1
|
Varillas-Delgado D. Nutritional Status and Ergogenic Aids in Performance During Exercise and Sports. Nutrients 2025; 17:1224. [PMID: 40218982 PMCID: PMC11990525 DOI: 10.3390/nu17071224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025] Open
Abstract
The interaction between nutritional status, ergogenic aids, and athletic performance has long been a central focus in sports science [...].
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; or
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
2
|
Bordoli C, Varley I, Sharpe GR, Johnson MA, Hennis PJ. Effects of Oral Lactate Supplementation on Acid-Base Balance and Prolonged High-Intensity Interval Cycling Performance. J Funct Morphol Kinesiol 2024; 9:139. [PMID: 39189224 PMCID: PMC11348031 DOI: 10.3390/jfmk9030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lactate is an important energy intermediate and metabolic buffer, and may be ergogenic. We investigated if lactate supplementation is an effective approach to enhance the exercise performance and acid-base balance of trained cyclists during exercise devised to simulate the demands of endurance road race cycling. Sixteen endurance-trained male cyclists (V·O2max 59 ± 7 mL·kg-1·min-1) consumed 120 mg·kg-1 body mass of lactate or a placebo 70 min prior to performing an exercise performance test, comprising five repeated blocks consisting of 1 km and 4 km time trials interspersed with 10 min of moderate-intensity exercise. Blood acid-base balance (including [H+] and [HCO3-]), heart rate, perceived exertion, and gastro-intestinal tolerance were assessed. There was no effect of lactate supplementation on exercise performance (p = 0.320), despite a reduction in RPE (p = 0.012) and increases in [SID] (p = 0.026) and [HCO3-] (p = 0.041). In addition, gastro-intestinal side effects were observed, but there was no effect on heart rate. Lactate supplementation did not improve exercise performance, despite positive changes in acid-base balance and RPE. This suggests that the alkalising effects of the supplement can reduce perceived effort, but these benefits do not translate into performance improvements.
Collapse
Affiliation(s)
| | | | | | | | - Philip J. Hennis
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham NG11 8NS, UK; (C.B.); (I.V.); (G.R.S.); (M.A.J.)
| |
Collapse
|
3
|
Ewell TR, Bomar MC, Brown DM, Brown RL, Kwarteng BS, Thomson DP, Bell C. The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial. Nutrients 2024; 16:2624. [PMID: 39203761 PMCID: PMC11357576 DOI: 10.3390/nu16162624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The purpose of this study was to investigate the potential ergogenic effects of an oral lactate supplement. For this double-blind, randomized, placebo-controlled crossover design, fifteen recreational exercisers (nine males, six females) ingested a placebo or a commercially available lactate supplement prior to cycle ergometer exercise. Primary outcomes included peak oxygen uptake (VO2peak; via indirect calorimetry), VO2 at the ventilatory threshold, and work rate at the lactate threshold (arterialized venous blood from a heated hand) determined during incremental exercise to fatigue, and power output during a 20-min cycling time trial. Compared with placebo, the oral lactate supplement (19 ± 1 mg/kg body mass) did not influence VO2peak (placebo: 44.3 ± 7.8 vs. oral lactate: 44.3 ± 7.1 mL/kg/min (mean ± SD); p = 0.87), VO2 at the ventilatory threshold (placebo: 1.63 ± 0.25 vs. oral lactate: 1.65 ± 0.23 L/min; p = 0.82), or work rate at the lactate threshold (placebo: 179 ± 69 vs. oral lactate: 179 ± 59 W; p = 0.41). Throughout the 20-min time trial, the work rate was slightly greater (4%) with oral lactate (204 ± 41 W) compared with placebo (197 ± 41 W; main effect of treatment p = 0.02). Collectively, these data suggest that this commercially available lactate supplement did not acutely influence the physiological responses to incremental cycle ergometer exercise but elicited a modest ergogenic effect during the short-duration time trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA; (T.R.E.)
| |
Collapse
|
4
|
Moesgaard L, Jessen S, Christensen PM, Bangsbo J, Hostrup M. No additive effect of creatine, caffeine, and sodium bicarbonate on intense exercise performance in endurance-trained individuals. Scand J Med Sci Sports 2024; 34:e14629. [PMID: 38646853 DOI: 10.1111/sms.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.
