1
|
Flore L, Francalacci P, Massidda M, Robledo R, Calò CM. Influence of Different Evolutive Forces on GDF5 Gene Variability. Genes (Basel) 2023; 14:1895. [PMID: 37895244 PMCID: PMC10606091 DOI: 10.3390/genes14101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The GDF5 gene is involved in the development of skeletal elements, synovial joint formation, tendons, ligaments, and cartilage. Several polymorphisms are present within the gene, and two of them, rs143384 and 143383, were reported to be correlated with osteoarticular disease or muscle flexibility. The aim of this research is to verify if the worldwide distribution of the rs143384 polymorphism among human populations was shaped by selective pressure, or if it was the result of random genetic drift events. Ninety-four individuals of both the male and female sexes, 18-28 years old, from Sardinia were analyzed. We observed the following genotype frequencies: 28.72% of AA homozygotes, 13.83% of GG homozygotes, and 57.45% of AG heterozygotes. The allele frequencies were 0.574 for allele A and 0.426 for allele G. The relationships between the populations were verified via Multidimensional Scaling (MDS). Our data show (i) a clear heterogeneity within the African populations; (ii) a strong differentiation between the African populations and the other populations; and that (iii) the Sardinian population is placed within the European cluster. To reveal possible traces of selective pressure, the Population Branch Statistic (PBS) was calculated; both the rs143384 and 143383 SNPs have low PBS values, suggesting that there are no signals of selective pressure in those areas of the gene.
Collapse
Affiliation(s)
- Laura Flore
- Department of Life and Environment Sciences, University of Cagliari, 09042 Cagliari, Italy; (L.F.); (P.F.); (C.M.C.)
| | - Paolo Francalacci
- Department of Life and Environment Sciences, University of Cagliari, 09042 Cagliari, Italy; (L.F.); (P.F.); (C.M.C.)
| | - Myosotis Massidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Carla Maria Calò
- Department of Life and Environment Sciences, University of Cagliari, 09042 Cagliari, Italy; (L.F.); (P.F.); (C.M.C.)
| |
Collapse
|
2
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hince D, Hart NH. Genetic Variants within NOGGIN, COL1A1, COL5A1, and IGF2 are Associated with Musculoskeletal Injuries in Elite Male Australian Football League Players: A Preliminary Study. SPORTS MEDICINE - OPEN 2022; 8:126. [PMID: 36219268 PMCID: PMC9554075 DOI: 10.1186/s40798-022-00522-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Australian Football is a dynamic team sport that requires many athletic traits to succeed. Due to this combination of traits, as well as technical skill and physicality, there are many types of injuries that could occur. Injuries are not only a hindrance to the individual player, but to the team as a whole. Many strength and conditioning personnel strive to minimise injuries to players to accomplish team success. PURPOSE To investigate whether selected polymorphisms have an association with injury occurrence in elite male Australian Football players. METHODS Using DNA obtained from 46 elite male players, we investigated the associations of injury-related polymorphisms across multiple genes (ACTN3, CCL2, COL1A1, COL5A1, COL12A1, EMILIN1, IGF2, NOGGIN, SMAD6) with injury incidence, severity, type (contact and non-contact), and tissue (muscle, bone, tendon, ligament) over 7 years in one Australian Football League team. RESULTS A significant association was observed between the rs1372857 variant in NOGGIN (p = 0.023) and the number of total muscle injuries, with carriers of the GG genotype having a higher estimated number of injuries, and moderate, or combined moderate and high severity rated total muscle injuries. The COL5A1 rs12722TT genotype also had a significant association (p = 0.028) with the number of total muscle injuries. The COL5A1 variant also had a significant association with contact bone injuries (p = 0.030), with a significant association being found with moderate rated injuries. The IGF2 rs3213221-CC variant was significantly associated with a higher estimated number of contact tendon injuries per game (p = 0.028), while a higher estimated number of total ligament (p = 0.019) and non-contact ligament (p = 0.002) injuries per game were significantly associated with carriage of the COL1A1 rs1800012-TT genotype. CONCLUSIONS Our preliminary study is the first to examine associations between genetic variants and injury in Australian Football. NOGGIN rs1372857-GG, COL5A1 rs12722-TT, IGF2 rs3213221-CC, and COL1A1 rs1800012-TT genotypes held various associations with muscle-, bone-, tendon- and ligament-related injuries of differing severities. To further increase our understanding of these, and other, genetic variant associations with injury, competition-wide AFL studies that use more players and a larger array of gene candidates is essential.
