1
|
Smith JS, Bellissimo GF, Amorim FT. The physiological responses to volume-matched high-intensity functional training protocols with varied time domains. Front Physiol 2025; 15:1511961. [PMID: 40007896 PMCID: PMC11850382 DOI: 10.3389/fphys.2024.1511961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/12/2024] [Indexed: 02/27/2025] Open
Abstract
Background High-intensity functional training (HIFT) is typically performed with minimal or no rest periods, including "rounds for time" (RFT) or "as many rounds or repetitions as possible" (AMRAP) design. Alternatively, some HIFT workouts can be performed with prescribed rest intervals (e.g., "every minute on the minute" [EMOM]) that may have significant effects on physiological responses. Purpose To compare the physiological responses between two different HIFT workouts (EMOM and RFT) that were matched for total work volume (TWV). Methods Twelve trained individuals (six males and six females) performed two HIFT protocols, EMOM and RFT. Both the EMOM and RFT included five rounds of five power cleans, eight kipping pull-ups, six dumbbell thrusters, and ten burpees performed in this order. Measurements of heart rate (HR), oxygen consumption (VO2), rating of perceived exertion (RPE) (1-10 scale), blood lactate (BLA), creatine kinase (CK), excess post-exercise oxygen consumption (EPOC), and muscle oxygen saturation (SmO2) were performed. Results Time domains were significantly different for the EMOM and RFT workouts (20 vs. 12 min ± 3 min, p < 0.00). There were significant differences between the EMOM and RFT for HR (153 ± 19 bpm vs. 171 ± 12 bpm, p < 0.01), VO2 (30.8 ± 3 mL/kg/min vs. 38.1 ± 5 mL/kg/min, p < 0.00), RPE (4 ± 1 vs. 7 ± 1, p < 0.00), and EPOC-AUC (3.5 ± 1.2 mL/kg/min vs. 5.0 ± 1.3 mL/kg/min, p < 0.00); however, there were no significant differences in mean SmO2 (p = 0.44). An interaction effect revealed that BLA was lower for the EMOM (6.5 ± 2.7 mmol/L) than the RFT (11.2 ± 2.1 mmol/L) post-exercise (p < 0.00). Conversely, there was no interaction effect for CK (p < 0.16), yet a significant increase was observed from pre- to post-exercise for both the EMOM and the RFT (p < 0.01). Conclusion The RFT induced greater physiological stress than the EMOM, indicating that prescribed rest intervals significantly affect the metabolic, cardiovascular, and perceptual responses during high-intensity functional exercise. Furthermore, the RFT may provide a greater cardiorespiratory stimulus, while the EMOM may be more suitable for technique development and recovery in trained individuals.
Collapse
Affiliation(s)
- Jessica S. Smith
- Department of Sport and Exercise Sciences, State University of New York at Oneonta, Oneonta, NY, United States
- Exercise Physiology Laboratory, Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Gabriella F. Bellissimo
- Exercise Physiology Laboratory, Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Health and Human Performance, College of Idaho, Caldwell, ID, United States
| | - Fabiano T. Amorim
- Exercise Physiology Laboratory, Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
2
|
Meier N, Schlie J, Schmidt A. Physiological effects of regular CrossFit® training and the impact of the COVID-19 pandemic—A systematic review. Front Physiol 2023; 14:1146718. [PMID: 37089417 PMCID: PMC10113564 DOI: 10.3389/fphys.2023.1146718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
CrossFit® is a functional fitness training program known for its day-to-day varying “Workouts of the Day” (WOD). In accordance with the ‘CrossFit® Level 1 Training Guide’, regular CrossFit® training sessions consist of Warm-up, Mobility, Skill/Power training, WOD, and Cool-down. Despite the fast-growing and widespread popularity, data on the practical implementation of the training program based on scientific evidence are rare. Therefore, the purpose of this study is to systematically review the existing literature on the physiological effects of regular CrossFit® training in full extent instead of stand-alone WODs and to examine the impact of the COVID-19 pandemic on the training behavior of CrossFit® athletes. A systematic search was conducted following the PRISMA guidelines in April 2022 and updated in July 2022 using the following databases: PubMed, SPORTDiscus, Scopus, and Web of Science. Using the keyword “CrossFit”, 1,264 records were found. Based on the eligibility criteria, 12 studies are included and separated by topics: acute-short term physiological response (n = 8), and impact of the COVID-19 pandemic (n = 4). The results show that studies of regular training sessions were rarely conducted and contradicted the existing knowledge of the physiological demands [e.g., heart rate (HR)] of CrossFit®. In detail, included studies demonstrate that training sessions last 30–60 min and provide a progressive increase in cardiovascular load up to maximal effort activity (>90% HRmax), differing from stand-alone WODs exclusively at high-intensity. Also, scarce research exists on COVID-19-pandemic-induced effects on training behavior, and studies are of moderate to low quality. There is still a lack of comprehensive analyses on the acute physiological effects of regular training sessions and the consequences of the COVID-19 pandemic in the scientific literature. Moreover, the inconsistent terminology used in CrossFit® research complicates generalized conclusions. Therefore, future research on the training methodology of CrossFit® needs to overcome terminological inequalities and examine scientifically the implementation of the concept by considering regular training sessions under practical settings.