Collapse
Affiliation(s)
- Lukas Moesgaard
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Lopes-Silva JP, Correia-Oliveira CR. Acute effects of sodium bicarbonate ingestion on cycling time-trial performance: A systematic review and meta-analysis of randomized controlled trials. Eur J Sport Sci 2022; 23:943-954. [PMID: 35633035 DOI: 10.1080/17461391.2022.2071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aimed to investigate the isolated effects of NaHCO3 on cycling time-trial performance. Furthermore, we investigated whether the ingestion time of NaHCO3, standardized or individualized based on time to peak, could be effective in improving cycling time-trial performance. A systematic review was carried out on randomized placebo-controlled studies. A random-effects meta-analysis assessed the standardized mean difference (SMD) between NaHCO3 and placebo conditions. Eighteen studies were qualitatively (systematic review) and quantitatively (meta-analysis) analysed concerning mean power output (Wmean) (n = 182) and time performance (n = 201). The reviewed studies showed a low risk of bias and homogenous results for Wmean (I2 = 0%) and performance time (I2 = 0%). Overall, when compared to placebo, the NaHCO3 ingestion improved the Wmean (SMD: 0.42; 95% CI: 0.21-0.63; P = 0.001) and performance time (SMD: 0.22; 95% CI: 0.02-0.43; P = 0.03). Similarly, the NaHCO3 ingestion using a time-to-peak strategy improved the Wmean (SMD: 0.39; 95% CI: 0.03-0.75; P = 0.04; I2 = 15%) and performance time (SMD: 0.34; 95% CI: 0.07-0.61, P = 0.01, I2 = 0%). The present findings reveal that NaHCO3 ingestion has the potential to increase the overall performance time and Wmean in cycling time trials. HighlightsNaHCO3 is an effective strategy to increase cycling time-trial performance.The standardized protocol did not improve the cycling time-trial performance parameters.The individualized time-to-peak NaHCO3 ingestion has a positive effect on time and Wmean during cycling time-trial performance.
Collapse
Affiliation(s)
- João Paulo Lopes-Silva
- Applied Research Group to Performance and Health, CESMAC University Center, Maceió, Brazil
| | | |
Collapse
|
6
|
de Oliveira LF, Dolan E, Swinton PA, Durkalec-Michalski K, Artioli GG, McNaughton LR, Saunders B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis. Sports Med 2022; 52:505-526. [PMID: 34687438 DOI: 10.1007/s40279-021-01575-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [βSmall:Medium = 0.16 (95% CrI 0.02-0.32), βSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [βSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.
Collapse
Affiliation(s)
- Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Guilherme G Artioli
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Bryan Saunders
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland.
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Grgic J, Pedisic Z, Saunders B, Artioli GG, Schoenfeld BJ, McKenna MJ, Bishop DJ, Kreider RB, Stout JR, Kalman DS, Arent SM, VanDusseldorp TA, Lopez HL, Ziegenfuss TN, Burke LM, Antonio J, Campbell BI. International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr 2021; 18:61. [PMID: 34503527 PMCID: PMC8427947 DOI: 10.1186/s12970-021-00458-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Based on a comprehensive review and critical analysis of the literature regarding the effects of sodium bicarbonate supplementation on exercise performance, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Supplementation with sodium bicarbonate (doses from 0.2 to 0.5 g/kg) improves performance in muscular endurance activities, various combat sports, including boxing, judo, karate, taekwondo, and wrestling, and in high-intensity cycling, running, swimming, and rowing. The ergogenic effects of sodium bicarbonate are mostly established for exercise tasks of high-intensity that last between 30 s and 12 min. 2. Sodium bicarbonate improves performance in single- and multiple-bout exercise. 3. Sodium bicarbonate improves exercise performance in both men and women. 4. For single-dose supplementation protocols, 0.2 g/kg of sodium bicarbonate seems to be the minimum dose required to experience improvements in exercise performance. The optimal dose of sodium bicarbonate dose for ergogenic effects seems to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be required in single-dose supplementation protocols, because they do not provide additional benefits (compared with 0.3 g/kg) and are associated with a higher incidence and severity of adverse side-effects. 