Collapse
Affiliation(s)
- Ysabel Jacob
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Ryan S. Anderton
- grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia ,grid.266886.40000 0004 0402 6494School of Health Science, University of Notre Dame Australia, Perth, WA Australia
| | - Jodie L. Cochrane Wilkie
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Exercise Medicine Research Institute, Edith Cowan University, WA Perth, Australia
| | | | - Simon M. Laws
- grid.1038.a0000 0004 0389 4302Centre for Precision Health, Edith Cowan University, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.1032.00000 0004 0375 4078School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth, WA Australia
| | - Tania Spiteri
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Dana Hince
- grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia
| | - Nicolas H. Hart
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Exercise Medicine Research Institute, Edith Cowan University, WA Perth, Australia ,grid.1014.40000 0004 0367 2697Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA Australia ,grid.1024.70000000089150953Faculty of Health, School of Nursing, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
3
|
Guilherme JPLF, Semenova EA, Larin AK, Yusupov RA, Generozov EV, Ahmetov II. Genomic Predictors of Brisk Walking Are Associated with Elite Sprinter Status. Genes (Basel) 2022; 13:genes13101710. [PMID: 36292594 PMCID: PMC9602420 DOI: 10.3390/genes13101710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Brisk walkers are physically more active, taller, have reduced body fat and greater physical fitness and muscle strength. The aim of our study was to determine whether genetic variants associated with increased walking pace were overrepresented in elite sprinters compared to controls. A total of 70 single-nucleotide polymorphisms (SNPs) previously identified in a genome-wide association study (GWAS) of self-reported walking pace in 450,967 European individuals were explored in relation to sprinter status. Genotyping of 137 Russian elite sprinters and 126 controls was performed using microarray technology. Favorable (i.e., high-speed-walking) alleles of 15 SNPs (FHL2 rs55680124 C, SLC39A8 rs13107325 C, E2F3 rs4134943 T, ZNF568 rs1667369 A, GDF5 rs143384 G, PPARG rs2920503 T, AUTS2 rs10452738 A, IGSF3 rs699785 A, CCT3 rs11548200 T, CRTAC1 rs2439823 A, ADAM15 rs11264302 G, C6orf106 rs205262 A, AKAP6 rs12883788 C, CRTC1 rs11881338 A, NRXN3 rs8011870 G) were identified as having positive associations with sprinter status (p < 0.05), of which IGSF3 rs699785 survived correction for multiple testing (p = 0.00004) and was linked (p = 0.042) with increased proportions of fast-twitch muscle fibers of m. vastus lateralis in physically active men (n = 67). Polygenic analysis revealed that individuals with ≥18 favorable alleles of the 15 SNPs have an increased odds ratio of being an elite sprinter when compared to those with ≤17 alleles (OR: 7.89; p < 0.0001). Using UK Biobank data, we also established the association of 14 favorable alleles with low BMI and fat percentage, 8 alleles with increased handgrip strength, and 7 alleles with increased height and fat-free mass. In conclusion, we have identified 15 new genetic markers associated with sprinter status.
