1
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
2
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
3
|
Li H, Liu C, Huang S, Wang X, Cao M, Gu T, Ou X, Pan S, Lin Z, Wang X, Zhu Y, Jing J. Multi-omics analyses demonstrate the modulating role of gut microbiota on the associations of unbalanced dietary intake with gastrointestinal symptoms in children with autism spectrum disorder. Gut Microbes 2023; 15:2281350. [PMID: 38010793 PMCID: PMC10730204 DOI: 10.1080/19490976.2023.2281350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Our previous work revealed that unbalanced dietary intake was an important independent factor associated with constipation and gastrointestinal (GI) symptoms in children with autism spectrum disorder (ASD). Growing evidence has shown the alterations in the gut microbiota and gut microbiota-derived metabolites in ASD. However, how the altered microbiota might affect the associations between unbalanced diets and GI symptoms in ASD remains unknown. We analyzed microbiome and metabolomics data in 90 ASD and 90 typically developing (TD) children based on 16S rRNA and untargeted metabolomics, together with dietary intake and GI symptoms assessment. We found that there existed 11 altered gut microbiota (FDR-corrected P-value <0.05) and 397 altered metabolites (P-value <0.05) in children with ASD compared with TD children. Among the 11 altered microbiota, the Turicibacter, Coprococcus 1, and Lachnospiraceae FCS020 group were positively correlated with constipation (FDR-corrected P-value <0.25). The Eggerthellaceae was positively correlated with total GI symptoms (FDR-corrected P-value <0.25). More importantly, three increased microbiota including Turicibacter, Coprococcus 1, and Eggerthellaceae positively modulated the associations of unbalanced dietary intake with constipation and total GI symptoms, and the decreased Clostridium sp. BR31 negatively modulated their associations in ASD children (P-value <0.05). Together, the altered microbiota strengthens the relationship between unbalanced dietary intake and GI symptoms. Among the altered metabolites, ten metabolites derived from microbiota (Turicibacter, Coprococcus 1, Eggerthellaceae, and Clostridium sp. BR31) were screened out, enriched in eight metabolic pathways, and were identified to correlate with constipation and total GI symptoms in ASD children (FDR-corrected P-value <0.25). These metabolomics findings further support the modulating role of gut microbiota on the associations of unbalanced dietary intake with GI symptoms. Collectively, our research provides insights into the relationship between diet, the gut microbiota, and GI symptoms in children with ASD.
Collapse
Affiliation(s)
- Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Churui Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, China
| | - Muqing Cao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingfeng Gu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxuan Ou
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuolin Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
5
|
Crosstalk between imbalanced gut microbiota caused by antibiotic exposure and rotavirus replication in the intestine. Heliyon 2023; 9:e12718. [PMID: 36685479 PMCID: PMC9850052 DOI: 10.1016/j.heliyon.2022.e12718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Objective Rotavirus (RV), one of non-enveloped double-strained RNA viruses, can cause infantile diarrheal illness. It is widely accepted that RV is transmitted mainly via feces-oral route. However, infected asymptomatic adults are becoming the source of infection. It is necessary to explore the underlying mechanism of RV replication in adult's intestine. Methods After recruiting healthy volunteers and RV asymptomatic carriers, we firstly investigated the association of animal-derived food intake with antibiotic level in urine samples. Secondly, we compared the difference in the structure of gut microbiota, and identified the taxa that most likely explained the difference. Finally, we investigated the impact of lipopolysaccharide (LPS), produced by gram-negative bacteria, on RV replication in vivo and in vitro. Results We found that 10% of participants were RV asymptomatic carriers in our study. High intake of animal-derived food was positively correlated to antibiotic level in urine samples. The disrupted gut microbiota in RV carriers was characterized by high abundance of antibiotic resistant gram-negative bacteria and high level of LPS. The disrupted gut microbiota caused by penicillin treatment was benefit to RV replication in vivo. LPS enhanced RV thermal stability in vitro. Conclusions Our findings suggest that the imbalanced gut microbiota caused by antibiotic exposure plays an important role in RV replication, and brings risk to health complications.
