1
|
Rowe GS, Blazevich AJ, Taylor JL, Pulverenti T, Haff GG. Can the cross-education of strength attenuate the impact of detraining after a period of strength training? A quasi-randomized trial. Eur J Appl Physiol 2024; 124:1-16. [PMID: 38809477 PMCID: PMC11467040 DOI: 10.1007/s00421-024-05509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE Unilateral strength training may attenuate the decline in muscle strength and size in homologous, contralateral muscles. This study aimed to determine whether the cross-education of strength could specifically attenuate the effects of detraining immediately after a short (prehabilitation-type) period of strength training. METHODS Twenty-six strength-trained participants were assigned to either four weeks of unilateral strength training of the stronger arm (UNI) or detraining (Detrain). Motor evoked potential (MEP) and cortical silent period (cSP) responses, muscle cross-sectional area (CSAFlexor; peripheral quantitative computed tomography) and maximal strength, rate of force development (RFD) and muscle activation (EMG) were examined in both elbow flexors before and after the intervention period. RESULTS In UNI, one-repetition maximum (1-RM) strength improved in both the trained (∆ = 2.0 ± 0.9 kg) and non-trained (∆ = 0.8 ± 0.9 kg) arms despite cessation of training of the weaker arm, whereas 1-RM strength was unchanged in Detrain. Maximal voluntary isometric contraction, isokinetic peak torque, and RFD did not change in either group. No neural changes were detected in UNI, but cSP increased in Detrain (∆ = 0.010 ± 0.015 s). CSAFlexor increased in the trained arm (∆ = 51 ± 43 mm2) but decreased in the non-trained arm (∆ = -53 ± 50 mm2) in UNI. CSAFlexor decreased in both arms in Detrain and at a similar rate to the non-trained arm in UNI. CONCLUSION UNI attenuated the effects of detraining in the weaker arm as shown by the improvement in 1-RM strength. However, the cross-education of strength did not attenuate the decline in muscle size in the contralateral arm.
Collapse
Affiliation(s)
- Grant S Rowe
- School of Psychology, College of Health and Education, Murdoch University, 90 South Street, Murdoch, Perth, 6150, Australia.
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, Australia
| | | | - G Gregory Haff
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
- Strength and Power Research Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, Australia
| |
Collapse
|
2
|
Gordon T, Jeanfavre M, Leff G. Effects of Tempo-Controlled Resistance Training on Corticospinal Tract Plasticity in Healthy Controls: A Systematic Review. Healthcare (Basel) 2024; 12:1325. [PMID: 38998859 PMCID: PMC11241463 DOI: 10.3390/healthcare12131325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
After musculoskeletal injuries, there is often a loss of corticospinal control. Current tendon rehabilitation may not adequately address the corticospinal control of the muscle which may contribute to the recalcitrance of symptom recurrence. This review provides a summary of the current literature regarding the effectiveness of tempo-controlled resistance training (TCRT) in (1) promoting corticospinal plasticity, (2) improving physical performance, and (3) improving strength outcomes in healthy adults. A comprehensive literature search was conducted using electronic databases (PubMed, CINAHL, Embase, and Google Scholar) to identify relevant studies published between 2010 and 2023. Randomized control (RCT) studies that included recreationally trained and untrained healthy adults between 18 and 60 years of age and that compared a TCRT intervention to a control condition were included. Twelve of the 1255 studies identified in the initial search were included in the final analysis. Throughout all included studies, TCRT was shown to elicit greater neural adaptations compared to traditional resistance training methods (i.e., self-paced strength training). These results indicate that TCRT holds promise as an effective method for modulating corticospinal plasticity in healthy adults and may enhance neuromuscular adaptations, including improvements in CSE, decreased SICI, enhanced motor unit synchronization, and voluntary muscle activation.