5. For single-dose supplementation protocols, the recommended timing of sodium bicarbonate ingestion is between 60 and 180 min before exercise or competition. 6. Multiple-day protocols of sodium bicarbonate supplementation can be effective in improving exercise performance. The duration of these protocols is generally between 3 and 7 days before the exercise test, and a total sodium bicarbonate dose of 0.4 or 0.5 g/kg per day produces ergogenic effects. The total daily dose is commonly divided into smaller doses, ingested at multiple points throughout the day (e.g., 0.1 to 0.2 g/kg of sodium bicarbonate consumed at breakfast, lunch, and dinner). The benefit of multiple-day protocols is that they could help reduce the risk of sodium bicarbonate-induced side-effects on the day of competition. 7. Long-term use of sodium bicarbonate (e.g., before every exercise training session) may enhance training adaptations, such as increased time to fatigue and power output. 8. The most common side-effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The incidence and severity of side-effects vary between and within individuals, but it is generally low. Nonetheless, these side-effects following sodium bicarbonate supplementation may negatively impact exercise performance. Ingesting sodium bicarbonate (i) in smaller doses (e.g., 0.2 g/kg or 0.3 g/kg), (ii) around 180 min before exercise or adjusting the timing according to individual responses to side-effects, (iii) alongside a high-carbohydrate meal, and (iv) in enteric-coated capsules are possible strategies to minimize the likelihood and severity of these side-effects. 9. Combining sodium bicarbonate with creatine or beta-alanine may produce additive effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates produces additive benefits. 10. Sodium bicarbonate improves exercise performance primarily due to a range of its physiological effects. Still, a portion of the ergogenic effect of sodium bicarbonate seems to be placebo-driven.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - Zeljko Pedisic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, Sao Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Sao Paulo, Brazil
| | - Guilherme G Artioli
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Jeffrey R Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, USA
- Supplement Safety Solutions, Bedford, MA, 01730, USA
| | | | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
8
|
Calvo JL, Xu H, Mon-López D, Pareja-Galeano H, Jiménez SL. Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis. J Int Soc Sports Nutr 2021; 18:11. [PMID: 33546730 PMCID: PMC7863495 DOI: 10.1186/s12970-021-00410-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The effects of sodium bicarbonate (NaHCO3) on anaerobic and aerobic capacity are commonly acknowledged as unclear due to the contrasting evidence thus, the present study analyzes the contribution of NaHCO3 to energy metabolism during exercise. Methods Following a search through five databases, 17 studies were found to meet the inclusion criteria. Meta-analyses of standardized mean differences (SMDs) were performed using a random-effects model to determine the effects of NaHCO3 supplementation on energy metabolism. Subgroup meta-analyses were conducted for the anaerobic-based exercise (assessed by changes in pH, bicarbonate ion [HCO3−], base excess [BE] and blood lactate [BLa]) vs. aerobic-based exercise (assessed by changes in oxygen uptake [VO2], carbon dioxide production [VCO2], partial pressure of oxygen [PO2] and partial pressure of carbon dioxide [PCO2]). Results The meta-analysis indicated that NaHCO3 ingestion improves pH (SMD = 1.38, 95% CI: 0.97 to 1.79, P < 0.001; I2 = 69%), HCO3− (SMD = 1.63, 95% CI: 1.10 to 2.17, P < 0.001; I2 = 80%), BE (SMD = 1.67, 95% CI: 1.16 to 2.19, P < 0.001, I2 = 77%), BLa (SMD = 0.72, 95% CI: 0.34 to 1.11, P < 0.001, I2 = 68%) and PCO2 (SMD = 0.51, 95% CI: 0.13 to 0.90, P = 0.009, I2 = 0%) but there were no differences between VO2, VCO2 and PO2 compared with the placebo condition. Conclusions This meta-analysis has found that the anaerobic metabolism system (AnMS), especially the glycolytic but not the oxidative system during exercise is affected by ingestion of NaHCO3. The ideal way is to ingest it is in a gelatin capsule in the acute mode and to use a dose of 0.3 g•kg− 1 body mass of NaHCO3 90 min before the exercise in which energy is supplied by the glycolytic system.
