1
|
Pecci J, Sañudo B, Sanchez-Trigo H, Reverte-Pagola G, Pareja-Galeano H. Quadriceps Architectural Adaptations in Team Sports Players: A Meta-analysis. Int J Sports Med 2024; 45:1029-1039. [PMID: 39025469 DOI: 10.1055/a-2369-5900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Resistance training is the most effective strategy to modify muscle architecture, enhancing sport performance and reducing injury risk. The aim of this study was to compare the effects of high loads (HL) versus lower loads (LL), maximal versus submaximal efforts, and high frequency (HF) versus low frequency (LF) on quadriceps architectural adaptations in team sports players. Five databases were searched. Vastus lateralis thickness, fascicle length and pennation angle, and rectus femoris thickness were analyzed as main outcomes. Overall, resistance training significantly improved muscle thickness and pennation angle, but not fascicle length. LL led to greater fascicle length adaptations in the vastus lateralis compared to HL (p=0.01), while no substantial differences were found for other load comparisons. Degree of effort and training frequency did not show meaningful differences (p>0.05). In conclusion, LL lengthen the fascicle to a greater extent than HL, and training with LL twice a week could maximize architectural adaptations, whereas the degree of effort does not appear to be a determinant variable on quadriceps architectural adaptations.
Collapse
Affiliation(s)
- Javier Pecci
- Department of Physical Education and Sport, University of Seville, Sevilla, Spain
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| | - Borja Sañudo
- Department of Physical Education and Sport, University of Seville, Sevilla, Spain
| | | | | | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Burke BI, Carroll KM, Travis SK, Stone ME, Stone MH. Two Days Versus Four Days of Training Cessation Following a Step-Taper in Powerlifters. J Strength Cond Res 2023; 37:625-632. [PMID: 37639652 DOI: 10.1519/jsc.0000000000004564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Burke, BI, Carroll, KM, Travis, SK, Stone, ME, and Stone, MH. Two days versus four days of training cessation following a step-taper in powerlifters. J Strength Cond Res 37(12): e625-e632, 2023-Tapering and training cessation are methods of training load management aimed at optimizing athlete preparedness leading into competition. Such practices are often used by strength sport athletes such as powerlifters (i.e., athletes who compete in the back squat [BS], bench press [BP], and deadlift [DL]). The purpose of this study was to compare the differences in maximal strength, subjective recovery and stress state, and body composition alterations in strength athletes undergoing a 1-week step-taper followed by either a 2-day (2D) or 4-day (4D) period of training cessation. Twelve powerlifters (22.3 ± 2.1 yrs; 92.1 ± 20.4 kg; 174.8 ± 7.5 cm) completed a 6-week training protocol aimed at peaking 1 repetition maximum (1RM) strength on BS, BP, and DL. Body composition, subjective recovery and stress state, and 1RM on BS, BP, and DL were assessed before an overreach week (T1) and after the periods of training cessation (T2) for each group. Alpha criterion was set at p ≤ 0.05. There were significant increases in BP ( p = 0.032, g = 0.10), powerlifting total ( p = 0.014, g = 0.11), and DOTS score ( p = 0.006, g = 0.12) after 2D of cessation. However, after 4D of cessation, significant increases were only observed in DL ( p = 0.019, g = 0.11) along with significant decreases in BP ( p = 0.003, g = -0.13). There were no statistically significant changes in any other variable for either group indicating that BS, psychometric, and body composition data were maintained between T1 and T2. The results of this study support the use of 1-week step-tapers, followed by a short period of training cessation (2-4D) to maintain or improve maximal strength performance.