Collapse
Affiliation(s)
- Talia Gordon
- Stanford Healthcare, Redwood City, CA 94063, USA; (M.J.); (G.L.)
| | | | | |
Collapse
|
3
|
Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Tanel M, Uribe S, Akalu Y, Rostami M, Tallent J, Kidgell DJ. Differential modulation of corticomotor excitability in older compared to young adults following a single bout of strength -exercise. Arch Gerontol Geriatr 2024; 122:105384. [PMID: 38394740 DOI: 10.1016/j.archger.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Evidence shows corticomotor plasticity diminishes with age. Nevertheless, whether strength-training, a proven intervention that induces corticomotor plasticity in younger adults, also takes effect in older adults, remains untested. This study examined the effect of a single-session of strength-exercise on corticomotor plasticity in older and younger adults. Thirteen older adults (72.3 ± 6.5 years) and eleven younger adults (29.9 ± 6.9 years), novice to strength-exercise, participated. Strength-exercise involved four sets of 6-8 repetitions of a dumbbell biceps curl at 70-75% of their one-repetition maximum (1-RM). Muscle strength, cortical, corticomotor and spinal excitability, before and up to 60-minutes after the strength-exercise session were assessed. We observed significant changes over time (p < 0.05) and an interaction between time and age group (p < 0.05) indicating a decrease in corticomotor excitability (18% p < 0.05) for older adults at 30- and 60-minutes post strength-exercise and an increase (26% and 40%, all p < 0.05) in younger adults at the same time points. Voluntary activation (VA) declined in older adults immediately post and 60-minutes post strength-exercise (36% and 25%, all p < 0.05). Exercise had no effect on the cortical silent period (cSP) in older adults however, in young adults cSP durations were shorter at both 30- and 60- minute time points (17% 30-minute post and 9% 60-minute post, p < 0.05). There were no differences in short-interval cortical inhibition (SICI) or intracortical facilitation (ICF) between groups. Although the corticomotor responses to strength-exercise were different within groups, overall, the neural responses seem to be independent of age.
Collapse
Affiliation(s)
- Ummatul Siddique
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Ashlyn K Frazer
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Care, Monash University, Clayton, Australia
| | - Yonas Akalu
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Mohamad Rostami
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Jamie Tallent
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia.
| |
Collapse
|
4
|
Norbury R, Grant I, Woodhead A, Hughes L, Tallent J, Patterson SD. Acute hypoalgesic, neurophysiological and perceptual responses to low-load blood flow restriction exercise and high-load resistance exercise. Exp Physiol 2024; 109:672-688. [PMID: 38578259 PMCID: PMC11061633 DOI: 10.1113/ep091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This study compared the acute hypoalgesic and neurophysiological responses to low-load resistance exercise with and without blood flow restriction (BFR), and free-flow, high-load exercise. Participants performed four experimental conditions where they completed baseline measures of pain pressure threshold (PPT), maximum voluntary force (MVF) with peripheral nerve stimulation to determine central and peripheral fatigue. Corticospinal excitability (CSE), corticospinal inhibition and short interval intracortical inhibition (SICI) were estimated with transcranial magnetic stimulation. Participants then performed low-load leg press exercise at 30% of one-repetition maximum (LL); low-load leg press with BFR at 40% (BFR40) or 80% (BFR80) of limb occlusion pressure; or high-load leg press of four sets of 10 repetitions at 70% one-repetition maximum (HL). Measurements were repeated at 5, 45 min and 24 h post-exercise. There were no differences in CSE or SICI between conditions (all P > 0.05); however, corticospinal inhibition was reduced to a greater extent (11%-14%) in all low-load conditions compared to HL (P < 0.005). PPTs were 12%-16% greater at 5 min post-exercise in BFR40, BFR80 and HL compared to LL (P ≤ 0.016). Neuromuscular fatigue displayed no clear difference in the magnitude or time course between conditions (all P > 0.05). In summary, low-load BFR resistance exercise does not induce different acute neurophysiological responses to low-load, free-flow exercise but it does promote a greater degree of hypoalgesia and reduces corticospinal inhibition more than high-load exercise, making it a useful rehabilitation tool. The changes in neurophysiology following exercise were not related to changes in PPT.