Collapse
|
6
|
Vakili K, Fathi M, Yaghoobpoor S, Sayehmiri F, Nazerian Y, Nazerian A, Mohamadkhani A, Khodabakhsh P, Réus GZ, Hajibeygi R, Rezaei-Tavirani M. The contribution of gut-brain axis to development of neurological symptoms in COVID-19 recovered patients: A hypothesis and review of literature. Front Cell Infect Microbiol 2022; 12:983089. [PMID: 36619768 PMCID: PMC9815719 DOI: 10.3389/fcimb.2022.983089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota undergoes significant alterations in response to viral infections, particularly the novel SARS-CoV-2. As impaired gut microbiota can trigger numerous neurological disorders, we suggest that the long-term neurological symptoms of COVID-19 may be related to intestinal microbiota disorders in these patients. Thus, we have gathered available information on how the virus can affect the microbiota of gastrointestinal systems, both in the acute and the recovery phase of the disease, and described several mechanisms through which this gut dysbiosis can lead to long-term neurological disorders, such as Guillain-Barre syndrome, chronic fatigue, psychiatric disorders such as depression and anxiety, and even neurodegenerative diseases such as Alzheimer's and Parkinson's disease. These mechanisms may be mediated by inflammatory cytokines, as well as certain chemicals such as gastrointestinal hormones (e.g., CCK), neurotransmitters (e.g., 5-HT), etc. (e.g., short-chain fatty acids), and the autonomic nervous system. In addition to the direct influences of the virus, repurposed medications used for COVID-19 patients can also play a role in gut dysbiosis. In conclusion, although there are many dark spots in our current knowledge of the mechanism of COVID-19-related gut-brain axis disturbance, based on available evidence, we can hypothesize that these two phenomena are more than just a coincidence and highly recommend large-scale epidemiologic studies in the future.
Collapse
Affiliation(s)
- Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gislaine Z. Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Liu X, Cui Y, Zhang Y, Xiang G, Yu M, Wang X, Qiu B, Li XG, Liu W, Zhang D. Rescue of social deficits by early-life melatonin supplementation through modulation of gut microbiota in a murine model of autism. Biomed Pharmacother 2022; 156:113949. [DOI: 10.1016/j.biopha.2022.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
8
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
9
|
Zhu J, Hua X, Yang T, Guo M, Li Q, Xiao L, Li L, Chen J, Li T. Alterations in Gut Vitamin and Amino Acid Metabolism are Associated with Symptoms and Neurodevelopment in Children with Autism Spectrum Disorder. J Autism Dev Disord 2022; 52:3116-3128. [PMID: 34263410 PMCID: PMC9213278 DOI: 10.1007/s10803-021-05066-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
Metabolic disturbance may be implicated in the pathogenesis of autism. This study aimed to investigate the gut metabolomic profiles of autistic children and to analyze potential interaction between gut metabolites with autistic symptoms and neurodevelopment levels. We involved 120 autistic and 60 neurotypical children. Autistic symptoms and neurodevelopment levels were assessed. Fecal samples were analyzed using untargeted liquid chromatography-tandem mass spectrometry methods. Our results showed the metabolic disturbances of autistic children involved in multiple vitamin and amino acid metabolism pathways, with the strongest enrichment identified for tryptophan metabolism, retinol metabolism, cysteine-methionine metabolism, and vitamin digestion and absorption. Differential gut metabolites were correlated to autistic symptoms and neurodevelopment levels. Our findings improved the understanding of the perturbations of metabolome networks in autism.
Collapse
Affiliation(s)
- Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
| | - Xueying Hua
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China
- Department of Neonatology, Chongqing Medical University Affiliated Children Hospital, Chongqing, 400014, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
| | - Min Guo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
| | - Qiu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
| | - Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
| | - Ling Li
- Department of Children Rehabilitation, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Director of Key Lab of Ministry of Education, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, No.136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
10
|
Liu J, Liu C, Gao Z, Zhou L, Gao J, Luo Y, Liu T, Fan X. GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Front Cell Infect Microbiol 2022; 12:911259. [PMID: 35811667 PMCID: PMC9257030 DOI: 10.3389/fcimb.2022.911259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is considered a heterogeneous neurodevelopmental disorder characterized by significant social, communication, and behavioral impairments. The gut microbiota is increasingly considered a promising therapeutic target in ASD. Farnesoid X receptor (FXR) has recently been shown to modulate the gut microbiota. We hypothesized that FXR agonist GW4064 could ameliorate behavioral deficits in an animal model for autism: BTBR T+Itpr3tf/J (BTBR) mouse. As expected, administration of GW4064 rescued the sociability of BTBR mice in the three-chamber sociability test and male-female social reciprocal interaction test, while no effects were observed in C57BL/6J mice. We also found that GW4064 administration increased fecal microbial abundance and counteracted the common ASD phenotype of a high Firmicutes to Bacteroidetes ratio in BTBR mice. In addition, GW4064 administration reversed elevated Lactobacillus and decreased Allobaculum content in the fecal matter of BTBR animals. Our findings show that GW4064 administration alleviates social deficits in BTBR mice and modulates selective aspects of the composition of the gut microbiota, suggesting that GW4064 supplementation might prove a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Shor EK, Brown SP, Freeman DA. Bacteria and Bellicosity: Photoperiodic Shifts in Gut Microbiota Drive Seasonal Aggressive Behavior in Male Siberian Hamsters. J Biol Rhythms 2022; 37:296-309. [PMID: 35502701 DOI: 10.1177/07487304221092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.