Collapse
Affiliation(s)
- Benjamin I Burke
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Kevin M Carroll
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - S Kyle Travis
- Department of Allied Health Professions, Liberty University, Lynchburg, Virginia; and
- K9 Muscle Physiology and Performance Lab, Beaux & Co. Research Foundation, Tennessee
| | - Margaret E Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
3
|
Matłosz P, Makivic B, Csapo R, Hume P, Mitter B, Martínez-Rodríguez A, Bauer P. Body fat of competitive volleyball players: a systematic review with meta-analysis. J Int Soc Sports Nutr 2023; 20:2246414. [PMID: 37578094 PMCID: PMC10431728 DOI: 10.1080/15502783.2023.2246414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Reference values of body fat for competitive volleyball players are lacking, making it difficult to interpret measurement results. This review systematically summarized published data on the relative body fat of volleyball players and calculated potential differences between sex, measurement method, and competitive level. METHODS The protocol followed the Preferred Reported Items for Systematic Reviews and Meta-Analysis guidelines. The literature search was conducted using five electronic databases to retrieve all relevant publications from January 1, 2010, to July 1, 2021. The 63 studies including 2607 players that met the inclusion criteria were analyzed using random-effects models. Data were reported as pooled mean body fat with 95% confidence intervals. RESULTS Body fat for males and females was 12.8% (11.9-13.8%) and 22.8% (21.9-23.7%), respectively. Body fat was 18.3% (16.3-20.4%) measured via skinfolds, 18.4% (15.6-21.2%) via bioelectrical impedance analysis, 24.2% (20.4-28.0%) via dual-energy x-ray absorptiometry and 21.6% (17.4-25.8%) via densitometry. Regional, national, and international-level players had body fat values of 19.5% (17.8-21.2%), 20.3% (18.6-22.0%), and 17.9% (15.7-20.4%), respectively. When the meta-regression was adjusted for the variables sex, measurement method, and competitive level, a significant difference between sex (p < 0.001), dual-energy x-ray absorptiometry and skinfolds (p = 0.02), and national and international-level players (p = 0.02) was found. However, sensitivity analysis revealed that findings regarding measurement method and competitive level were not robust and should, therefore, be interpreted with caution. CONCLUSIONS Despite the limitations of published data, this meta-analysis provided pooled values for body fat of male and female volleyball players for different competitive levels and measurement methods.
Collapse
Affiliation(s)
- Piotr Matłosz
- Rzeszow University, Institute of Physical Culture Sciences, Medical College, Rzeszow, Poland
| | - Bojan Makivic
- University of Applied Sciences, Wiener Neustadt, Austria
| | - Robert Csapo
- University of Vienna, Centre for Sports Science and University Sports, Vienna, Austria
| | - Patria Hume
- Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), Auckland, New Zealand
| | - Benedikt Mitter
- University of Vienna, Centre for Sports Science and University Sports, Vienna, Austria
| | - Alejandro Martínez-Rodríguez
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Sciences, Alicante, Spain
| | - Pascal Bauer
- University of Vienna, Centre for Sports Science and University Sports, Vienna, Austria
| |
Collapse
|
4
|
Abad CCC, Lopes MWR, Lara JPR, Oliveira AJS, da Silva RPC, Facin EA, Izar AJ, Teixeira FG. Long-Term Changes in Vertical Jump, H:Q Ratio and Interlimb Asymmetries in Young Female Volleyball Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16420. [PMID: 36554299 PMCID: PMC9778845 DOI: 10.3390/ijerph192416420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The present study aimed to examine the changes that occurred in vertical jump and isokinetic dynamometer (ISK) performances at the beginning of a preparatory period (PRE) and at the start of the competitive period (POST). Sixteen U-17 elite female volleyball players, from a national level (15.34 ± 1.19 years; 66.35 ± 7.95 kg; 169.22 ± 24.79 cm), performed bilateral squat jump (SJ), bilateral and unilateral countermovement jump (CMJ) and unilateral ISK tests for knee flexors (Fl) and extensors (Ex) both at 60°/s and at 300°/s. Peak torque (PT) and the hamstring-to-quadriceps (H:Q) ratio were assessed by concentric actions. Asymmetries were calculated by the percentage differences between dominant (DOM) and nondominant legs (NDOM). The paired Student's t-test was used for comparisons at a level of significance of 5%. The effect size was also calculated. A significant increase was found for both SJ (15%; p = 0.004; ES = 0.82) and CMJ (12%; p = 0.017; ES = 0.62). The PT of NDOM flexors at 60°/s was