Collapse
Affiliation(s)
- Ryan Norbury
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Ian Grant
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Alex Woodhead
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Luke Hughes
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastle‐Upon TyneUK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVAAustralia
| | - Stephen D. Patterson
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
5
|
Woodhead A, Rainer C, Hill J, Murphy CP, North JS, Kidgell D, Tallent J. Corticospinal and spinal responses following a single session of lower limb motor skill and resistance training. Eur J Appl Physiol 2024:10.1007/s00421-024-05464-9. [PMID: 38532177 DOI: 10.1007/s00421-024-05464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Prior studies suggest resistance exercise as a potential form of motor learning due to task-specific corticospinal responses observed in single sessions of motor skill and resistance training. While existing literature primarily focuses on upper limb muscles, revealing a task-dependent nature in eliciting corticospinal responses, our aim was to investigate such responses after a single session of lower limb motor skill and resistance training. Twelve participants engaged in a visuomotor force tracking task, self-paced knee extensions, and a control task. Corticospinal, spinal, and neuromuscular responses were measured using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). Assessments occurred at baseline, immediately post, and at 30-min intervals over two hours. Force steadiness significantly improved in the visuomotor task (P < 0.001). Significant fixed-effects emerged between conditions for corticospinal excitability, corticospinal inhibition, and spinal excitability (all P < 0.001). Lower limb motor skill training resulted in a greater corticospinal excitability compared to resistance training (mean difference [MD] = 35%, P < 0.001) and control (MD; 37%, P < 0.001). Motor skill training resulted in a lower corticospinal inhibition compared to control (MD; - 10%, P < 0.001) and resistance training (MD; - 9%, P < 0.001). Spinal excitability was lower following motor skill training compared to control (MD; - 28%, P < 0.001). No significant fixed effect of Time or Time*Condition interactions were observed. Our findings highlight task-dependent corticospinal responses in lower limb motor skill training, offering insights for neurorehabilitation program design.
Collapse
Affiliation(s)
- Alex Woodhead
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK.
| | - Christopher Rainer
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Jessica Hill
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Colm P Murphy
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jamie S North
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Dawson Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, UK
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| |
Collapse
|
6
|
Parsowith EJ, Stock MS, Girts RM, Beausejour JP, Alberto A, Carr JC, Harmon KK. The Influence of Resistance Training Experience on the Efficacy of Motor Imagery for Acutely Increasing Corticospinal Excitability. Brain Sci 2023; 13:1635. [PMID: 38137083 PMCID: PMC10742069 DOI: 10.3390/brainsci13121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Both motor imagery and resistance-training enhance motor function and corticospinal excitability. We tested the hypothesis that young participants with significant resistance-training experience would show heightened corticospinal excitability during a single session of motor imagery training. Fifty-six participants (mean ± SD age = 22 ± 2 years) were divided into resistance-trained and untrained groups. Forty-one upper-body resistance trained (21 males, 20 females; mean ± SD relative one repetition maximum bench press = 0.922 ± 0.317 kg/kg) and 15 untrained (4 males, 11 females; mean ± SD relative one repetition maximum bench press = 0.566 ± 0.175 kg/kg) participants visited the laboratory on three separate occasions. The first visit served as the familiarization session. During visits 2 and 3, participants engaged in a hand/wrist motor imagery protocol or rested quietly (control condition) in a randomized order. Before and after the interventions, single-pulse transcranial magnetic stimulation (TMS) over the motor cortex was used to measure resting motor-evoked potential amplitude of the first dorsal interosseous muscle. Our main finding was that motor imagery acutely increased corticospinal excitability by ~64% (marginal means pre = 784.1 µV, post = 1246.6 µV; p < 0.001, d = 0.487). However, there was no evidence that the increase in corticospinal excitability was influenced by resistance-training experience. We suspect that our results may have been influenced by the specific nature of the motor imagery task. Our findings have important implications for motor imagery prescription and suggest that motor imagery training may be equally beneficial for both resistance-trained and untrained populations. This study was prospectively registered at ClinicalTrials.gov (Identifier: NCT03889548).