Collapse
Affiliation(s)
- João Paulo L. F. Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
- Correspondence: (J.P.L.F.G.); (I.I.A.)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Molecular Genetics, Central Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
- Correspondence: (J.P.L.F.G.); (I.I.A.)
| |
Collapse
|
4
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
5
|
Horozoglu C, Aslan HE, Karaagac A, Kucukhuseyin O, Bilgic T, Himmetoglu S, Gheybi A, Yaylim I, Zeybek U. EFFECTS OF GENETIC VARIATIONS OF MLCK2, AMPD1, AND COL5A1 ON MUSCLE ENDURANCE. REV BRAS MED ESPORTE 2022. [DOI: 10.1590/1517-8692202228022021_0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Although potential relationships with genetic variants of MLCK2, AMPD1 and COL5A1 have been detected in molecular studies evaluating sports performance from the genetic perspective, there are limited data in terms of muscle endurance and physical fitness. Materials and Methods: This study aimed to evaluate these variants in terms of lower limb muscle endurance and physical fitness in thirty-three soccer players. Genotypes were determined by High Resolution Melting (HRM) analysis in qPCR after genomic DNA was isolated from buccal swab samples from the participants. Measurements of lower limb muscle endurance, the dynamic leap and balance test (DLBT), and the standing broad jump test (SBJ) were taken for all the participants. Results: Greater height (p = 0.006), higher DLBT (p = 0.016) and SBJ (p = 0.033) scores, as well as greater left hip adduction (p <0.001), were detected in those with the CT genotype for AMPD1 as compared to those with CC. For MLCK rs28497577, it was found that the players carrying the AA genotype were taller (p = 0.046), heavier (p = 0.049), and had greater left knee extension (p=0.014) and left foot plantar flexion (p =0.040) than those carrying the C allele. Those with the CT genotype for COL5A1 rs12722 had greater right hip extension (p = 0.040) and right knee extension (p = 0.048) than those with the CC genotype. Conclusions: Our results showed that MLCK2 and COL5A1 gene variants are associated with body composition and lower limb muscle endurance, and the presence of the AMPD1 CT genotype may contribute positively to balance, correct positioning, controlled strength, and hip mobility. Evidence level II; Comparative prospective study .
Collapse
|
6
|
Africa E, Stryp OV, Musálek M. The Influence of Cultural Experiences on the Associations between Socio-Economic Status and Motor Performance as Well as Body Fat Percentage of Grade One Learners in Cape Town, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:121. [PMID: 35010376 PMCID: PMC8750979 DOI: 10.3390/ijerph19010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Fundamental movement skills (FMS), physical fitness (PF) and body fat percentage (BF%) are significantly related to socio-economic status (SES). However, it remains unclear why previous studies have had different findings regarding the direction of the association between SES and FMS, PF and BF%. A suggested explanation is that the direction of the link can be influenced by cultural experiences and traditions. Therefore, the aim of the current study was to investigate links between SES and FMS, PF, BF% of Grade One learners from two different ethno-geographic areas in Cape Town, South Africa. Grade One children (n = 191) (n = 106 boys and n = 85 girls; age (6.7 ± 0.33)) from different socio-economic areas in Cape Town, South Africa, were selected to participate in the study. South African schools are classified into five different quintiles (1 = poorest and 5 = least poor public schools). For this study, two schools were selected, one from quintile 2 and the other from quintile 5. BF% was assessed according to Slaughter's equation. FMS were measured using the Gross Motor Development Test-2 (TGMD-2) and PF via five tests: 1. dynamic strength of lower limb (broad jump); 2. dynamic strength of upper limb and trunk (throwing a tennis ball); 3. speed agility (4 × 10 m shuttle running); 4. cardiorespiratory fitness (20 m shuttle run endurance test (Leger test)) and 5. flexibility (sit and reach test). An analysis of covariance (ANCOVA) found that BF% and WHtR were significantly greater in children with higher SES (Z = 6.04 p < 0.001; Hedg = 0.54), (Z = 3.89 p < 0.001; Hedg = 0.32). Children with lower SES achieved significantly better TGMD-2 standard scores in the locomotor subtest, compared to their peers with higher SES. In the object control subtest, no significant SES-related difference was found. However, ANCOVA showed that girls performed better in FMS than boys. In PF, the main effect of SES was observed in dynamic strength of trunk and upper limb (throwing) and flexibility, where children with lower SES performed significantly better. No significant difference was found in cardiorespiratory performance (CRP) (Beep test), even though children with lower SES achieved better results. Results from the current study suggest that links between SES, PF, FMS and body fat percentage in children seem to be dependent on cultural and traditional experiences. These experiences should therefore be included as an important factor for the development of programmes and interventions to enhance children's lifelong motor behaviour and health strategies.