Collapse
Affiliation(s)
- Elyan K Shor
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - Shawn P Brown
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - David A Freeman
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Sayehmiri F, Samadian M, Mohamadkhani A, Tafakhori A, Haghighat S, Rahmatian A, Mohammadkhani MA, Fazli HR, Rezaei Tavirani M. Gut Microbiota Modification via Glucagon-like Peptide-1 with Beneficial Neuroprotective Effects. Middle East J Dig Dis 2022; 14:235-243. [PMID: 36619150 PMCID: PMC9489313 DOI: 10.34172/mejdd.2022.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/17/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: In recent decades, it has been shown that the association between intestinal bacterial imbalance (dysbiosis) and various diseases such as type 2 diabetes can play a role in the development of Alzheimer's and Parkinson's diseases. In this study, the beneficial effects of intestinal microbiota glucagon-like peptide 1 (GLP-1) in cognitive disorders were investigated. METHODS: PubMed-Medline, Web of Science, and Scopus were searched to identify experimental studies based on the bacterial strains along with GLP-1 1 expression in preventing or reducing cognitive impairment. Of the 233 studies, six were eligible for inclusion, and the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk of bias tool was used to evaluate the risk of bias in individual studies. RESULTS: The results showed that intestinal expression of GLP-1 1 could reduce the intestinal pathogenic genus such as Enterobacteriaceae and was obviously associated with a greater number of beneficial genera such as Lactobacillus and Akkermansia. Also, the neuroprotective effects of Clostridium butyricum with GLP-1 1 in a mice were approved. Therefore, the modulation of the intestinal microbiota, mediated by an increase in the intestinal GLP-1 1 level, consequently improved cognitive function. CONCLUSION: In this review, we have indicated that the gut microbiota, by stimulating the expression of the intestinal hormones like GLP-1 1, and also with a beneficial effect in inhibiting some involved genes in inflammation, can declined the development of cognitive disorders.
Collapse
Affiliation(s)
- Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Associate Professor of Neurology, Iranian Center of Neurological Science; Tehran University of Medical Sciences; Tehran, Iran
| | - Somayeh Haghighat
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Aryoobarzan Rahmatian
- Faculty of Medicine, Department of neurology, Ilam University of medical science, Ilam, Iran
| | | | - Hamid Reza Fazli
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding Author: Mostafa Rezaei Tavirani, Ph.D Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
14
|
ELIAS MONIQUEB, TEODORO ANDERSONJ, LEMOS FELIPES, BERNARDES EMERSONS, SANTOS SOFIAN, PACHECO SIDNEY, OLIVEIRA FELIPELEITEDE. Lycopene induces bone marrow lymphopoiesis and differentiation of peritoneal IgA-producing cells. AN ACAD BRAS CIENC 2022; 94:e20210002. [DOI: 10.1590/0001-3765202220210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
|
15
|
Quan L, Xu X, Cui Y, Han H, Hendren RL, Zhao L, You X. A systematic review and meta-analysis of the benefits of a gluten-free diet and/or casein-free diet for children with autism spectrum disorder. Nutr Rev 2021; 80:1237-1246. [PMID: 34617108 PMCID: PMC8990762 DOI: 10.1093/nutrit/nuab073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CONTEXT It has been suggested that a gluten-free and casein-free (GFCF) diet may alleviate the symptoms of autism spectrum disorder (ASD) and facilitate neurodevelopment of children with ASD. Studies to date have been inconclusive. OBJECTIVE This study aimed to evaluate (through quantitative meta-analysis) the efficacy and safety of a GFCF diet for children with ASD. To our knowledge, this is the first time such an analysis has been carried out. DATA SOURCES Eight electronic databases were searched, from the establishment of each database up to March 27, 2020: PubMed, Web of Science, Embase (Ovid), PsycINFO (Ovid), Cochrane Library, CNKI, Wanfang, and VIP databases. DATA EXTRACTION Two authors independently performed the data extraction and risk-of-bias assessment. DATA ANALYSIS A quantitative meta-analysis was performed with standard procedures by using Stata SE 15 software. Within the total of 8 studies, with 297 participants, 5 studies reported significant reductions in stereotypical behaviors [standard mean difference (SMD) = -0.41, 95% confidence interval (CI): -0.68 to -0.15], and 3 studies reported improvements in cognition (SMD = -0.46, 95% CI: -0.91 to -0.01) following GFCF dietary intervention. No statistically significant changes were observed in other symptomatic categories (all P > 0.05). CONCLUSION The current meta-analysis showed that a GFCF diet can reduce stereotypical behaviors and improve the cognition of children with ASD. Though most of the included studies were single-blind, the benefits of a GFCF diet that have been indicated are promising. Additional studies on a larger scale are warranted. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020177619.