Collapse
Affiliation(s)
- Emily J. Parsowith
- Cognition, Neuroplasticity, Sarcopenia (CNS) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.); (J.P.B.)
| | - Matt S. Stock
- Cognition, Neuroplasticity, Sarcopenia (CNS) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.); (J.P.B.)
| | - Ryan M. Girts
- Department of Natural and Health Sciences, Pfeiffer University, Misenheimer, NC 28109, USA;
| | - Jonathan P. Beausejour
- Cognition, Neuroplasticity, Sarcopenia (CNS) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.); (J.P.B.)
| | - Ariel Alberto
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Joshua C. Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76109, USA;
- Department of Medical Education, Anne Burnett Marion School of Medicine at Texas Christian University, Fort Worth, TX 76109, USA
| | - Kylie K. Harmon
- Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Capozio A, Chakrabarty S, Astill S. Acute Effects of Strength and Skill Training on the Cortical and Spinal Circuits of Contralateral Limb. J Mot Behav 2023; 56:119-131. [PMID: 37788807 DOI: 10.1080/00222895.2023.2265316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Unilateral strength and skill training increase strength and performance in the contralateral untrained limb, a phenomenon known as cross-education. Recent evidence suggests that similar neural mechanisms might be responsible for the increase in strength and skill observed in the untrained hand after unimanual training. The aims of this study were to: investigate whether a single session of unimanual strength and skill (force-tracking) training increased strength and skill in the opposite hand; measure ipsilateral (untrained) brain (via transcranial magnetic stimulation, TMS) and spinal (via the monosynaptic reflex) changes in excitability occurring after training; measure ipsilateral (untrained) pathway-specific changes in neural excitability (via TMS-conditioning of the monosynaptic reflex) occurring after training. Participants (N = 13) completed a session of unimanual strength (ballistic isometric wrist flexions) and skill (force-tracking wrist flexions) training on two separate days. Strength increased after training in the untrained hand (p = 0.025) but not in the trained hand (p = 0.611). Force-tracking performance increased in both the trained (p = 0.007) and untrained (p = 0.010) hand. Corticospinal excitability increased after force-tracking and strength training (p = 0.027), while spinal excitability was not affected (p = 0.214). TMS-conditioned monosynaptic reflex increased after force-tracking (p = 0.001) but not strength training (p = 0.689), suggesting a possible role of polysynaptic pathways in the increase of cortical excitability observed after training. The results suggest that cross-education of strength and skill at the acute stage is supported by increased excitability of the untrained motor cortex.New & Noteworthy: A single session of isometric wrist flexion strength and skill straining increased strength and skill in the untrained limb. The excitability of the untrained motor cortex increased after strength and skill training. TMS-conditioned H-reflexes increased after skill but not strength training in the untrained hand, indicating that polysynaptic pathways in the increase of cortical excitability observed after skill training.
Collapse
Affiliation(s)
- Antonio Capozio
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Sarah Astill
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Márquez G, Colomer D, Benavente C, Morenilla L, Alix-Fages C, Padial P, Feriche B. Altitude-induced effects on neuromuscular, metabolic and perceptual responses before, during and after a high-intensity resistance training session. Eur J Appl Physiol 2023; 123:2119-2129. [PMID: 37209140 PMCID: PMC10492878 DOI: 10.1007/s00421-023-05195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE We tested if an acute ascending to 2320 m above sea level (asl) affects corticospinal excitability (CSE) and intracortical inhibition (SICI) measured with transcranial magnetic stimulation (TMS) at rest, before, during and after a traditional hypertrophy-oriented resistance training (RT) session. We also explored whether blood lactate concentration (BLa), ratings of perceived exertion (RPE), perceived muscular pain and total training volume differed when the RT session was performed at hypoxia (H) or normoxia (N). METHODS Twelve resistance-trained men performed eight sets of 10 repetitions at 70% of one repetition maximum of a bar biceps curl at N (SpO2 = 98.0 ± 0.9%) and H (at 2320 asl, SpO2 = 94.0 ± 1.9%) in random order. Before each session, a subjective well-being questionnaire, the resting motor threshold (rMT) and a single pulse recruitment curve were measured. Before, during and after the RT session, BLa, RPE, muscle pain, CSE and SICI were measured. RESULTS Before the RT session only the rMT differed between H (- 5.3%) and N (ES = 0.38). RPE, muscle pain and BLa increased through the RT session and were greater at H than N (12%, 54% and 15%, respectively) despite a similar training volume (1618 ± 468 kg vs. 1638 ± 509 kg). CSE was reduced during the RT session (~ 27%) but recovered ten minutes after, regardless of the environmental condition. SICI did not change after any RT session. CONCLUSIONS The data suggest that acute exposure to moderate hypoxia slightly increased the excitability of the most excitable structures of the corticospinal tract but did not influence intracortical or corticospinal responses to a single RT session.