Collapse
Affiliation(s)
- Eileen Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (E.A.); (O.V.S.)
| | - Odelia Van Stryp
- Faculty of Medicine and Health Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (E.A.); (O.V.S.)
| | - Martin Musálek
- Faculty of Physical Education and Sport, Charles University, José Martího 31 Praha 6, 162 52 Veleslavín, Czech Republic
| |
Collapse
|
7
|
Schwiertz G, Beurskens R, Muehlbauer T. Discriminative validity of the lower and upper quarter Y balance test performance: a comparison between healthy trained and untrained youth. BMC Sports Sci Med Rehabil 2020; 12:73. [PMID: 33292443 PMCID: PMC7713321 DOI: 10.1186/s13102-020-00220-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023]
Abstract
Background The Lower (YBT-LQ) and Upper (YBT-UQ) Quarter Y Balance Test have been widely used for the assessment of dynamic balance and shoulder mobility/stability, respectively. However, investigations on the validity of the two tests in youth are lacking. Therefore, we performed two studies to determine discriminative validity of the YBT-LQ (study 1) and the YBT-UQ (study 2) in healthy youth. Methods Sixty-nine male soccer players (age: 14.4 ± 1.9 yrs) and 69 age-matched untrained male subjects (14.3 ± 1.6 yrs) participated in study 1 and 37 young swimmers (age: 12.3 ± 2.1 yrs) as well as 37 age−/sex-matched individuals (age: 12.5 ± 2.0 yrs) took part in study 2. Absolute (cm) and relative (% leg/arm length) maximal reach distances per reach direction and the composite score of the YBT-LQ/UQ were used as outcome measures. One-way analysis of variance and the receiver operator characteristic curve analysis (i.e., calculating the area under the curve [AUC]) were conducted to assess discriminative validity. Results Concerning the relative values, youth athletes showed significantly better YBT-LQ (study 1: p < 0.001, d = 0.86–1.21) and YBT-UQ (study 2: p < 0.001, d = 0.88–1.48) test performances compared to age- and sex-matched untrained subjects. Further, AUC-values indicated a chance of ≥74% (YBT-LQ) and ≥ 71% (YBT-UQ) to discriminate between youth athletes and controls. These findings were confirmed when using the absolute data for analysis. Conclusions According to our results, the YBT-LQ and the YBT-UQ seem to be useful test instruments to discriminate trained and untrained healthy youth performance for dynamic balance and shoulder mobility/stability, respectively.
Collapse
Affiliation(s)
- Gerrit Schwiertz
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Gladbecker Str. 182, 45141, Essen, Germany.
