1
|
Hughes GTG, Camomilla V, Vanwanseele B, Harrison AJ, Fong DTP, Bradshaw EJ. Novel technology in sports biomechanics: some words of caution. Sports Biomech 2024; 23:393-401. [PMID: 33896368 DOI: 10.1080/14763141.2020.1869453] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gerwyn T G Hughes
- Department of Kinesiology, University of San Francisco, San Francisco, CA, USA
| | - Valentina Camomilla
- Department of Movement, Human and Health Science, University of Rome "Foro Italico", Rome, Italy
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Andrew J Harrison
- Biomechanics Research Unit, University of Limerick, Limerick, Ireland
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Elizabeth J Bradshaw
- Centre for Sport Research, School of Exercise and Nutrition Science, Deakin University, Melbourne, Australia
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
2
|
Rossi C, Amato A, Alesi M, Alioto A, Schiera G, Drid P, Messina G, Pagliaro A, Di Liegro I, Proia P. Hormonal and psychological influences on performance anxiety in adolescent female volleyball players: a multi-approach study. PeerJ 2024; 12:e16617. [PMID: 38390388 PMCID: PMC10883150 DOI: 10.7717/peerj.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/15/2023] [Indexed: 02/24/2024] Open
Abstract
Background The neuroendocrine system has important implications for affiliation behavior among humans and can be used to assess the correlation between social relationships, stress, and health. This can be influenced by social closeness; this aspect is the closeness towards another individual or a group of individuals such as a sports team. Sports performance anxiety is considered an unpleasant emotional reaction composed of physiological, cognitive, affective, and behavioral components. This motivates us to learn about the process that can influence the outcome of competition. Hormones and genetics would seem to influence outcome and performance. In this regard, many studies have focused on the exercise response as a function of ovarian hormones and it has been observed that progesterone is a hormone that plays a key role in reducing anxiety, and thus stress, in humans and other animals. On the other hand, high cortisol concentrations are known to contribute to increased anxiety levels. However, the salivary alpha-amylase (sAA) enzyme has been suggested as marker of acute stress than cortisol. Genetics also seem to influence anxiety and stress management as in the case of brain-derived neurotrophic factor (BDNF) and striatal dopamine transporter (DAT). Therefore, the study aims to investigate social closeness, as a measure of sports team cohesion that can influence athletes' performance results, and its ability to influence the secretion of hormones, such as progesterone and cortisol, that affect the management of sports anxiety while also taking into account genetic background during a volleyball match. Methods Twenty-six female volleyball players who volunteered participated in this study (mean ± SD: age, 12.07 ± 0.7 years), and played in the final of the provincial volleyball championship in Palermo. All girls were during the ovarian cycle, in detail between the follicular and early ovulatory phases. Results The results showed a significant decrease in salivary cortisol only in the winning group (p < 0.039). In fact, whilst in the latter the pre-match level was 7.7 ng/ml and then decreased to 4.5 ng/ml after the match, in the losers group change was not statistically significant (7.8 ng/ml vs 6.6 ng/ml pre- and post-match). As to the sAA concentration, the winning team showed a statistically significant variation between pre- and post-match than the losers (166.01 ± 250 U/ml vs 291.59 ± 241 U/ml) (p = 0.01). Conclusion Analyzing the results of the SAS-2 psychological test it is highlighted that, on average, the loser group was more anxious than the winning group, and this contributed to the final result. In conclusion, there is strong evidence supporting the state of the art that many factors can affect performance anxiety and thus the performance itself.
Collapse
Affiliation(s)
- Carlo Rossi
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
- Research and Innovation, Centro Medico di Fisioterapia “Villa Sarina”, Trapani, Italy
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Marianna Alesi
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Giulia Messina
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Singh A, Kaur Arora M, Boruah B. The role of the six factors model of athletic mental energy in mediating athletes' well-being in competitive sports. Sci Rep 2024; 14:2974. [PMID: 38316915 PMCID: PMC10844369 DOI: 10.1038/s41598-024-53065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
In the realm of high-performance sports, athletes often prioritize success at the expense of their well-being. Consequently, sports psychology researchers are now focusing on creating psychological profiles for athletes that can forecast their performance while safeguarding their overall well-being. A recent development in this field is the concept of athletic mental energy (AME), which has been associated with both sporting success and positive emotions. Therefore, the aim of this study was to explore if AME in athletes can mediate this directly observed relationship between performance and psychological well-being. For stronger predictive validity these relationships were examined across two studies with each involving distinct sets of participants engaged in various sports disciplines, including football, cricket, basketball, archery, and more. The self-report measures of sports performance, athletic mental energy (AME), and psychological well-being (PWB) were administered post-competition on the local, regional, state, national, international, and professional level athletes of age 18 and above. Our study found that both, the affective and cognitive components of AME mediated the athletes' performance and psychological well-being relationship. Interestingly, the study found no significant gender differences in AME and PWB scores. While family structures didn't yield significant variations in AME scores, there were some descriptive distinctions in PWB scores across different family structures. Our research offers preliminary evidence suggesting that AME can play a pivotal role in preserving athletes' psychological well-being following competitive events.