Collapse
Affiliation(s)
- Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain.
| | - David Colomer
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| | - Luis Morenilla
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain
| | - Carlos Alix-Fages
- Applied Biomechanics and Sports Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Pagan JI, Harmon KK, Girts RM, MacLennan RJ, Beausejour JP, Hernandez-Sarabia JA, Coker NA, Carr JC, Ye X, DeFreitas JM, Stock MS. Sex-Specific Reliability of Lower-Limb Corticospinal Excitability and Silent Periods. J Strength Cond Res 2023; 37:1882-1887. [PMID: 37267320 DOI: 10.1519/jsc.0000000000004525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
ABSTRACT Pagan, JI, Harmon, KK, Girts, RM, MacLennan, RJ, Beausejour, JP, Hernandez-Sarabia, JA, Coker, NA, Carr, JC, Ye, X, DeFreitas, JM, and Stock, MS. Sex-specific reliability of lower-limb corticospinal excitability and silent periods. J Strength Cond Res 37(9): 1882-1887, 2023-Transcranial magnetic stimulation (TMS) is a research tool that has potential to provide new insights into strength training-induced adaptations. However, using TMS to study the lower limbs is challenging, and sex-specific reliability has yet to be reported. We examined the reliability of corticospinal excitability and silent periods for the rectus femoris, vastus lateralis, and biceps femoris in both sexes. Thirteen males and 14 females reported to the laboratory twice. During both trials, a double cone coil was used to deliver 20 pulses to the rectus femoris hotspot with a stimulator output of 130% of active motor threshold. Motor-evoked potential peak-to-peak amplitude, which reflects corticospinal excitability, and silent period duration were quantified. Our results offer 4 novel findings. First, corticospinal excitability and silent period demonstrated higher reliability for the females. Second, regardless of sex and muscle, the silent period was more reliable than corticospinal excitability. Third, reliability was highest for our target muscle (rectus femoris), with lower reliability for the vastus lateralis and biceps femoris, suggesting that these methods cannot be used to study coactivation. Fourth, active motor threshold showed less variability than corticospinal excitability and silent period but increased at trial 2 in females. Many of the intraclass correlation coefficients were excellent (≥0.90), although we attribute this finding to variability between subjects. Reliability of lower-limb TMS measures may be sex, muscle, and variable dependent. Our findings suggest that both males and females should be included in lower-limb TMS research, although combining data between sexes should be approached cautiously.
Collapse
Affiliation(s)
- Jason I Pagan
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, Syracuse, New York
| | - Ryan M Girts
- Department of Natural and Health Sciences, Pfeiffer University, Misenheimer, North Carolina
| | - Rob J MacLennan
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Jonathan P Beausejour
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jesus A Hernandez-Sarabia
- Posture and Gait Neuromechanics Laboratory, California State University, Bakersfield, Bakersfield, California
| | - Nicholas A Coker
- Department of Exercise Science and Athletic Training, Springfield College, Springfield, Massachusetts
| | - Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas
- Department of Medical Education, Texas Christian University School of Medicine, Fort Worth, Texas; and
| | - Xin Ye
- Doctor of Physical Therapy Program, Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Matt S Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| |
Collapse
|
10
|
Woodhead A, North JS, Hill J, Murphy CP, Kidgell DJ, Tallent J. Corticospinal and spinal adaptations following lower limb motor skill training: a meta-analysis with best evidence synthesis. Exp Brain Res 2023; 241:807-824. [PMID: 36740653 DOI: 10.1007/s00221-023-06563-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Motor skill training alters the human nervous system; however, lower limb motor tasks have been less researched compared to upper limb tasks. This meta-analysis with best evidence synthesis aimed to determine the cortical and subcortical responses that occur following lower limb motor skill training, and whether these responses are accompanied by improvements in motor performance. Following a literature search that adhered to the PRISMA guidelines, data were extracted and analysed from six studies (n = 172) for the meta-analysis, and 11 studies (n = 257) were assessed for the best evidence synthesis. Pooled data indicated that lower limb motor skill training increased motor performance, with a standardised mean difference (SMD) of 1.09 being observed. However, lower limb motor skill training had no effect on corticospinal excitability (CSE), Hoffmann's reflex (H-reflex) or muscle compound action potential (MMAX) amplitude. The best evidence synthesis found strong evidence for improved motor performance and reduced short-interval cortical inhibition (SICI) following lower limb motor skill training, with conflicting evidence towards the modulation of CSE. Taken together, this review highlights the need for further investigation on how motor skill training performed with the lower limb musculature can modulate corticospinal responses. This will also help us to better understand whether these neuronal measures are underpinning mechanisms that support an improvement in motor performance.