significantly lower than DOM both at PRE (4.6%; p = 0.048; ES = -0.22) and POST (6.3%; p = 0.037; ES = -0.33). The NDOM extensors at 60°/s had a significantly lower PT than DOM at POST (7.0%; p = 0.048; ES = -0.23). Both DOM and NDOM flexors at 60°/s had a PT enhancement at POST related to PRE (6.7%; p = 0.031; ES = 0.51 and 5.6%; p = 0.037; ES = 0.48, respectively). The PT of NDOM extensors at 300°/s increased at POST in comparison to PRE (7.9%; p = 0.038; ES = 0.27). The NDOM at 300°/s had a H:Q ratio higher than DOM both in PRE and POST (8.6%; p = 0.041; ES = 0.37 and 11.6%; p = 0.013; ES = 0.71, respectively), and the highest H:Q ratios were lower than the reference values (<80%). The asymmetry of the unilateral CMJ was higher at POST than at PRE (102%; p = 0.03; ES = 0.81). The PT for the flexors at 300°/s and the H:Q ratio at POST exceeded 10%. In conclusion, a training program of 15 weeks increased the neuromuscular performance of young volleyball athletes, but many H:Q ratios and asymmetries remained out of the normal recommendation. Volleyball professionals should carefully apply an adequate training program to enhance physical fitness performance without increasing the risk of lower limb injuries concurrently.
Collapse
Affiliation(s)
- Cesar Cavinato Cal Abad
- Reference Centre of Sport Science of Social Service of Industry, CRCE-SESI, São Paulo 05574-001, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Suchomel TJ, McKeever SM, Nolen JD, Comfort P. Muscle Architectural and Force-Velocity Curve Adaptations following 10 Weeks of Training with Weightlifting Catching and Pulling Derivatives. J Sports Sci Med 2022; 21:504-516. [PMID: 36523888 PMCID: PMC9741714 DOI: 10.52082/jssm.2022.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre- and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p > 0.05). The PULL group displayed small-moderate (g = 0.25-0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00-0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12-0.04) and velocity variables (g = 0.32-0.46), respectively. The OL group displayed moderate (g = 0.48-0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47-0.55) improvements. The CATCH group displayed trivial-small (g = -0.39-0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p > 0.05). Performing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
| | | | - Justin D Nolen
- Health Performance Institute, Illinois Bone and Joint Institute, Highland Park
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
6
|
Travis SK, Pritchard HJ, Mujika I, Gentles JA, Stone MH, Bazyler CD. Characterizing the Tapering Practices of United States and Canadian Raw Powerlifters. J Strength Cond Res 2021; 35:S26-S35. [PMID: 34846328 DOI: 10.1519/jsc.0000000000004177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Travis, SK, Pritchard, HJ, Mujika, I, Gentles, JA, Stone, MH, and Bazyler, CD. Characterizing the tapering practices of United States and Canadian raw powerlifters. J Strength Cond Res 35(12S): S26-S35, 2021-The purpose of this study was to characterize the tapering practices used by North American powerlifters. A total of 364 powerlifters completed a 41-item survey encompassing demographics, general training, general tapering, and specific tapering practices. Nonparametric statistics were used to assess sex (male and female), competition level (regional/provincial, national, and international), and competition lift (squat, bench press, and deadlift). The highest training volume most frequently took place 5-8 weeks before competition, whereas the highest training intensity was completed 2 weeks before competition. A step taper was primarily used over 7-10 days while decreasing the training volume by 41-50% with varied intensity. The final heavy (>85% 1 repetition maximum [1RM]) back squat and deadlift sessions were completed 7-10 days before competition, whereas the final heavy bench press session was completed <7 days before competition. Final heavy lifts were completed at 90.0-92.5% 1RM but reduced to 75-80% 1RM for back squat and bench press and 70-75% for deadlift during the final training session of each lift. Set and repetition schemes during the taper varied between lifts with most frequent reports of 3 × 2, 3 × 3, and 3 × 1 for back squat, bench press, and deadlift, respectively. Training cessation durations before competition varied between deadlift (5.8 ± 2.5 days), back squat (4.1 ± 1.9 days), and bench press (3.9 ± 1.8 days). Complete training cessation was implemented 2.8 ± 1.1 days before competition and varied between sex and competition level. These findings provide novel insights into the tapering practices of North American powerlifters and can be used to inform powerlifting coaches and athlete's tapering decisions.