| | - Rainer Beurskens
- Department of Health and Social Affairs, FHM Bielefeld - University of Applied Sciences, Bielefeld, Germany
| | - Thomas Muehlbauer
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Gladbecker Str. 182, 45141, Essen, Germany
| |
Collapse
|
8
|
Jebavy R, Baláš J, Vomackova H, Szarzec J, Stastny P. The Effect of Traditional and Stabilization-Oriented Exercises on Deep Stabilization System Function in Elite Futsal Players. Sports (Basel) 2020; 8:sports8120153. [PMID: 33260580 PMCID: PMC7761023 DOI: 10.3390/sports8120153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
Background: This study aimed to compare the effect of traditional and stability-oriented strength exercises on trunk stability and deep stabilization system (DSS) activation in elite futsal players. Methods: Twenty elite futsal players (21–34 years, 180 ± 13 cm, 79 ± 15 kg) were randomly divided into a group that performed stability-oriented exercises and a group that performed traditional strength exercises. Both interventions lasted for 10 weeks and included 25 strength training sessions. Main outcome measures: The DSS pretest and posttest included the diaphragm test, trunk flexion test, back extension test, hip flexion test, intraabdominal pressure test, and a side plank test on a 1–5 point scale. Results: Both groups had similar initial test results, where the stability-oriented exercise group had significantly improved intraabdominal pressure test (p = 0.004, by lower quartile rate), trunk flexion (p = 0.036, by 0.5 grade in median), and side plank (p = 0.002, by 1 grade in median) in posttest results. Traditional exercise did not change the results of any of the included DSS function tests. Conclusions: Stabilization-oriented exercises effectively activate the functions of the DSS and should be prioritized over traditional strength exercises in injury prevention training programs. The use of stabilization-oriented exercises might prevent injury and overloading in elite futsal players.
Collapse
Affiliation(s)
- Radim Jebavy
- Department of Track and Field, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Jiří Baláš
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Helena Vomackova
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Jakub Szarzec
- Faculty of Nursing and Professional Health Studies, Health University in Bratislava, 83101 Bratislava, Slovakia;
| | - Petr Stastny
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic
- Correspondence: ; Tel.: +420-777198764
| |
Collapse
|
9
|
Johansen JM, Goleva-Fjellet S, Sunde A, Gjerløw LE, Skeimo LA, Freberg BI, Sæbø M, Helgerud J, Støren Ø. No Change - No Gain; The Effect of Age, Sex, Selected Genes and Training on Physiological and Performance Adaptations in Cross-Country Skiing. Front Physiol 2020; 11:581339. [PMID: 33192589 PMCID: PMC7649780 DOI: 10.3389/fphys.2020.581339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023] Open
Abstract
The aim was to investigate the effect of training, sex, age and selected genes on physiological and performance variables and adaptations before, and during 6 months of training in well-trained cross-country skiers. National-level cross-country skiers were recruited for a 6 months observational study (pre - post 1 - post 2 test). All participants were tested in an outside double poling time trial (TTDP), maximal oxygen uptake in running (RUN-VO2max), peak oxygen uptake in double poling (DP-VO2peak), lactate threshold (LT) and oxygen cost of double poling (CDP), jump height and maximal strength (1RM) in half squat and pull-down. Blood samples were drawn to genetically screen the participants for the ACTN3 R577X, ACE I/D, PPARGC1A rs8192678, PPARG rs1801282, PPARA rs4253778, ACSL1 rs6552828, and IL6 rs1474347 polymorphisms. The skiers were instructed to train according to their own training programs and report all training in training diaries based on heart rate measures from May to October. 29 skiers completed all testing and registered their training sufficiently throughout the study period. At pre-test, significant sex and age differences were observed in TTDP (p < 0.01), DP-VO2peak (p < 0.01), CDP (p < 0.05), MAS (p < 0.01), LTv (p < 0.01), 1RM half squat (p < 0.01), and 1RM pull-down (p < 0.01). For sex, there was also a significant difference in RUN-VO2max (p < 0.01). No major differences were detected in physiological or performance variables based on genotypes. Total training volume ranged from 357.5 to 1056.8 min per week between participants, with a training intensity distribution of 90-5-5% in low-, moderate- and high-intensity training, respectively. Total training volume and ski-specific training increased significantly (p < 0.05) throughout the study period for the whole group, while the training intensity distribution was maintained. No physiological or performance variables improved during the 6 months of training for the whole group. No differences were observed in training progression or training adaptation between sexes or age-groups. In conclusion, sex and age affected physiological and performance variables, with only a minor impact from selected genes, at baseline. However, minor to no effect of sex, age, selected genes or the participants training were shown on training adaptations. Increased total training volume did not affect physiological and performance variables.