Collapse
Affiliation(s)
- Liuliu Quan
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| | - Xinjie Xu
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| | - Yonghong Cui
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| | - Heze Han
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| | - Robert L Hendren
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| | - Lidan Zhao
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| | - Xin You
- L. Quan, H. Han, L. Zhao, and X. You are with the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. X. Xu is with the Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Y. Cui is with the Department of Blood Immunity, General Hospital of Shanxi Datong Tongmei Group, Datong, China. R. L. Hendren is with the Department of Psychiatry, University of California, San Francisco, California, USA. L. Zhao and X. You are with the Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China. L. Zhao and X. You are with the National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China. X. You is with the Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| |
Collapse
|
16
|
Goswami A, Wendt FR, Pathak GA, Tylee DS, De Angelis F, De Lillo A, Polimanti R. Role of microbes in the pathogenesis of neuropsychiatric disorders. Front Neuroendocrinol 2021; 62:100917. [PMID: 33957173 PMCID: PMC8364482 DOI: 10.1016/j.yfrne.2021.100917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Microbes inhabit different anatomical sites of the human body including oral cavity, gut, and skin. A growing literature highlights how microbiome variation is associated with human health and disease. There is strong evidence of bidirectional communication between gut and brain mediated by neurotransmitters and microbial metabolites. Here, we review the potential involvement of microbes residing in the gut and in other body sites in the pathogenesis of eight neuropsychiatric disorders, discussing findings from animal and human studies. The data reported provide a comprehensive overview of the current state of the microbiome research in neuropsychiatry, including hypotheses about the mechanisms underlying the associations reported and the translational potential of probiotics and prebiotics.
Collapse
Affiliation(s)
- Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA.
| |
Collapse
|
17
|
Fazli HR, Moradzadeh M, Mehrbakhsh Z, Sharafkhah M, Masoudi S, Pourshams A, Mohamadkhani A. Diagnostic Significance of Serum Fatty Acid Synthase in Patients with Pancreatic Cancer. Middle East J Dig Dis 2021; 13:115-120. [PMID: 34712449 PMCID: PMC8531924 DOI: 10.34172/mejdd.2021.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic cancer is considered as the most deadly tumor among gastrointestinal cancers because of its poor prognosis. The frequently deregulated pathway in the cancer cell is associated with an increased expression of various genes, including the synthesis of fatty acids. We aimed to evaluate the level of serum fatty acid synthase (FASN) as a diagnostic marker for early diagnosis of pancreatic cancer. METHODS Serum FASN levels were measured by ELISA in 92 patients with pancreatic adenocarcinomas and in 92 healthy controls. Logistic regression analysis was used to identify independent predictors of certain diagnostic categories. RESULTS Serum FASN levels were significantly higher in patients with pancreatic cancer than in healthy controls (1.35 [0.98-2.3] ng/mL vs 1.04 [0.19-1.34] ng/mL, p < 0.001) and in smokers compared to non-smokers (1.41 [0.79-2.52] ng/mL vs 1.07 [0.21-1.74] ng/mL, p < 0.001). FASN levels and smoking were associated with increased risk of PC (1.54 [1.1- 2.14] ng/mL, p = 0.011 and 5.69 [2.68-12.09] ng/mL, p < 0.001, respectively). CONCLUSION Elevated serum FASN levels in patients with pancreatic cancer indicate the need for the production of large numbers of lipids for the survival and proliferation of human cancer cells and the diagnostic value of FASN as a new diagnostic biomarker.