Collapse
Affiliation(s)
- S Kyle Travis
- Department of Physical Therapy, College of Public Health & Health Professions, University of Florida, Gainesville, Florida
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | | | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country; and
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Jeremy A Gentles
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Caleb D Bazyler
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
7
|
Stone MH, Hornsby WG, Haff GG, Fry AC, Suarez DG, Liu J, Gonzalez-Rave JM, Pierce KC. Periodization and Block Periodization in Sports: Emphasis on Strength-Power Training-A Provocative and Challenging Narrative. J Strength Cond Res 2021; 35:2351-2371. [PMID: 34132223 DOI: 10.1519/jsc.0000000000004050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Stone, MH, Hornsby, WG, Haff, GG, Fry, AC, Suarez, DG, Liu, J, Gonzalez-Rave, JM, and Pierce, KC. Periodization and block periodization in sports: emphasis on strength-power training-a provocative and challenging narrative. J Strength Cond Res 35(8): 2351-2371, 2021-Periodization can be defined as a logical sequential, phasic method of manipulating fitness and recovery phases to increase the potential for achieving specific performance goals while minimizing the potential for nonfunctional over-reaching, overtraining, and injury. Periodization deals with the micromanagement of timelines and fitness phases and is cyclic in nature. On the other hand, programming deals with the micromanagement of the training process and deals with exercise selection, volume, intensity, etc. Evidence indicates that a periodized training process coupled with appropriate programming can produce superior athletic enhancement compared with nonperiodized process. There are 2 models of periodization, traditional and block. Traditional can take different forms (i.e., reverse). Block periodization has 2 subtypes, single goal or factor (individual sports) and multiple goals or factors (team sports). Both models have strengths and weaknesses but can be "tailored" through creative programming to produce excellent results for specific sports.
Collapse
Affiliation(s)
- Michael H Stone
- Center of Excellence for Sport Science and Coach Education, SERK, East Tennessee State University, Johnson City, Tennessee
| | - William G Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, West Virginia
| | - G Gregory Haff
- Center for Exercise and Sport Sciences Research, Edith Cowan University, Joondalup, Washington, Australia
| | - Andrew C Fry
- Jayhawk Athletic Performance Laboratory, University of Kansas, Lawrence, Kansas
| | - Dylan G Suarez
- Center of Excellence for Sport Science and Coach Education, SERK, East Tennessee State University, Johnson City, Tennessee
| | - Junshi Liu
- Institute of Human Factors and Ergonomics, Shenzhen University, Shenzhen, China
| | - Jose M Gonzalez-Rave
- Sports Training Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Spain; and
| | - Kyle C Pierce
- Department of Kinesiology and Health Science, Louisiana State University Shreveport, Shreveport, Louisiana
| |
Collapse
|
8
|
Burke BI, Travis SK, Gentles JA, Sato K, Lang HM, Bazyler CD. The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes. Nutrients 2021; 13:nu13082496. [PMID: 34444656 PMCID: PMC8401934 DOI: 10.3390/nu13082496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
