1
|
Furrer R, Handschin C. Molecular aspects of the exercise response and training adaptation in skeletal muscle. Free Radic Biol Med 2024; 223:53-68. [PMID: 39059515 PMCID: PMC7617583 DOI: 10.1016/j.freeradbiomed.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Skeletal muscle plasticity enables an enormous potential to adapt to various internal and external stimuli and perturbations. Most notably, changes in contractile activity evoke a massive remodeling of biochemical, metabolic and force-generating properties. In recent years, a large number of signals, sensors, regulators and effectors have been implicated in these adaptive processes. Nevertheless, our understanding of the molecular underpinnings of training adaptation remains rudimentary. Specifically, the mechanisms that underlie signal integration, output coordination, functional redundancy and other complex traits of muscle adaptation are unknown. In fact, it is even unclear how stimulus-dependent specification is brought about in endurance or resistance exercise. In this review, we will provide an overview on the events that describe the acute perturbations in single endurance and resistance exercise bouts. Furthermore, we will provide insights into the molecular principles of long-term training adaptation. Finally, current gaps in knowledge will be identified, and strategies for a multi-omic and -cellular analyses of the molecular mechanisms of skeletal muscle plasticity that are engaged in individual, acute exercise bouts and chronic training adaptation discussed.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
3
|
Cardaci TD, Machek SB, Wilburn DT, Heileson JL, Harris DR, Cintineo HP, Willoughby DS. LGD-4033 and MK-677 use impacts body composition, circulating biomarkers, and skeletal muscle androgenic hormone and receptor content: A case report. Exp Physiol 2022; 107:1467-1476. [PMID: 36303408 DOI: 10.1113/ep090741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the main observation in this case? Co-administration of LGD-4033 and MK-677 increased body mass, lean mass and fat mass, while negatively impacting bone, serum lipids, liver enzymes, testosterone (total and free) and, probably, follicle-stimulating hormone. What insights does it reveal? Our cross-sectional data imply that these compounds might alter intramuscular androgenic hormone and receptor concentrations along with promoting muscular strength, when compared with previously published data from trained males. ABSTRACT LGD-4033, a selective androgen receptor modulator, and MK-677, a growth hormone secretagogue, are being used increasingly amongst recreationally active demographics. However, limited data exist describing their effects on health- and androgen-related biomarkers. The purpose of this case study was to determine changes in body composition and biomarkers during and after continued co-administration of LGD-4033 and MK-677. We also aimed to examine muscular strength and intramuscular androgen-associated biomarkers relative to non-users. A 25-year-old male ingested LGD-4033 (10 mg) and MK-677 (15 mg) daily for 5 weeks. Blood and body composition metrics were obtained pre-, on- and post-cycle. One-repetition maximum leg and bench press, in addition to intramuscular androgens and androgen receptor content, were analysed on-cycle. We observed pre- to on-cycle changes in body composition (body mass, +6.0%; total lean body mass, +3.1%; trunk lean body mass, +6.6%; appendicular lean body mass, +4.3%; total fat mass, +15.4%; trunk fat mass, +2.8%; and appendicular fat mass, +14.8%), bone (bone mineral content, -3.60%; area, -1.1%; and bone mineral density, -2.1%), serum lipid-associated biomarkers (cholesterol, +14.8%; triglycerides, +39.2%; low-density lipoprotein-cholesterol, +40.0%; and high-density lipoprotein-cholesterol, -36.4%), liver-associated biomarkers (aspartate aminotransferase, +95.8%; and alanine aminotransferase, +205.0%) and androgen-associated biomarkers (free testosterone, -85.7%; total testosterone, -62.3%; and sex hormone-binding globulin, -79.6%); however, all variables returned to pre-cycle values post-cycle, apart from total fat mass, appendicular fat mass, bone area, total cholesterol and low-density lipoprotein-cholesterol. Follicle-stimulating hormone was below clinical reference values on- (1.2 IU/L) and post-cycle (1.3 IU/L). Intramuscular androgen receptor (-44.6%), testosterone (+47.8%) and dihydrotestosterone (+34.4%), in addition to one-repetition maximum leg press and bench press (+39.2 and +32.0%, respectively), were different in the case subject compared with non-users. These data demonstrate that LGD-4033 and MK-677 increase several body composition parameters, whilst negatively impacting bone and several serum biomarkers. Given the sparsity of data in recreationally using demographics, further research is warranted to elucidate the acute and chronic physiological effects of these anabolic agents.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Steven B Machek
