understand how tau protein itself, and the pathways implicated in its turnover, change during aging. We investigated age-related changes in total and phosphorylated tau in brain samples from two cohorts of cognitively normal individuals spanning 19-74 years, without overt neurodegeneration. One cohort utilised resected tissue and the other used post-mortem tissue. Total soluble tau levels declined with age in both cohorts. Phosphorylated tau was undetectable in the post-mortem tissue but was clearly evident in the resected tissue and did not undergo significant age-related change. To ascertain if the decline in soluble tau was correlated with age-related changes in autophagy, three markers of autophagy were tested but only two appeared to increase with age and the third was unchanged. This implies that in individuals who do not develop neurodegeneration, there is an age-related reduction in soluble tau which could potentially be due to age-related changes in autophagy. Thus, to explore how an age-related increase in autophagy might influence tau-mediated dysfunctions in vivo, autophagy was enhanced in a Drosophila model and all age-related tau phenotypes were significantly ameliorated. These data shed light on age-related physiological changes in proteins implicated in AD and highlights the need to study pathways that may be responsible for these changes. It also demonstrates the therapeutic potential of interventions that upregulate turnover of aggregate-prone proteins during aging.
Collapse
|
3
|
Prasannan P, Siney E, Chatterjee S, Johnston D, Shah M, Mudher A, Willaime-Morawek S. A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease. IN VITRO MODELS 2022; 1:447-462. [PMID: 39872613 PMCID: PMC11756488 DOI: 10.1007/s44164-022-00038-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/30/2025]
Abstract
Purpose Alzheimer's disease (AD) early pathology needs better understanding and models. Here, we describe a human induced pluripotent stem cells (iPSCs)-derived 3D neural culture model to study certain aspects of AD biochemistry and pathology. Method iPSCs derived from controls and AD patients with Presenilin1 mutations were cultured in a 3D platform with a similar microenvironment to the brain, to differentiate into neurons and astrocytes and self-organise into 3D structures by 3 weeks of differentiation in vitro. Results Cells express astrocytic (GFAP), neuronal (β3-Tubulin, MAP2), glutamatergic (VGLUT1), GABAergic (GAD65/67), pre-synaptic (Synapsin1) markers and a low level of neural progenitor cell (Nestin) marker after 6 and 12 weeks of differentiation in 3D. The foetal 3R Tau isoforms and adult 4R Tau isoforms were detected at 6 weeks post differentiation, showing advanced neuronal maturity. In the 3D AD cells, total and insoluble Tau levels were higher than in 3D control cells. Conclusion Our data indicates that this model may recapitulate the early biochemical and pathological disease features and can be a relevant platform for studying early cellular and biochemical changes and the identification of drug targets. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00038-5.
Collapse
Affiliation(s)
| | - Elodie Siney
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - David Johnston
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohammad Shah
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Amrit Mudher
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
4
|
Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 2021; 99:1276-1307. [PMID: 33583054 DOI: 10.1002/jnr.24794] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders are the leading cause of disability and the second largest cause of death worldwide. Despite significant research efforts, neurology remains one of the most failure-prone areas of drug development. The complexity of the human brain, boundaries to examining the brain directly in vivo, and the significant evolutionary gap between animal models and humans, all serve to hamper translational success. Recent advances in microfluidic in vitro models have provided new opportunities to study human cells with enhanced physiological relevance. The ability to precisely micro-engineer cell-scale architecture, tailoring form and function, has allowed for detailed dissection of cell biology using microphysiological systems (MPS) of varying complexities from single cell systems to "Organ-on-chip" models. Simplified neuronal networks have allowed for unique insights into neuronal transport and neurogenesis, while more complex 3D heterotypic cellular models such as neurovascular unit mimetics and "Organ-on-chip" systems have enabled new understanding of metabolic coupling and blood-brain barrier transport. These systems are now being developed beyond MPS toward disease specific micro-pathophysiological systems, moving from "Organ-on-chip" to "Disease-on-chip." This review gives an outline of current state of the art in microfluidic technologies for neurological disease research, discussing the challenges and limitations while highlighting the benefits and potential of integrating technologies. We provide examples of where such toolsets have enabled novel insights and how these technologies may empower future investigation into neurological diseases.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Melissa Barber
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Róisín M Owens
- Department Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anup D Sharma
- New Orleans BioInnovation Center, AxoSim Inc., New Orleans, LA, USA
| | - Wendy Rowan
- Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Eric Hill
- School of Life and Health sciences, Aston University, Birmingham, UK
| | - Michele Zagnoni
- Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21155467. [PMID: 32751747 PMCID: PMC7432218 DOI: 10.3390/ijms21155467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.