Caffeine is often used in a variety of forms to enhance athletic performance; however, research regarding caffeine's effects on strength and power in female athletes is lacking. Therefore, the purpose of this study was to analyze the acute effects of caffeine anhydrous (6 mg/kg of body mass) on jumping performance and maximal strength in female collegiate athletes. Eleven athletes (19.7 ± 0.9 yrs; 166.4 ± 10.2 cm, 67.7 ± 9.4 kg) performed two testing sessions separated by one week, and randomly received caffeine or placebo using a double-blind approach. Heart rate, blood pressure, and tympanic temperature were recorded before athletes received each condition, following 60 min of quiet sitting, and directly after performance testing. Athletes were assessed on unweighted and weighted squat jump height (SJH0, SJH20) and countermovement jump height (CMJH0, CMJH20), isometric mid-thigh pull peak force (IPF), and rate of force development from 0-200 ms (RFD200). Resting systolic blood pressure was significantly greater following caffeine administration compared to a placebo (p = 0.017). There were small, significant differences in SJH0 (p = 0.035, g = 0.35), SJH20 (p = 0.002, g = 0.49), CMJH0 (p = 0.015, g = 0.19), and CMJH20 (p < 0.001, g = 0.37) in favor of caffeine over placebo. However, there was no significant difference in IPF (p = 0.369, g = 0.12) and RFD200 (p = 0.235, g = 0.32) between conditions. Therefore, caffeine appears to enhance jumping performance, but not maximal strength in female collegiate athletes.
Collapse
Affiliation(s)
- Benjamin I. Burke
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.T.); (J.A.G.); (C.D.B.)
- Correspondence:
| | - S. Kyle Travis
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.T.); (J.A.G.); (C.D.B.)
| | - Jeremy A. Gentles
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.T.); (J.A.G.); (C.D.B.)
| | - Kimitake Sato
- Peak Force, International, Inc., Taichung 42151, Taiwan;
| | - Henry M. Lang
- Department of Exercise Physiology, University of Mary, Bismarck, ND 58504, USA;
| | - Caleb D. Bazyler
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.T.); (J.A.G.); (C.D.B.)
| |
Collapse
|
9
|
Sarto F, Spörri J, Fitze DP, Quinlan JI, Narici MV, Franchi MV. Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions. Sports Med 2021; 51:1151-1170. [PMID: 33683628 PMCID: PMC8124062 DOI: 10.1007/s40279-021-01436-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Orthopaedics, University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel P Fitze
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Batra A, Wetmore AB, Hornsby WG, Lipinska P, Staniak Z, Surala O, Stone MH. Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter. J Funct Morphol Kinesiol 2021; 6:jfmk6010025. [PMID: 33803237 PMCID: PMC8006296 DOI: 10.3390/jfmk6010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to produce force rapidly has the potential to directly influence sprinting performance through changes in stride length and stride frequency. This ability is commonly referred to as the rate of force development (RFD). For this reason, many elite sprinters follow a combined program consisting of resistance training and sprint training. The purpose of this study was to investigate the strength, endocrine and body composition adaptations that occur during distinct phases of a block periodized training cycle in a 400 m Olympic level sprinter. The athlete is an elite level 400 m male sprinter (age 31 years, body mass: 74 kg, years of training: 15 and Personal Best (PB): 45.65 s). This athlete completed four distinct training phases of a block periodized training program (16 weeks) with five testing sessions consisting of testosterone:cortisol (T/C) profiles, body composition, vertical jump, and maximum strength testing. Large fluctuations in T/C were found following high volume training and the taper. Minor changes in body mass were observed with an abrupt decrease following the taper which coincided with a small increase in fat mass percentage. Jump height (5.7%), concentric impulse (9.4%), eccentric impulse (3.4%) and power ratio (18.7%) all increased substantially from T1 to T5. Relative strength increased 6.04% from T1 to T5. Lastly, our results demonstrate the effectiveness of a competitive taper in increasing physiological markers for performance as well as dynamic performance variables. Block periodization training was effective in raising the physical capabilities of an Olympic level 400 m runner which have been shown to directly transfer to sprinting performance.