- Kinesiology Department, College of Health Sciences and Human Services, California State University, Monterey Bay, California, USA
| | - Dylan T Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Jeffery L Heileson
- Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dillon R Harris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Harry P Cintineo
- Department of Kinesiology, Lindenwood University, St. Charles, Missouri, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Harden-Baylor, Belton, Texas, USA
| |
Collapse
|
4
|
Newmire DE, Willoughby DS. The Skeletal Muscle Microbiopsy Method in Exercise and Sports Science Research: A Narrative and Methodological Review. Scand J Med Sci Sports 2022; 32:1550-1568. [PMID: 35904526 DOI: 10.1111/sms.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The skeletal muscle microbiopsy protocol was introduced to the Exercise and Sports Science (ESS) research field in 1999 and has been used as a protocol to directly examine muscular structural and biochemical changes. There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-procedure for participant care and sample collection. The purpose of this narrative and methodological review is to compare the microbiopsy to the traditional Bergström protocol used in the ESS field, identify and summarize all related microbiopsy protocols used in previous ESS studies and determine the most frequently used microbiopsy protocols aspects and associated pre- and post-biopsy procedures; METHODS: A review of literature up to January, 2022 was used following the PRISMA and Cochrane Methodological Review Guide to determine frequently used methods that may facilitate optimal and potential recommendations for muscle microbiopsy needle gauge (G), concentration or dose (% or mL) and administration of local anesthetic, co-axial/cannula introducer gauge (G), muscle depth (cm), muscle sample size collected (mg), passes to collect samples, time points of muscle sampling, and promotion of participant compliance and minimization of adverse events; RESULTS: 85 articles were selected based on the inclusionary requirements related to the ESS field or methodological considerations. The most frequently reported aspects in previous research to suggest the location of the vastus lateralis is the midpoint between the patella and the greater trochanter of the femur or 1/3 or 2/3 the distance from the patella to anterior superior iliac spine, 14 G biopsy needle, subcutaneous injected lidocaine administration (2 mL; 1%), 13 G co-axial/cannula, 1-2 cm muscle depth, 10-20 mg of muscle sample, ~3-time points, 2-3 passes; DISCUSSION: There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-biopsy procedures. Standardization in reporting may promote recommendations to optimize data integrity, participant safety, participant adherence to the study design, and increase reproducibility. Recommendations are made for the microbiopsy procedure based on frequently reported characteristics.
Collapse
Affiliation(s)
- Daniel E Newmire
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | - Darryn S Willoughby
- School of Health Professions, School of Exercise and Sport Science Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| |
Collapse
|
5
|
Antonio J, Evans C, Jiannine L, Curtis J, Wojnas K, Burgess V, Willoughby D, Hohl C, Petersen B, Flynn S, Baisley J, Parekh G, Kalman D. Pharmacokinetic Evaluation of a Single 5-Gram Bolus of Creatine Monohydrate Versus Two Other Creatine-Containing Investigational Products. Cureus 2022; 14:e24395. [PMID: 35619864 PMCID: PMC9126436 DOI: 10.7759/cureus.24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to determine the relative pharmacokinetics of creatine monohydrate delivered as a formula or as a pure powder (all mixed in solution). A single 5 g bolus of creatine monohydrate was ingested as CreaBev 1, CreaBev 2, or creatine monohydrate. Participants we assigned a test product and monitored in a supervised laboratory setting for ingestion and all blood draws starting 30 min post-ingestion to the 6-h mark. Standard pharmacokinetic analysis was undertaken to determine relative maximum concentration (Cmax), time to maximum concentration (Tmax), and area under the curve (AUC) for the products. Cmax data indicate that CreaBev 1 10.55±4.10, CreaBev 2 15.45±5.48, and creatine monohydrate 12.77±4.0 nmol/h/μL. The Tmax analysis demonstrated CreaBev 1 1.20±1.01, CreaBev 2 1.23±0.65, and creatine monohydrate 0.91±0.2 h. The AUC data indicate that CreaBev 1 22.90±9.17, CreaBev 2 33.92±9.52, and creatine monohydrate 29.58±11.93 nmol/h/μL. When examining the data for pharmacokinetics, the AUC and Cmax pharmacokinetics were greatest for CreaBev 2 (p<0.021 and 0.020). Within the confines of this study, CreaBev 2 produced the highest blood concentrations of creatine as compared to creatine monohydrate and CreaBev 1.