Collapse
|
6
|
Warming H, Pegasiou CM, Pitera AP, Kariis H, Houghton SD, Kurbatskaya K, Ahmed A, Grundy P, Vajramani G, Bulters D, Altafaj X, Deinhardt K, Vargas-Caballero M. A primate-specific short GluN2A-NMDA receptor isoform is expressed in the human brain. Mol Brain 2019; 12:64. [PMID: 31272478 PMCID: PMC6610962 DOI: 10.1186/s13041-019-0485-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Glutamate receptors of the N-methyl-D-aspartate (NMDA) family are coincident detectors of pre- and postsynaptic activity, allowing Ca2+ influx into neurons. These properties are central to neurological disease mechanisms and are proposed to be the basis of associative learning and memory. In addition to the well-characterised canonical GluN2A NMDAR isoform, large-scale open reading frames in human tissues had suggested the expression of a primate-specific short GluN2A isoform referred to as GluN2A-S. Here, we confirm the expression of both GluN2A transcripts in human and primate but not rodent brain tissue, and show that they are translated to two corresponding GluN2A proteins present in human brain. Furthermore, we demonstrate that recombinant GluN2A-S co-assembles with the obligatory NMDAR subunit GluN1 to form functional NMDA receptors. These findings suggest a more complex NMDAR repertoire in human brain than previously thought.
Collapse
Affiliation(s)
- Hannah Warming
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Chrysia-Maria Pegasiou
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Aleksandra P Pitera
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Hanna Kariis
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Steven D Houghton
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ksenia Kurbatskaya
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Aminul Ahmed
- Wessex Neurological Centre, University Hospital Southampton, University of Southampton, Southampton, SO16 6YD, UK
| | - Paul Grundy
- Wessex Neurological Centre, University Hospital Southampton, University of Southampton, Southampton, SO16 6YD, UK
| | - Girish Vajramani
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.,Wessex Neurological Centre, University Hospital Southampton, University of Southampton, Southampton, SO16 6YD, UK
| | - Diederik Bulters
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.,Wessex Neurological Centre, University Hospital Southampton, University of Southampton, Southampton, SO16 6YD, UK
| | - Xavier Altafaj
- Neuropharmacology Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
7
|
Sri S, Pegasiou CM, Cave CA, Hough K, Wood N, Gomez-Nicola D, Deinhardt K, Bannerman D, Perry VH, Vargas-Caballero M. Emergence of synaptic and cognitive impairment in a mature-onset APP mouse model of Alzheimer's disease. Acta Neuropathol Commun 2019; 7:25. [PMID: 30795807 PMCID: PMC6387506 DOI: 10.1186/s40478-019-0670-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
The synaptic changes underlying the onset of cognitive impairment in Alzheimer’s disease (AD) are poorly understood. In contrast to the well documented inhibition of long-term potentiation (LTP) in CA3-CA1 synapses by acute Aβ application in adult neurons from rodents, young amyloid precursor protein (APP) transgenic mouse models often, surprisingly, show normal LTP. This suggests that there may be important differences between mature-onset and developmental-onset APP expression/ Aβ accumulation and the ensuing synaptic and behavioural phenotype. Here, in agreement with previous studies, we observed that developmental expression of APPSw,Ind (3–4 month old mice from line 102, PLoS Med 2:e355, 2005), resulted in reduced basal synaptic transmission in CA3-CA1 synapses, normal LTP, impaired spatial working memory, but normal spatial reference memory. To analyse early Aβ-mediated synaptic dysfunction and cognitive impairment in a more mature brain, we used controllable mature-onset APPSw,Ind expression in line 102 mice. Within 3 weeks of mature-onset APPSw,Ind expression and Aβ accumulation, we detected the first synaptic dysfunction: an impairment of LTP in hippocampal CA3-CA1 synapses. Cognitively, at this time point, we observed a deficit in short-term memory. A reduction in basal synaptic strength and deficit in long-term associative spatial memory were only evident following 12 weeks of APPSw,Ind expression. Importantly, the plasticity impairment observed after 3 weeks of mature-onset APP expression is reversible. Together, these findings demonstrate important differences between developmental and mature-onset APP expression. Further research targeted at this early stage of synaptic dysfunction could help identify mechanisms to treat cognitive impairment in mild cognitive impairment (MCI) and early AD.