Collapse
Affiliation(s)
- Jorge Lorenzo Calvo
- Faculty of Physical Activity and Sport science, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Huanteng Xu
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
| | - Daniel Mon-López
- Faculty of Physical Activity and Sport science, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
9
|
Takahashi K, Kitaoka Y, Yamamoto K, Matsunaga Y, Hatta H. Oral Lactate Administration Additively Enhances Endurance Training-Induced Increase in Cytochrome C Oxidase Activity in Mouse Soleus Muscle. Nutrients 2020; 12:nu12030770. [PMID: 32183387 PMCID: PMC7146285 DOI: 10.3390/nu12030770] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
We tested the hypothesis that oral lactate supplementation increases mitochondrial enzyme activity given the potential role of lactate for inducing mitochondrial biogenesis. In this study, mice were assigned to a saline-ingested sedentary group (S+S; n = 8), a lactate-ingested sedentary group (L+S; n = 9), a saline-ingested training group (S+T; n = 8), and a lactate-ingested training group (L+T; n = 8). Mice in the S+S and S+T groups received saline, whereas mice in the L+S and L+T groups received sodium lactate (equivalent to 5 g/kg of body weight) via oral gavage 5 days a week for 4 weeks. At 30 min after the ingestion, mice in the S+T and L+T groups performed endurance training (treadmill running, 20 m/min, 30 min, 5 days/week). At 30 min after lactate ingestion, the blood lactate level reached peak value (5.8 ± 0.4 mmol/L) in the L+S group. Immediately after the exercise, blood lactate level was significantly higher in the L+T group (9.3 ± 0.9 mmol/L) than in the S+T group (2.7 ± 0.3 mmol/L) (p < 0.01). Following a 4-week training period, a main effect of endurance training was observed in maximal citrate synthase (CS) (p < 0.01; S+T: 117 ± 3% relative to S+S, L+T: 110 ± 3%) and cytochrome c oxidase (COX) activities (p < 0.01; S+T: 126 ± 4%, L+T: 121 ± 4%) in the plantaris muscle. Similarly, there was a main effect of endurance training in maximal CS (p < 0.01; S+T: 105 ± 3%, L+T: 115 ± 2%) and COX activities (p < 0.01; S+T: 113 ± 3%, L+T: 122 ± 3%) in the soleus muscle. In addition, a main effect of oral lactate ingestion was found in maximal COX activity in the soleus (p < 0.05; L+S: 109 ± 3%, L+T: 122 ± 3%) and heart muscles (p < 0.05; L+S: 107 ± 3%, L+T: 107 ± 2.0%), but not in the plantaris muscle. Our results suggest that lactate supplementation may be beneficial for increasing mitochondrial enzyme activity in oxidative phenotype muscle.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; (K.T.); (K.Y.); (Y.M.)
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan;
| | - Ken Yamamoto
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; (K.T.); (K.Y.); (Y.M.)
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; (K.T.); (K.Y.); (Y.M.)
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; (K.T.); (K.Y.); (Y.M.)