Collapse
Affiliation(s)
- Amit Batra
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee University, Johnson City, TN 36714, USA;
- Correspondence:
| | - Alex B. Wetmore
- Department of Athletics, Westminster College, Salt Lake City, UT 16172, USA;
| | - W. Guy. Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV 26505, USA;
| | - Patrycja Lipinska
- Institute of Physical Education, University of Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Zbigniew Staniak
- Department of Biomechanics, Institute of Sport, National Research Institute, 01-982 Warsaw, Poland;
| | - Olga Surala
- Department of Nutrition Physiology and Dietetics, Institute of Sport-National Research Institute, 02-776 Warsaw, Poland;
| | - Michael H. Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee University, Johnson City, TN 36714, USA;
| |
Collapse
|
11
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
12
|
Hornsby WG, Fry AC, Haff GG, Stone MH. Addressing the Confusion within Periodization Research. J Funct Morphol Kinesiol 2020; 5:jfmk5030068. [PMID: 33467283 PMCID: PMC7739353 DOI: 10.3390/jfmk5030068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022] Open
Abstract
In this editorial, we focus on recent problematic developments in sport science, and more specifically, problems related to periodization research. Primary areas discussed are (1) appreciation of history, (2) considerations for training studies, (3) the development of concepts, and (4) programming-driven training models.
Collapse
Affiliation(s)
- W. Guy Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV 26505, USA
- Correspondence:
| | - Andrew C. Fry
- Osness Human Performance Laboratory, University of Kansas, Lawrence, KS 66045, USA;
| | - G. Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia;
| | - Michael H. Stone
- Center of Excellence for Sport Science and Coach Education, SERK, East Tennessee State University, Johnson City, TN 37614, USA;
| |
Collapse
|
13
|
Travis SK, Mizuguchi S, Stone MH, Sands WA, Bazyler CD. Preparing for a National Weightlifting Championship: A Case Series. J Strength Cond Res 2020; 34:1842-1850. [DOI: 10.1519/jsc.0000000000003312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Vachon A, Berryman N, Mujika I, Paquet JB, Arvisais D, Bosquet L. Effects of tapering on neuromuscular and metabolic fitness in team sports: a systematic review and meta-analysis. Eur J Sport Sci 2020; 21:300-311. [PMID: 32172680 DOI: 10.1080/17461391.2020.1736183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To assess the effects of a taper strategy on neuromuscular and metabolic fitness in team sport athletes, through a systematic review and meta-analysis. Method: To be included in this meta-analysis, studies had to involve competitive team sport athletes and a tapering intervention providing details about the procedures used to decrease the training load, as well as competition or field-based criterion performance and all necessary data to calculate effect sizes. Four databases were searched according to these criteria, which led to the identification of 895 potential studies and the subsequent inclusion of 14 articles. Independent variables were training intensity, volume and frequency, as well as the pattern of taper and its duration. The dependent variable was performance obtained in various neuromuscular and metabolic tests. Results: There was limited evidence of a moderate taper-induced improvement in repeated sprint ability (Standardized Mean Difference (SMD) (95%IC;I2) = 0.41 (0.26-0.55;0%)) and moderate evidence of a moderate increase in maximal power (SMD (95%IC;I2) = 0.44 (0.32-0.56;15%)), change of direction speed (SMD (95%IC;I2) = 0.38 (0.15-0.60;28%)) and maximal oxygen uptake (SMD (95%IC;I2) = 0.76 (0.43-1.09;37%)). Conclusion: Tapering is an effective training strategy to improve maximal power, maximal oxygen uptake, repeated sprint ability and change of direction speed in team sports. However, the literature lacks studies using various tapering strategies to compare their effectiveness and make evidence-based recommendations. Future original studies should focus on this major issue.