Collapse
|
6
|
Travis SK, Zwetsloot KA, Mujika I, Stone MH, Bazyler CD. Skeletal Muscle Adaptations and Performance Outcomes Following a Step and Exponential Taper in Strength Athletes. Front Physiol 2021; 12:735932. [PMID: 34777004 PMCID: PMC8582352 DOI: 10.3389/fphys.2021.735932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Before major athletic events, a taper is often prescribed to facilitate recovery and enhance performance. However, it is unknown which taper model is most effective for peaking maximal strength and positively augmenting skeletal muscle. Thus, the purpose of this study was to compare performance outcomes and skeletal muscle adaptations following a step vs. an exponential taper in strength athletes. Sixteen powerlifters (24.0 ± 4.0 years, 174.4 ± 8.2 cm, 89.8 ± 21.4 kg) participated in a 6-week training program aimed at peaking maximal strength on back squat [initial 1-repetition-maximum (1RM): 174.7 ± 33.4 kg], bench press (118.5 ± 29.9 kg), and deadlift (189.9 ± 41.2 kg). Powerlifters were matched based on relative maximal strength, and randomly assigned to either (a) 1-week overreach and 1-week step taper or (b) 1-week overreach and 3-week exponential taper. Athletes were tested pre- and post-training on measures of body composition, jumping performance, isometric squat, and 1RM. Whole muscle size was assessed at the proximal, middle, and distal vastus lateralis using ultrasonography and microbiopsies at the middle vastus lateralis site. Muscle samples (n = 15) were analyzed for fiber size, fiber type [myosin-heavy chain (MHC)-I, -IIA, -IIX, hybrid-I/IIA] using whole muscle immunohistochemistry and single fiber dot blots, gene expression, and microRNA abundance. There were significant main time effects for 1RM squat (p < 0.001), bench press (p < 0.001), and deadlift, (p = 0.024), powerlifting total (p < 0.001), Wilks Score (p < 0.001), squat jump peak-power scaled to body mass (p = 0.001), body mass (p = 0.005), fat mass (p = 0.002), and fat mass index (p = 0.002). There were significant main time effects for medial whole muscle cross-sectional area (mCSA) (p = 0.006) and averaged sites (p < 0.001). There was also a significant interaction for MHC-IIA fiber cross-sectional area (fCSA) (p = 0.014) with post hoc comparisons revealing increases following the step-taper only (p = 0.002). There were significant main time effects for single-fiber MHC-I% (p = 0.015) and MHC-IIA% (p = 0.033), as well as for MyoD (p = 0.002), MyoG (p = 0.037), and miR-499a (p = 0.033). Overall, increases in whole mCSA, fCSA, MHC-IIA fCSA, and MHC transitions appeared to favor the step taper group. An overreach followed by a step taper appears to produce a myocellular environment that enhances skeletal muscle adaptations, whereas an exponential taper may favor neuromuscular performance.
Collapse
Affiliation(s)
- S. Kyle Travis
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
- Department of Rehabilitative Sciences, East Tennessee State University, Johnson City, TN, United States
- Integrative Muscle Physiology Laboratory, Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
| | - Kevin A. Zwetsloot
- Integrative Muscle Physiology Laboratory, Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Michael H. Stone
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
| | - Caleb D. Bazyler
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
7
|
Ribeiro J, Afonso J, Camões M, Sarmento H, Sá M, Lima R, Oliveira R, Clemente FM. Methodological Characteristics, Physiological and Physical Effects, and Future Directions for Combined Training in Soccer: A Systematic Review. Healthcare (Basel) 2021; 9:healthcare9081075. [PMID: 34442212 PMCID: PMC8393610 DOI: 10.3390/healthcare9081075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Combined training (CT) may combine strength and endurance training within a given time period, but it can also encompass additional protocols consisting of velocity, balance, or mobility as part of the same intervention. These combined approaches have become more common in soccer. This systematic review was conducted to (1) characterize the training protocols used in CT studies in soccer, (2) summarize the main physiological and physical effects of CT on soccer players, and (3) provide future directions for research. Methods: A systematic review of Cochrane Library, PubMed, Scopus, SPORTDiscus, and Web of Science databases was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PICOS were defined as follows: P (soccer players of any age or sex); I (CT combining strength and endurance or sprinting or balance or mobility training); C (the control group (whenever applicable), with or without comparative interventions in addition to usual soccer training); O (acute and/or chronic responses: biochemical, physiological and physical); S (must have at least two groups, either randomized or non-randomized). The database search initially identified 79 titles. From those, eight articles were deemed eligible for the systematic review. Three studies analyzed acute responses to concurrent training, while the remaining five analyzed adaptations to CT. In those tested for acute responses, physiological (hormonal) and physical (strength and power external load, internal load) parameters were observed. Adaptations were mainly focused on physical parameters (strength and power, sprints, jumps, repeated sprint ability, aerobic, change-of-direction), with relatively little focus on physiological parameters (muscle architecture). Short-term responses to CT can affect hormonal responses of testosterone after resistance training with internal and external load. In turn, these responses’ effects on strength and power have produced mixed results, as have adaptations. Specifically, strength and hypertrophy are affected to a lesser extent than speed/power movements. Nevertheless, it is preferable to perform CT before endurance exercises since it is a limiting factor for interference. Volume, intensity, rest between sessions, and athletes’ fitness levels and nutrition dictate the degree of interference.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (J.R.); (M.C.); (R.L.)
| | - José Afonso
- Centre for Research, Education, Innovation and Intervention in Sport, Faculty of Sport of the University of Porto, 4200-450 Porto, Portugal;
| | - Miguel Camões
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (J.R.); (M.C.); (R.L.)
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
| | - Hugo Sarmento
- Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Mário Sá
- Faculty of Human Kinetics, 1649-004 Lisboa, Portugal;
| | - Ricardo Lima
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (J.R.); (M.C.); (R.L.)
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
| | - Rafael Oliveira
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Sports Science School of Rio Maior-Polytechnic Institute of Santarém, 2140-413 Rio Maior, Portugal
- Life Quality Research Centre, 2140-413 Rio Maior, Portugal
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (J.R.); (M.C.); (R.L.)
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|