- Correspondence: ; Tel.: +81-3-5454-6862
| |
Collapse
|
10
|
Toledo LP, Vieira JG, Dias MR. Acute effect of sodium bicarbonate supplementation on the performance during CrossFit® training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2020. [DOI: 10.1590/s1980-6574202000040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Rezaei S, Akbari K, Gahreman DE, Sarshin A, Tabben M, Kaviani M, Sadeghinikoo A, Koozehchian MS, Naderi A. Caffeine and sodium bicarbonate supplementation alone or together improve karate performance. J Int Soc Sports Nutr 2019; 16:44. [PMID: 31623659 PMCID: PMC6798418 DOI: 10.1186/s12970-019-0313-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/25/2019] [Indexed: 11/28/2022] Open
Abstract
Background The ergogenic properties of acute caffeine (CAF) and sodium bicarbonate (NaHCO3) ingestion on athletic performance have been previously investigated. However, each sport has unique physiological and technical characteristics which warrants optimizing supplementations strategies for maximizing performance. This study examined the effects of CAF and NaHCO3 ingestion on physiological responses and rate of perceived exertion during a Karate-specific aerobic test (KSAT) in competitive karatekas. Methods In a double-blind, crossover, randomized placebo-controlled trial, eight Karatekas underwent five experimental conditions including control (CON), placebo (PLA), CAF, NaHCO3, and CAF + NaHCO3 before completing KSAT. Capsules containing 6 mg/kg BW CAF were consumed 50 min prior to a KSAT whilst 0.3 g/kg BW NaHCO3 was consumed for 3 days leading to and 120, 90, and 60 min prior to a KSAT. Time to exhaustion (TTE), rate of perceived exertion (RPE), and blood lactate (BL) were measured before, immediately after and 3 min following KSAT. Results TTE was significantly greater following CAF, NaHCO3, and CAF + NaHCO3 consumption compared to PLA and CON. However, the differences between CAF, NaHCO3, and CAF + NaHCO3 were not statistically significant (p > 0.05). BL increased significantly from baseline to immediately after and 3 min following KSAT in all conditions (p < 0.01), while RPE at the end of KSAT was not significantly different between conditions (p = 0.11). Conclusions Karate practitioners may benefit from the ergogenic effects of CAF and NaHCO3 when consumed separately or together.
Collapse
Affiliation(s)
- Sajjad Rezaei
- Physical Education and Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Kazem Akbari
- Department of exercise physiology, Faculty of Physical education and sport sciences, Kharazmi University, Tehran, Iran. .,Raad Sports Club, Tehran, Iran.
| | - Daniel E Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Amir Sarshin
- Faculty of Physical education and sport sciences, Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Montassar Tabben
- Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Majid S Koozehchian
- Department of Kinesiology, Jacksonville State University, Jacksonville, AL, 36265, USA
| | - Alireza Naderi
- Sports Physiology Department, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran
| |
Collapse
|
12
|
Russ AE, Schifino AG, Leong CH. Effect of lactate supplementation on V̇O 2peak and onset of blood lactate accumulation: A double-blind, placebo-controlled trial. ACTA GYMNICA 2019. [DOI: 10.5507/ag.2019.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Heibel AB, Perim PHL, Oliveira LF, McNaughton LR, Saunders B. Time to Optimize Supplementation: Modifying Factors Influencing the Individual Responses to Extracellular Buffering Agents. Front Nutr 2018; 5:35. [PMID: 29868599 PMCID: PMC5951986 DOI: 10.3389/fnut.2018.00035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
Blood alkalosis, as indicated by an increased blood bicarbonate concentration and pH, has been shown to be beneficial for exercise performance. Sodium bicarbonate, sodium citrate, and sodium or calcium lactate, can all result in increased circulating bicarbonate and have all independently been shown to improve exercise capacity and performance under various circumstances. Although there is considerable evidence demonstrating the efficacy of these supplements in several sports-specific situations, it is commonly acknowledged that their efficacy is equivocal, due to contrasting evidence. Herein, we discuss the physiological and environmental factors that may modify the effectiveness of these supplements including, (i) absolute changes in circulating bicarbonate; (ii) supplement timing, (iii) the exercise task performed, (iv) monocarboxylate transporter (MCT) activity; (v) training status, and (vi) associated side-effects. The aim of this narrative review is to highlight the factors which may modify the response to these supplements, so that individuals can use this information to attempt to optimize supplementation and allow the greatest possibility of an ergogenic effect.