Collapse
|
3
|
McDougle JM, Mangine GT, Townsend JR, Jajtner AR, Feito Y. Acute physiological outcomes of high-intensity functional training: a scoping review. PeerJ 2023; 11:e14493. [PMID: 36620744 PMCID: PMC9817969 DOI: 10.7717/peerj.14493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Background Systematic reviews and meta-analyses related to high-intensity functional training (HIFT) have been conducted. However, due to a restricted pool of available research, these investigations are often limited in scope. As such, a scoping review investigating the present literature surrounding the acute physiological response to HIFT-based exercise was chosen as a more appropriate structured review. Methodology A scoping review was conducted following Arksey and O'Malley's framework. Three large scale databases were searched to reveal any article pertaining to HIFT and related exercise terminology. Results A total of 2,241 articles were found during the initial search. Following this, titles, then abstracts, and full-texts were reviewed to determine inclusion eligibility. A total of 60 articles which investigated a combined total of 35 unique HIFT workouts were included within this review. Conclusions A variety of physiological parameters and HIFT workouts have been examined. Markers of intensity (e.g., blood lactate concentrations, heart rate) have been most consistently assessed across all studies, and these support the idea that HIFT workouts are typically performed at high-intensity. In contrast, the inclusion of most other measures (e.g., hormonal, markers of inflammation and damage, energy expenditure, performance) has been inconsistent and has thus, limited the possibility for making generalized conclusions. Differences in study methodologies have further impacted conclusions, as different studies have varied in sample population characteristics, workouts assessed, and time points. Though it may be impossible to comprehensively research all possible HIFT workouts, consistent adoption of population definitions and workload quantification may overcome this challenge and assist with future comparisons.
Collapse
Affiliation(s)
- Jacob M. McDougle
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Gerald T. Mangine
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Jeremy R. Townsend
- Exercise and Nutrition Science, Lipscomb University, Nashville, TN, United States
| | - Adam R. Jajtner
- Exercise Physiology, Kent State University, Kent, OH, United States
| | - Yuri Feito
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
- American College of Sports Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Landers-Ramos R, Lawal I, Imery I, Siok D, Addison O, Zabriskie HA, Dondero K, Dobrosielski D. High-intensity functional exercise does not cause persistent elevations in augmentation index in young men and women. Appl Physiol Nutr Metab 2022; 47:963-972. [PMID: 35790116 DOI: 10.1139/apnm-2022-0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevations in central augmentation index (AIx) are predictive of cardiovascular disease. Our objective was to examine AIx immediately and 24-hrs following an acute bout of high-intensity functional training (HIFT) in apparently healthy young adults. A second aim compared the exercise induced AIx recovery response between men and women. Thirty-two recreationally active younger adults (n=16 men) were tested. Baseline central hemodynamic measures were assessed, followed by a single bout of bodyweight HIFT. The HIFT included four rounds of burpees, jump squats, split squats, and walking lunges. Assessments were repeated 5-, 10-, 15- and 24-hrs post exercise. AIx was normalized to a heart rate of 75 bpm (AIx75). There was a significant main effect of time on AIx75 across all groups (p<0.001) with AIx75 increasing at all acute timepoints compared with baseline and returning to resting values 24-hrs post-exercise. When examining sex differences after covarying for height and body fat percentage, we found no time*sex interaction (p=0.62), or main effect for sex (p=0.41), but the significant main effect of time remained (p<0.001). The AIx75 response to HIFT follows a similar recovery pattern as previously studied modes of exercise with no residual effects 24 hrs later and no differences between men and women indicating no persistent cardiovascular strain in younger adults participating in this mode of exercise.