Collapse
Affiliation(s)
- Adrien Vachon
- Lab MOVE (EA6314), Faculty of sport sciences, University of Poitiers, Poitiers, France.,Stade Rochelais Rugby, La Rochelle, France
| | - Nicolas Berryman
- Lab MOVE (EA6314), Faculty of sport sciences, University of Poitiers, Poitiers, France.,Department of Sports Studies, Bishop's University, Sherbrooke QC, Canada.,Institut national du sport du Québec, Montréal QC, Canada.,Département des Science de l'activité physique, Université du Québec à Montréal, Montréal QC, Canada
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country.,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | | | - Denis Arvisais
- Direction of Libraries, University of Montreal, Montreal QC, Canada
| | - Laurent Bosquet
- Lab MOVE (EA6314), Faculty of sport sciences, University of Poitiers, Poitiers, France.,Department of kinesiology, University of Montreal, Montreal QC, Canada
| |
Collapse
|
15
|
Suarez DG, Mizuguchi S, Hornsby WG, Cunanan AJ, Marsh DJ, Stone MH. Phase-Specific Changes in Rate of Force Development and Muscle Morphology Throughout a Block Periodized Training Cycle in Weightlifters. Sports (Basel) 2019; 7:E129. [PMID: 31142001 PMCID: PMC6628423 DOI: 10.3390/sports7060129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the kinetic and morphological adaptations that occur during distinct phases of a block periodized training cycle in weightlifters. Athlete monitoring data from nine experienced collegiate weightlifters was used. Isometric mid-thigh pull (IMTP) and ultrasonography (US) results were compared to examine the effects of three specific phases of a training cycle leading up to a competition. During the high volume strength-endurance phase (SE) small depressions in rate of force development (RFD) but statistically significant (p ≤ 0.05) increases in vastus lateralis cross-sectional area (CSA), and body mass (BM) were observed. The lower volume higher intensity strength-power phase (SP) caused RFD to rebound above pre-training cycle values despite statistically significant reductions in CSA. Small to moderate increases only in the earlier RFD time bands (<150 ms) occurred during the peak/taper phase (PT) while CSA and BM were maintained. Changes in IMTP RFD and CSA from US reflected the expected adaptations of block periodized training phases. Changes in early (<100 ms) and late (≥150 ms) RFD time bands may not occur proportionally throughout different training phases. Small increases in RFD and CSA can be expected in well-trained weightlifters throughout a single block periodized training cycle.
Collapse
Affiliation(s)
- Dylan G Suarez
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson, TN 37614, USA.
| | - Satoshi Mizuguchi
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson, TN 37614, USA.
| | - William Guy Hornsby
- Department of Coaching and Teaching Studies, West Virginia University, Morgantown, WV 26505, USA.
| | - Aaron J Cunanan
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson, TN 37614, USA.
| | - Donald J Marsh
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson, TN 37614, USA.
| | - Michael H Stone
- Department of Coaching and Teaching Studies, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
16
|
Resistance Training Volume Load with and without Exercise Displacement. Sports (Basel) 2018; 6:sports6040137. [PMID: 30400302 PMCID: PMC6316164 DOI: 10.3390/sports6040137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Monitoring the resistance training volume load (VL) (sets × reps × load) is essential to managing resistance training and the recovery–adaptation process. Subjects: Eight trained weightlifters, seven of which were at national level, participated in the study. Methods: VL was measured both with (VLwD) and without (VL) the inclusion of barbell displacement, across twenty weeks of training, in order to allow for comparisons to be made of these VL calculating methods. This consisted of recording the load, repetition count, and barbell displacement for every set executed. Comparisons were made between VL and VLwD for individual blocks of training, select training weeks, and select training days. Results: Strong, statistically significant correlations (r ≥ 0.78, p < 0.001) were observed between VL and VLwD between all training periods analyzed. t-tests revealed statistically significant (p ≤ 0.018) differences between VL and VLwD in four of the seven training periods analyzed. Conclusion: The very strong relationship between VL and VLwD suggest that a coach with time constraints and a large number of athletes can potentially spare the addition of displacement. However, differences in percent change indicate that coaches with ample time should include displacement in VL calculations, in an effort to acquire more precise workload totals.