Collapse
Affiliation(s)
- Alex Woodhead
- Faculty of Sport, Allied Health and Performance Science, St. Mary's University, Middlesex, Twickenham, TW1 4SX, UK.
| | - Jamie S North
- Faculty of Sport, Allied Health and Performance Science, St. Mary's University, Middlesex, Twickenham, TW1 4SX, UK
| | - Jessica Hill
- Faculty of Sport, Allied Health and Performance Science, St. Mary's University, Middlesex, Twickenham, TW1 4SX, UK
| | - Colm P Murphy
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| | - Jamie Tallent
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia.,School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
11
|
Woldeamanuel GG, Frazer AK, Lee A, Avela J, Tallent J, Ahtiainen JP, Pearce AJ, Kidgell DJ. Determining the Corticospinal Responses and Cross-Transfer of Ballistic Motor Performance in Young and Older Adults: A Systematic Review and Meta-Analysis. J Mot Behav 2022; 54:763-786. [PMID: 35437124 DOI: 10.1080/00222895.2022.2061409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ballistic motor training induces plasticity changes and imparts a cross-transfer effect. However, whether there are age-related differences in these changes remain unclear. Thus, the purpose of this study was to perform a meta-analysis to determine the corticospinal responses and cross-transfer of motor performance following ballistic motor training in young and older adults. Meta-analysis was performed using a random-effects model. A best evidence synthesis was performed for variables that had insufficient data for meta-analysis. There was strong evidence to suggest that young participants exhibited greater cross-transfer of ballistic motor performance than their older counterparts. This meta-analysis showed no significant age-related differences in motor-evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and surface electromyography (sEMG) for both hands following ballistic motor training.
Collapse
Affiliation(s)
- Gashaw Garedew Woldeamanuel
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Annemarie Lee
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Janne Avela
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Finland
| | - Jamie Tallent
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.,Faculty of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Finland
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Dawson J Kidgell
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Alibazi RJ, Frazer AK, Pearce AJ, Tallent J, Avela J, Kidgell DJ. Corticospinal and intracortical excitability is modulated in the knee extensors after acute strength training. J Sports Sci 2021; 40:561-570. [PMID: 34796778 DOI: 10.1080/02640414.2021.2004681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The corticospinal responses to high-intensity and low-intensity strength-training of the upper limb are modulated in an intensity-dependent manner. Whether an intensity-dependent threshold occurs following acute strength training of the knee extensors (KE) remains unclear. We assessed the corticospinal responses following high-intensity (85% of maximal strength) or low-intensity (30% of maximal strength) KE strength-training with measures taken during an isometric KE task at baseline, post-5, 30 and 60-min. Twenty-eight volunteers (23 ± 3 years) were randomized to high-intensity (n = 11), low-intensity (n = 10) or to a control group (n = 7). Corticospinal responses were evoked with transcranial magnetic stimulation at intracortical and corticospinal levels. High- or low-intensity KE strength-training had no effect on maximum voluntary contraction force post-exercise (P > 0.05). High-intensity training increased corticospinal excitability (range 130-180%) from 5 to 60 min post-exercise compared to low-intensity training (17-30% increase). Large effect sizes (ES) showed that short-interval cortical inhibition (SICI) was reduced only for the high-intensity training group from 5-60 min post-exercise (24-44% decrease) compared to low-intensity (ES ranges 1-1.3). These findings show a training-intensity threshold is required to adjust CSE and SICI following strength training in the lower limb.