Collapse
|
8
|
Le Duigou C, Savary E, Morin-Brureau M, Gomez-Dominguez D, Sobczyk A, Chali F, Milior G, Kraus L, Meier JC, Kullmann DM, Mathon B, de la Prida LM, Dorfmuller G, Pallud J, Eugène E, Clemenceau S, Miles R. Imaging pathological activities of human brain tissue in organotypic culture. J Neurosci Methods 2018; 298:33-44. [PMID: 29427611 PMCID: PMC5983351 DOI: 10.1016/j.jneumeth.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Insights into human brain diseases may emerge from tissue obtained after operations on patients. However techniques requiring transduction of transgenes carried by viral vectors cannot be applied to acute human tissue. NEW METHOD We show that organotypic culture techniques can be used to maintain tissue from patients with three different neurological syndromes for several weeks in vitro. Optimized viral vector techniques and promoters for transgene expression are described. RESULTS Region-specific differences in neuronal form, firing pattern and organization as well as pathological activities were maintained over 40-50 days in culture. Both adeno-associated virus and lentivirus based vectors were persistently expressed from ∼10 days after application, providing 30-40 days to exploit genetically expressed constructs. Different promoters, including hSyn, e/hSyn, CMV and CaMKII, provided cell-type specific transgene expression. The Ca probe GCaMP let us explore epileptogenic synchrony and a FRET-based probe was used to follow activity of the kinase mTORC1. COMPARISON WITH EXISTING METHODS The use of a defined culture medium, with low concentrations of amino acids and no growth factors, permitted organotypic culture of tissue from humans aged 3-62 years. Epileptic activity was maintained and excitability changed relatively little until ∼6 weeks in culture. CONCLUSIONS Characteristic morphology and region-specific neuronal activities are maintained in organotypic culture of tissue from patients diagnosed with mesial temporal lobe epilepsy, cortical dysplasia and cortical glioblastoma. Viral vector techniques permit expression of probes for long-term measurements of multi-cellular activity and intra-cellular signaling.
Collapse
Affiliation(s)
- Caroline Le Duigou
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| | - Etienne Savary
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| | - Mélanie Morin-Brureau
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Daniel Gomez-Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, E-28002, Spain
| | - André Sobczyk
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Farah Chali
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Giampaolo Milior
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Larissa Kraus
- Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany; Charite Universitätsmedizin, Clinical and Experimental Epileptology, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Bertrand Mathon
- Neurochirurgie, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Paris, 75013, France
| | | | - Georg Dorfmuller
- Neurochirurgie, Fondation Ophtalmologique Rothschild, 75019, Paris, France
| | - Johan Pallud
- Neurochirurgie, Hôpital Sainte-Anne, Paris Descartes University, IMA-BRAIN, Inserm, U894 Centre de Psychiatrie et Neurosciences, Paris, 75014, France
| | - Emmanuel Eugène
- Inserm U839, UPMC Univ Paris 6, Institut du Fer-à-Moulin, Paris, 75005, France
| | - Stéphane Clemenceau
- Neurochirurgie, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Paris, 75013, France
| | - Richard Miles
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| |
Collapse
|
9
|
J Siney E, Kurbatskaya K, Chatterjee S, Prasannan P, Mudher A, Willaime-Morawek S. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC technologies. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Kramvis I, Mansvelder HD, Meredith RM. Neuronal life after death: electrophysiologic recordings from neurons in adult human brain tissue obtained through surgical resection or postmortem. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:319-333. [PMID: 29496151 DOI: 10.1016/b978-0-444-63639-3.00022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recordings from fresh human brain slices derived from surgically resected brain tissue are being used to unravel mechanisms underlying human neurophysiology and for the evaluation of potential therapeutic targets and compounds. Data resulting from these studies provide unique insights into physiologic properties of human neuronal microcircuits. However, substantial limitations still remain with this approach. First, the tissue is always resected from patients, never from healthy controls. Second, the patient population undergoing brain surgery with tissue resection is limited to epilepsy and tumor patients - never from patients with other neurologic disorders. Third, the vast majority of tissue resected is limited largely to temporal cortex and hippocampus, occasionally amygdala. Therefore, the possibility to study brain tissue: (1) from healthy controls; (2) from patients with different neuropathologies; (3) from different brain areas; and (4) from a wide spectrum of ages only exists through autopsy-derived brain tissue. Here we describe methods and results from physiologic recordings of adult human neurons and microcircuits in both surgically derived brain tissue as well as in tissue derived from autopsies. We define postmortem time windows during which physiologic recordings could match data obtained from surgical tissue.
Collapse
Affiliation(s)
- Ioannis Kramvis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gurwitz D. Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in neuropsychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757061 PMCID: PMC5067144 DOI: 10.31887/dcns.2016.18.3/dgurwitz] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development and clinical implementation of personalized medicine crucially depends on the availability of high-quality human biosamples; animal models, although capable of modeling complex human diseases, cannot reflect the large variation in the human genome, epigenome, transcriptome, proteome, and metabolome. Although the biosamples available from public biobanks that store human tissues and cells may represent the large human diversity for most diseases, these samples are not always sufficient for developing biomarkers for patient-tailored therapies for neuropsychiatric disorders. Postmortem human tissues are available from many biobanks; nevertheless, collections of neuronal human cells from large patient cohorts representing the human diversity remain scarce. Two tools are gaining popularity for personalized medicine research on neuropsychiatric disorders: human induced pluripotent stem cell-derived neurons and human lymphoblastoid cell lines. This review examines and contrasts the advantages and limitations of each tool for personalized medicine research.
Collapse
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|