Collapse
Affiliation(s)
- Hamid Reza Fazli
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Maliheh Moradzadeh
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Mehrbakhsh
- Department of Biostaticstics, School of Health, Hamadan University of Medical sciences, Hamadan, Iran
- Department of Biostaticstics, School of Health, Golestan University of Medical sciences, Gorgan, Iran
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Masoudi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Maigoro AY, Lee S. Gut Microbiome-Based Analysis of Lipid A Biosynthesis in Individuals with Autism Spectrum Disorder: An In Silico Evaluation. Nutrients 2021; 13:nu13020688. [PMID: 33669978 PMCID: PMC7924848 DOI: 10.3390/nu13020688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
The link between autism spectrum disorder (ASD) and the gut microbiome has received much attention, with special focus on gut–brain-axis immunological imbalances. Gastrointestinal problems are one of the major symptoms of ASD and are thought to be related to immune dysregulation. Therefore, in silico analysis was performed on mined data from 36 individuals with ASD and 21 control subjects, with an emphasis on lipid A endotoxin-producing bacteria and their lipopolysaccharide (LPS) metabolic pathways. Analysis of enzyme distribution among the 15 most abundant genera in both groups revealed that almost all these genera utilized five early-stage enzymes responsible for catalyzing the nine conserved lipid A synthesis steps. However, Haemophilus and Escherichia, which were significantly more abundant in individuals with ASD than in the control subjects, possess a complete set of essential lipid A synthesis enzymes. Furthermore, the 10 genera with the greatest increase in individuals with ASD showed high potential for producing late-stage lipid A products. Collectively, these results suggested that the synthesis rate of immunogenic LPS end products is likely to increase in individuals with ASD, which may be related to their gastrointestinal symptoms and elevated inflammatory conditions.
Collapse
|
19
|
Qureshi F, Adams J, Hanagan K, Kang DW, Krajmalnik-Brown R, Hahn J. Multivariate Analysis of Fecal Metabolites from Children with Autism Spectrum Disorder and Gastrointestinal Symptoms before and after Microbiota Transfer Therapy. J Pers Med 2020; 10:E152. [PMID: 33023268 PMCID: PMC7712156 DOI: 10.3390/jpm10040152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
Fecal microbiota transplant (FMT) holds significant promise for patients with Autism Spectrum Disorder (ASD) and gastrointestinal (GI) symptoms. Prior work has demonstrated that plasma metabolite profiles of children with ASD become more similar to those of their typically developing (TD) peers following this treatment. This work measures the concentration of 669 biochemical compounds in feces of a cohort of 18 ASD and 20 TD children using ultrahigh performance liquid chromatography-tandem mass spectroscopy. Subsequent measurements were taken from the ASD cohort over the course of 10-week Microbiota Transfer Therapy (MTT) and 8 weeks after completion of this treatment. Univariate and multivariate statistical analysis techniques were used to characterize differences in metabolites before, during, and after treatment. Using Fisher Discriminant Analysis (FDA), it was possible to attain multivariate metabolite models capable of achieving a sensitivity of 94% and a specificity of 95% after cross-validation. Observations made following MTT indicate that the fecal metabolite profiles become more like those of the TD cohort. There was an 82-88% decrease in the median difference of the ASD and TD group for the panel metabolites, and among the top fifty most discriminating individual metabolites, 96% report more comparable values following treatment. Thus, these findings are similar, although less pronounced, as those determined using plasma metabolites.
Collapse
Affiliation(s)
- Fatir Qureshi
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA;
| | - Kathryn Hanagan
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Dae-Wook Kang
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (D.-W.K.); (R.K.-B.)
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (D.-W.K.); (R.K.-B.)