Collapse
|
17
|
Bazyler CD, Mizuguchi S, Zourdos MC, Sato K, Kavanaugh AA, DeWeese BH, Breuel KF, Stone MH. Characteristics of a National Level Female Weightlifter Peaking for Competition: A Case Study. J Strength Cond Res 2018; 32:3029-3038. [DOI: 10.1519/jsc.0000000000002379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Caleb D Bazyler
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Satoshi Mizuguchi
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Michael C Zourdos
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida
| | - Kimitake Sato
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Ashley A Kavanaugh
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Brad H DeWeese
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Kevin F Breuel
- Department of Obstetrics and Gynecology, East Tennessee Reproductive Endocrinology Laboratory, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
18
|
Travis SK, Goodin JR, Beckham GK, Bazyler CD. Identifying a Test to Monitor Weightlifting Performance in Competitive Male and Female Weightlifters. Sports (Basel) 2018; 6:sports6020046. [PMID: 29910350 PMCID: PMC6026842 DOI: 10.3390/sports6020046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022] Open
Abstract
Monitoring tests are commonly used to assess weightlifter’s preparedness for competition. Although various monitoring tests have been used, it is not clear which test is the strongest indicator of weightlifting performance. Therefore, the purpose of this study was to (1) determine the relationships between vertical jump, isometric mid-thigh pull (IMTP) and weightlifting performance; and (2) compare vertical jumps to IMTP as monitoring tests of weightlifting performance in a large cohort of male and female weightlifters. Methods: Fifty-two competitive weightlifters (31 males, 21 females) participated in squat and countermovement jump testing (SJ, CMJ), and IMTP testing performed on force plates. All laboratory testing data was correlated to a recent competition where the athletes had attempted to peak. Results: Squat jump height (SJH) was the strongest correlate for men and women with the Sinclair Total (r = 0.686, p ≤ 0.01; r = 0.487, p ≤ 0.05, respectively) compared to countermovement jump height (r = 0.642, p ≤ 0.01; r = 0.413, p = 0.063), IMTP peak force allometrically scaled to body mass (r = 0.542, p ≤ 0.01; r = −0.044, p = 0.851) and rate of force development at 200 ms (r = 0.066, p = 0.723; r = 0.086, p = 0.711), respectively. Further, SJH was a stronger correlate of relative weightlifting performance compared to IMTP peak force in females (p = 0.042), but not male weightlifters (p = 0.191). Conclusions: Although CMJ and IMTP are still considered strong indicators of weightlifting performance, SJH appears to be the most indicative measure of weightlifting performance across a wide-range of performance levels. Thus, SJH can be used as a reliable measure to monitor weightlifting performance in male and female weightlifters.
Collapse
Affiliation(s)
- S Kyle Travis
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jacob R Goodin
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA.
| | - George K Beckham
- Kinesiology Department, California State University, Seaside, CA 93955, USA.
| | - Caleb D Bazyler
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
19
|
Wagle JP, Carroll KM, Cunanan AJ, Taber CB, Wetmore A, Bingham GE, DeWeese BH, Sato K, Stuart CA, Stone MH. Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities. Sports (Basel) 2017; 5:sports5040088. [PMID: 29910448 PMCID: PMC5969019 DOI: 10.3390/sports5040088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production-specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p < 0.001), PA (p < 0.001), and CSA (p ≤ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.
Collapse
Affiliation(s)
- John P Wagle
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Kevin M Carroll
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Aaron J Cunanan
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Christopher B Taber
- Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, CT 06825, USA.
| | - Alexander Wetmore
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Garett E Bingham
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Brad H DeWeese
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Kimitake Sato
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Charles A Stuart
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37601, USA.
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37601, USA.
| |
Collapse
|