Collapse
Affiliation(s)
- Razie J Alibazi
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Jamie Tallent
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.,School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
13
|
Bonello C, Girdwood M, De Souza K, Trinder NK, Lewis J, Lazarczuk SL, Gaida JE, Docking SI, Rio EK. Does isometric exercise result in exercise induced hypoalgesia in people with local musculoskeletal pain? A systematic review. Phys Ther Sport 2021; 49:51-61. [PMID: 33601254 DOI: 10.1016/j.ptsp.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this review was to investigate if exercise induced hypoalgesia (EIH) occurs following isometric muscle contraction in people with local musculoskeletal symptoms. DESIGN Systematic review. DATA SOURCES MEDLINE, EMBASE, CINAHL & SportDiscus electronic databases were searched (inception to April 2020). ELIGIBILITY CRITERIA Two authors independently evaluated eligibility. Randomised controlled and crossover (repeated measures) trials that measured the effects of isometric exercise in participants with localised musculoskeletal pain during, and up to 2 hours after isometric exercise were included. Other inclusion criteria included comparison to another intervention, or comparison to healthy controls. Primary outcomes were experimentally induced pain thresholds and secondary outcomes included measures of pain sensitivity from clinical testing. RESULTS 13 studies with data from 346 participants were included for narrative synthesis. EIH was reported in some upper and lower limb studies but there were no consistent data to show isometric exercises were superior to comparison interventions. CONCLUSION There was no consistent evidence for EIH following isometric exercise in people with musculoskeletal pain. These findings are different to those reported in asymptomatic populations (where EIH is consistently demonstrated) as well as conditions associated with widespread symptoms such as fibromyalgia (where isometric exercise may induce hyperalgesia). Although well tolerated when prescribed, isometric exercise did not induce EIH consistently for people seeking care for local musculoskeletal symptoms. The variance in the dose, location of contraction and intensity of protocols included in this review may explain the inconsistent findings. Further work is required to better understand endogenous analgesia in musculoskeletal pain conditions.
Collapse
Affiliation(s)
- Christian Bonello
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Michael Girdwood
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Keith De Souza
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Nicola K Trinder
- School of Health and Social Work, University of Hertfordshire, Hatfield, United Kingdom
| | - Jeremy Lewis
- School of Health and Social Work, University of Hertfordshire, Hatfield, United Kingdom; Therapy Department, Central London Community Healthcare National Health Service Trust, London, United Kingdom; Department of Physical Therapy & Rehabilitation Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Stephanie L Lazarczuk
- School of Allied Health Sciences, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Jamie E Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australian Capital Territory, Australia
| | - Sean I Docking
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Ebonie K Rio
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
14
|
Task-dependent modulation of corticospinal excitability and inhibition following strength training. J Electromyogr Kinesiol 2020; 52:102411. [PMID: 32244044 DOI: 10.1016/j.jelekin.2020.102411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
This study determined whether there are task-dependent differences in cortical excitability following different types of strength training. Transcranial magnetic stimulation (TMS) measured corticospinal excitability (CSE) and intracortical inhibition (ICI) of the biceps brachii muscle in 42 healthy subjects that were randomised to either paced-strength-training (PST, n = 11), self-paced strength-training (SPST, n = 11), isometric strength-training (IST, n = 10) or to a control group (n = 10). Single-pulse and paired-pulse TMS were applied prior to and following 4-weeks of strength-training. PST increased CSE compared to SPST, IST and the control group (all P < 0.05). ICI was only reduced (60%) following PST. Dynamic strength increased by 18 and 25% following PST and SPST, whilst isometric strength increased by 20% following IST. There were no associations between the behavioural outcome measures and the change in CSE and ICI. The corticospinal responses to strength-training are task-dependent, which is a new finding. Strength-training that is performed slowly could promote use-dependent plasticity in populations with reduced volitional drive, such as during periods of limb immobilization, musculoskeletal injury or stroke.
Collapse
|
15
|
Mason J, Howatson G, Frazer AK, Pearce AJ, Jaberzadeh S, Avela J, Kidgell DJ. Modulation of intracortical inhibition and excitation in agonist and antagonist muscles following acute strength training. Eur J Appl Physiol 2019; 119:2185-2199. [DOI: 10.1007/s00421-019-04203-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
|