Collapse
Affiliation(s)
- André B Heibel
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil.,Laboratory of Nutritional Biochemistry, University of Brasília, Brasília, Brazil
| | - Pedro H L Perim
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil.,São Camilo University Centre, São Paulo, Brazil
| | - Luana F Oliveira
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom.,Department of Sport and Movement Studies, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil.,Rheumatology Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Institute of Orthopaedics and Traumatology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Suvi S, Mooses M, Timpmann S, Medijainen L, Narõškina D, Unt E, Ööpik V. Impact of sodium citrate ingestion during recovery after dehydrating exercise on rehydration and subsequent 40-km cycling time-trial performance in the heat. Appl Physiol Nutr Metab 2018; 43:571-579. [PMID: 29324186 DOI: 10.1139/apnm-2017-0584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to assess the impact of sodium citrate (CIT) ingestion (600 mg·kg-1) during recovery from dehydrating cycling exercise (DE) on subsequent 40-km cycling performance in a warm environment (32 °C). Twenty male nonheat-acclimated endurance athletes exercised in the heat until 4% body mass (BM) loss occurred. After 16 h recovery with consumption of water ad libitum and prescribed diet (evening meal 20 kcal·kg-1, breakfast 12 kcal·kg-1) supplemented in a double-blind, randomized, crossover manner with CIT or placebo (PLC), they performed 40-km time-trial (TT) on a cycle ergometer in a warm environment. During recovery greater increases in BM and plasma volume (PV) concomitant with greater water intake and retention occurred in the CIT trial compared with the PLC trial (p < 0.0001). During TT there was greater water intake and smaller BM loss in the CIT trial than in the PLC trial (p < 0.05) with no between-trial differences (p > 0.05) in sweat loss, PV decrement, ratings of perceived exertion, or TT time (CIT 68.10 ± 3.28 min, PLC 68.11 ± 2.87 min). At the end of TT blood lactate concentration was higher (7.58 ± 2.44 mmol·L-1 vs 5.58 ± 1.32 mmol·L-1; p = 0.0002) and rectal temperature lower (39.54 ± 0.50 °C vs 39.65 ± 0.52 °C; p = 0.033) in the CIT trial than in the PLC trial. Compared with pre-DE time point, PV had decreased to a lower level in the PLC trial than in the CIT trial (p = 0.0001). In conclusion, CIT enhances rehydration after exercise-induced dehydration but has no impact on subsequent 40-km cycling TT performance in a warm uncompensable environment.
Collapse
Affiliation(s)
- Silva Suvi
- a Institute of Sport Sciences and Physiotherapy, Estonian Centre of Behavioral and Health Sciences, University of Tartu, 50090 Tartu, Estonia
| | - Martin Mooses
- a Institute of Sport Sciences and Physiotherapy, Estonian Centre of Behavioral and Health Sciences, University of Tartu, 50090 Tartu, Estonia
| | - Saima Timpmann
- a Institute of Sport Sciences and Physiotherapy, Estonian Centre of Behavioral and Health Sciences, University of Tartu, 50090 Tartu, Estonia
| | - Luule Medijainen
- a Institute of Sport Sciences and Physiotherapy, Estonian Centre of Behavioral and Health Sciences, University of Tartu, 50090 Tartu, Estonia
| | - Daria Narõškina
- a Institute of Sport Sciences and Physiotherapy, Estonian Centre of Behavioral and Health Sciences, University of Tartu, 50090 Tartu, Estonia
| | - Eve Unt
- b Department of Cardiology, Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia.,c Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Vahur Ööpik
- a Institute of Sport Sciences and Physiotherapy, Estonian Centre of Behavioral and Health Sciences, University of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
15
|
Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform 2013; 9:627-32. [PMID: 24155093 DOI: 10.1123/ijspp.2013-0295] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalemia or other metabolic responses is different between individuals who improve exercise capacity and those who do not. METHODS Twenty-one men completed 2 cycling-capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g/kg body mass of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess, and lactate were determined at baseline, preexercise, immediately postexercise, and 5 min postexercise. RESULTS SB supplementation did not significantly increase total work done (TWD; P = .16, 46.8 ± 9.1 vs 45.6 ± 8.4 kJ, d = 0.14), although magnitude-based inferences suggested a 63% likelihood of a positive effect. When data were analyzed without 4 participants who experienced GI discomfort, TWD (P = .01) was significantly improved with SB. Immediately postexercise blood lactate was higher in SB for the individuals who improved but not for those who did not. There were also differences in the preexercise-to-postexercise change in blood pH, bicarbonate, and base excess between individuals who improved and those who did not. CONCLUSIONS SB improved high-intensity-cycling capacity but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that SB may not be beneficial to all individuals. Magnitude-based inferences suggested that the exercise effects are unlikely to be negative; therefore, individuals should determine whether they respond well to SB supplementation before competition.
Collapse
|