Collapse
Affiliation(s)
- Jan-Michael Johansen
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Arnstein Sunde
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Lars Erik Gjerløw
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Lars Arne Skeimo
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Baard I Freberg
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway.,Landslagslegen.no, Top Sports Medical Office, Tønsberg, Norway.,The Norwegian Biathlon Association, Oslo, Norway
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Øyvind Støren
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| |
Collapse
|
10
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. Genetic association research in football: A systematic review. Eur J Sport Sci 2020; 21:714-752. [PMID: 32466725 DOI: 10.1080/17461391.2020.1776401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic variation is responsible for a large amount of the inter-individual performance disparities seen in sport. As such, in the last ten years genetic association studies have become more common; with one of the most frequently researched sports being football. However, the progress and methodological rigour of genetic association research in football is yet to be evaluated. Therefore, the aim of this paper was to identify and evaluate all genetic association studies involving football players and outline where and how future research should be directed. Firstly, a systematic search was conducted in the Pubmed and SPORTDiscus databases, which identified 80 eligible studies. Progression analysis revealed that 103 distinct genes have been investigated across multiple disciplines; however, research has predominately focused on the association of the ACTN3 or ACE gene. Furthermore, 55% of the total studies have been published within the last four years; showcasing that genetic association research in football is increasing at a substantial rate. However, there are several methodological inconsistencies which hinder research implications, such as; inadequate description or omission of ethnicity and on-field positions. Furthermore, there is a limited amount of research on several key areas crucial to footballing performance, in particular; psychological related traits. Moving forward, improved research designs, larger sample sizes, and the utilisation of genome-wide and polygenic profiling approaches are recommended. Finally, we introduce the Football Gene Project, which aims to address several of these limitations and ultimately facilitate greater individualised athlete development within football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK.,Department of Life Sciences, Birmingham City University, City South Campus, Westbourne Road, Edgbaston, B15 3TN, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne, Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| |
Collapse
|
11
|
Maciejewska-Skrendo A, Buryta M, Czarny W, Król P, Stastny P, Petr M, Safranow K, Sawczuk M. The Polymorphisms of the Peroxisome-Proliferator Activated Receptors' Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. J Clin Med 2019; 8:jcm8071043. [PMID: 31319591 PMCID: PMC6679124 DOI: 10.3390/jcm8071043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background: PPARα is a transcriptional factor that controls the expression of genes involved in fatty acid metabolism, including fatty acid transport, uptake by the cells, intracellular binding, and activation, as well as catabolism (particularly mitochondrial fatty acid oxidation) or storage. PPARA gene polymorphisms may be crucial for maintaining lipid homeostasis and in this way, being responsible for developing specific training-induced physiological reactions. Therefore, we have decided to check if post-training changes of body mass measurements as well as chosen biochemical parameters are modulation by the PPARA genotypes. Methods: We have examined the genotype and alleles’ frequencies (described in PPARA rs1800206 and rs4253778 polymorphic sites) in 168 female participants engaged in a 12-week training program. Body composition and biochemical parameters were measured before and after the completion of a whole training program. Results: Statistical analyses revealed that PPARA intron 7 rs4253778 CC genotype modulate training response by increasing low-density lipoproteins (LDL) and glucose concentration, while PPARA Leu162Val rs1800206 CG genotype polymorphism interacts in a decrease in high-density lipoproteins (HDL) concentration. Conclusions: Carriers of PPARA intron 7 rs4253778 CC genotype and Leu162Val rs1800206 CG genotype might have potential negative training-induced cholesterol and glucose changes after aerobic exercise.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Department of Molecular Biology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Maciej Buryta
- Department of Molecular Biology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Wojciech Czarny
- Department of Anatomy and Anthropology, Faculty of Physical Education, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Pawel Król
- Department of Anatomy and Anthropology, Faculty of Physical Education, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Petr Stastny
- Department of Sport Games, Faulty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic.
| | - Miroslav Petr
- Department of Sport Games, Faulty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marek Sawczuk
- Unit of Physical Medicine, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|