- Biodesign Center for Health through Microbiome, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Juergen Hahn
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
20
|
Perez-Fernandez C, Morales-Navas M, Aguilera-Sáez LM, Abreu AC, Guardia-Escote L, Fernández I, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Medium and long-term effects of low doses of Chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. ENVIRONMENTAL RESEARCH 2020; 184:109341. [PMID: 32179266 DOI: 10.1016/j.envres.2020.109341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental pathology characterized by altered verbalizations, reduced social interaction behavior, and stereotypies. Environmental factors have been associated with its development. Some researchers have focused on pesticide exposure. Chlorpyrifos (CPF) is the most used Organophosphate. Previous developmental studies with CPF showed decreased, enhanced or no effect on social outcomes eminently in mice. The study of CPF exposure during preweaning stages on social behavior is sparse in mice and non-existent in rats. d stressors could be at the basis of ASD development, and around postnatal day 10 in the rat is equivalent to the human birthday in neurodevelopmental terms. We explored the effects of exposure to low doses (1mg/kg/mL/day) of CPF during this stage regarding: sociability, dominance gut microbiome and plasma metabolomic profile, since alterations in these systems have also been linked to ASD. There was a modest influence of CPF on social behavior in adulthood, with null effects during adolescence. Dominance and hierarchical status were not affected by exposure. Dominance status explained the significant reduction in reaction to social novelty observed on the sociability test. CPF induced a significant gut microbiome dysbiosis and triggered a hyperlipidemic, hypoglycemic/hypogluconeogenesis and a general altered cell energy production in females. These behavioral results in rats extend and complement previous studies with mice and show novel influences on gut metagenomics and plasma lipid profile and metabolomics, but do not stablish a relation between the exposure to CPF and the ASD phenotype. The effects of dominance status on reaction to social novelty have an important methodological meaning for future research on sociability.
Collapse
Affiliation(s)
- Cristian Perez-Fernandez
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Miguel Morales-Navas
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Luis Manuel Aguilera-Sáez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Laia Guardia-Escote
- Department of Biochemistry and Biotechnology and Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007, C/ Macel.lí Domingo 1, Tarragona, Spain.
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | | | - María Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007, C/ Carretera de Valls, s/n, Tarragona, Spain.
| | - Estela Giménez
- Department of Biology and Geology, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
21
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
22
|
Lasheras I, Seral P, Latorre E, Barroso E, Gracia-García P, Santabárbara J. Microbiota and gut-brain axis dysfunction in autism spectrum disorder: Evidence for functional gastrointestinal disorders. Asian J Psychiatr 2020; 47:101874. [PMID: 31785441 DOI: 10.1016/j.ajp.2019.101874] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The high frequency of functional gastrointestinal disorders (FGIDs) in autism spectrum disorders (ASD) has drawn attention to the composition of gut microbiota as a possible factor in ASD pathogenesis. However, characterization of a distinctive ASD microbial pattern is still unclear. OBJECTIVE To conduct a narrative review on ASD microbial profile and diversity changes relative to NT children and FGID comorbidity and ASD pathogenesis. METHODOLOGY First, we searched the PubMed database in peer-reviewed journals for evidence regarding the current epidemiological evidence on FGID comorbidity. For the identification of a microbial profile in ASD children, only original studies examining gut bacterial and fungal abundances and diversity in ASD children and adolescents were included. Lastly, research on the role of microbial dysbiosis as an interface between genetic and environmental risk factors in the pathogenesis of neuropsychiatric disorders, and specifically ASD, was examined. RESULTS Prevalence and risk of FGIDs is significantly higher in ASD children and correlates with the severity of ASD. Bacterial and fungal diversity differ between ASD and NT children, indicating a difference in taxonomic abundance profiles, which have been reported at all bacterial phylogenetic levels. However, studies analyzing gut microbiota have a heterogeneous methodology and several limitations that could account for the variety of findings for each taxon. Also, covariate analysis reveals influence of demographics, diet, disease severity, GI comorbidity and allergies. Integration of these findings with changes in metabolome and genetic risk factors allowed for a better understanding of microbiota involvement in ASD pathogenesis for future research.
Collapse
Affiliation(s)
- I Lasheras
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - P Seral
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - E Latorre
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - E Barroso
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Madrid, Spain
| | - P Gracia-García
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Psychiatry Service, Hospital Clínico Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, Madrid, Spain
| | - J Santabárbara
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, Madrid, Spain
| |
Collapse
|