Collapse
Affiliation(s)
| | | | - Ian Imery
- Johns Hopkins University, 1466, Baltimore, United States;
| | - Dakota Siok
- Towson University, 1492, Towson, United States;
| | - Odessa Addison
- University of Maryland School of Medicine, 12264, Department of Physical Therapy and Rehabilitation Sciences, Baltimore, United States.,Geriatric Research and Clinical Center, Baltimore, United States;
| | | | - Kathleen Dondero
- Towson University, 1492, Department of Kinesiology, Towson, United States.,University of Maryland School of Medicine, 12264, Department of Physical Therapy and Rehabilitation Sciences, Baltimore, United States;
| | | |
Collapse
|
5
|
Jacob N, Novaes JS, Behm DG, Vieira JG, Dias MR, Vianna JM. Characterization of Hormonal, Metabolic, and Inflammatory Responses in CrossFit® Training: A Systematic Review. Front Physiol 2020; 11:1001. [PMID: 32982775 PMCID: PMC7485252 DOI: 10.3389/fphys.2020.01001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Background: CrossFit® training is a high-intensity functional training program that aims to increase physical functional performance through biochemical responses, i.e., hormonal, metabolic, and inflammatory responses. Most hormonal, metabolic, and inflammatory changes induced by CrossFit® training have been reported in isolated clinical studies. The purpose of this review was to systematically explore the existing literature on characterization of hormonal, metabolic, and inflammatory responses resulting from CrossFit® training. Methods: A systematic search of the literature was conducted in PubMed, Web of Science and Scopus from August 2019 to October 2019. Studies were selected through critical review of the content. Using specific keywords, 623 articles were found, of which 597 were excluded for ineligibility, and 25 were eligible. The papers were separated according to subject area: hormonal (n = 8), metabolic (n = 19), and inflammatory (n = 6) changes. All were published between 2015 and 2019. Results: This review reveals potential effects of CrossFit® training on hormonal, metabolic, and inflammatory responses. However, studies had low levels of evidence and reliability due to methodological limitations. Conclusion: In summary, the results showed a greater volume and intensity of workouts accentuate the responses, that are of paramount importance for improving understanding of the effects of CrossFit® training and serve as a basis for prescribing future exercise protocols.
Collapse
Affiliation(s)
- Nacipe Jacob
- Medical and Health Sciences College of Juiz de Fora - Suprema, Juiz de Fora, Brazil
| | - Jefferson S. Novaes
- Postgraduate Program in Physical Education of Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Department of Gymnastics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - João G. Vieira
- Postgraduate Program in Physical Education of Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo R. Dias
- Postgraduate Program in Physical Education of Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Laboratory of Exercise Physiology and Morphofunctional Assessment of Granbery Methodist College, Juiz de Fora, Brazil
| | - Jeferson M. Vianna
- Postgraduate Program in Physical Education of Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
6
|
Cavedon V, Milanese C, Marchi A, Zancanaro C. Different amount of training affects body composition and performance in High-Intensity Functional Training participants. PLoS One 2020; 15:e0237887. [PMID: 32817652 PMCID: PMC7440620 DOI: 10.1371/journal.pone.0237887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/04/2020] [Indexed: 01/10/2023] Open
Abstract
The effects of High-Intensity Functional Training (HIFT) on body composition and the relationship of the latter with performance are not well defined. In this work we investigated, by means of Dual-energy X-ray Absorptiometry, the relative proportions of fat-, lean soft tissue-, and mineral mass in CrossFit® (CF, a popular mode of HIFT) participants (n = 24; age, 28.2 ± 3.39 y; BMI, 25.3 ± 2.04 kg/m2) with at least 1 year of CF training experience and weekly amount of training > 10 h/w (n = 13; Higher Training, HT) or < 10 h/w (n = 11; Lower Training, LT) as well as age- matched and BMI-matched physically active controls (CHT, CLT). Performance was assessed in the “Fran” workout. Data were analyzed by one-way or repeated measures ANOVA where needed. Association between variables was assessed with the Pearson’s correlation coefficient r. Partial correlation was used where needed. Results showed that HT performed better than LT in the “Fran” (P < 0.001) and they had higher whole-body bone mineral density (P = 0.026) and higher lean soft mass (P = 0.002), and borderline lower percent fat mass (P = 0.050). The main difference between CF participants (HT, LT) and their respective controls (CHT, CLT) was a lower adiposity in the former. In CF participants, performance positively correlated with appendicular lean soft tissue mass (P = 0.030). It can be concluded that, in CF participants, a higher amount of weekly training improves most notably lean body mass and increases performance in association with increased skeletal muscle mass. CF participation is especially effective in reducing fat mass vs. age- and BMI-matched physically active controls.
Collapse
Affiliation(s)
- Valentina Cavedon
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- * E-mail:
| | - Alessandro Marchi
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Zancanaro
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|