Collapse
Affiliation(s)
- Amisha Singh
- Department of Psychology, University of Delhi, New Delhi, India.
| | - Mandeep Kaur Arora
- Department of Psychology, Kamala Nehru College, University of Delhi, New Delhi, 110007, India
| | - Bahniman Boruah
- Department of Psychology, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Mangine GT, Seay TR. Quantifying CrossFit ®: Potential solutions for monitoring multimodal workloads and identifying training targets. Front Sports Act Living 2022; 4:949429. [PMID: 36311217 PMCID: PMC9613943 DOI: 10.3389/fspor.2022.949429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The design of high-intensity functional training (HIFT; e. g., CrossFit®) workouts and targeted physiological trait(s) vary on any given training day, week, or cycle. Daily workouts are typically comprised of different modality and exercise combinations that are prescribed across a wide range of intensities and durations. The only consistent aspect appears to be the common instruction to maximize effort and workout density by either completing "as many repetitions as possible" within a time limit (e.g., AMRAP, Tabata) or a list of exercises as quickly as possible. However, because effort can vary within and across workouts, the impact on an athlete's physiology may also vary daily. Programming that fails to account for this variation or consider how targeted physiological systems interrelate may lead to overuse, maladaptation, or injury. Athletes may proactively monitor for negative training responses, but any observed response must be tied to a quantifiable workload before meaningful changes (to programming) are possible. Though traditional methods exist for quantifying the resistance training loads, gymnastic movements, and cardiorespiratory modalities (e.g., cycling running) that might appear in a typical HIFT workout, those methods are not uniform, and their meaning will vary based on a specific exercise's placement within a HIFT workout. To objectively quantify HIFT workloads, the calculation must overcome differences in measurement standards used for each modality, be able to account for a component's placement within the workout and be useful regardless of how a workout is commonly scored (e.g., repetitions completed vs. time-to-completion) so that comparisons between workouts are possible. This review paper discusses necessary considerations for quantifying various HIFT workout components and structures, and then details the advantages and shortcomings of different methods used in practice and the scientific literature. Methods typically used in practice range from being excessively tedious and not conducive for making comparisons within or across workouts, to being overly simplistic, based on faulty assumptions, and inaccurate. Meanwhile, only a few HIFT-related studies have attempted to report relevant workloads and have predominantly relied on converting component and workout performance into a rate (i.e., repetitions per minute or second). Repetition completion rate may be easily and accurately tracked and allows for intra- and inter-workout comparisons. Athletes, coaches, and sports scientists are encouraged to adopt this method and potentially pair it with technology (e.g., linear position transducers) to quantify HIFT workloads. Consistent adoption of such methods would enable more precise programming alterations, and it would allow fair comparisons to be made between existing and future research.
Collapse
|
5
|
Bonder IJ, Shim AL. In-Season Training Model for National Association of Intercollegiate Athletics Female Basketball Players Using “Microdosed” Programming. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Heydari M, Zarabadipour M, Mirzadeh M, Asgari Ghonche M. Effect of competition on salivary α-amylase in taekwondo athletes. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Preatoni E, Bergamini E, Fantozzi S, Giraud LI, Orejel Bustos AS, Vannozzi G, Camomilla V. The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3225. [PMID: 35590914 PMCID: PMC9105988 DOI: 10.3390/s22093225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features-such as research design, scope, experimental settings, and applied context-were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field.
Collapse
Affiliation(s)
- Ezio Preatoni
- Department for Health, University of Bath, Bath BA2 7AY, UK; (E.P.); (L.I.G.)
- Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath BA2 7AY, UK
| | - Elena Bergamini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Silvia Fantozzi
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy;
- Health Sciences and Technologies—Interdepartmental Centre for Industrial Research, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Lucie I. Giraud
- Department for Health, University of Bath, Bath BA2 7AY, UK; (E.P.); (L.I.G.)
| | - Amaranta S. Orejel Bustos
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Valentina Camomilla
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| |
Collapse
|
8
|
Morrissey MC, Casa DJ, Brewer GJ, Adams WM, Hosokawa Y, Benjamin CL, Grundstein AJ, Hostler D, McDermott BP, McQuerry ML, Stearns RL, Filep EM, DeGroot DW, Fulcher J, Flouris AD, Huggins RA, Jacklitsch BL, Jardine JF, Lopez RM, McCarthy RB, Pitisladis Y, Pryor RR, Schlader ZJ, Smith CJ, Smith DL, Spector JT, Vanos JK, Williams WJ, Vargas NT, Yeargin SW. Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers. GEOHEALTH 2021; 5:e2021GH000443. [PMID: 34471788 PMCID: PMC8388206 DOI: 10.1029/2021gh000443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/04/2023]
Abstract
The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity.
Collapse
Affiliation(s)
- Margaret C. Morrissey
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Douglas J. Casa
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Gabrielle J. Brewer
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - William M. Adams
- Department of KinesiologyUniversity of North Carolina at GreensboroGreensboroNCUSA
| | - Yuri Hosokawa
- Faculty of Sports SciencesWaseda UniversitySaitamaJapan
| | | | | | - David Hostler
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Brendon P. McDermott
- Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Rebecca L. Stearns
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Erica M. Filep
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - David W. DeGroot
- Fort Benning Heat CenterMartin Army Community HospitalFort BenningGAUSA
| | | | - Andreas D. Flouris
- Department of Exercise ScienceFAME LaboratoryUniversity of ThessalyTrikalaGreece
| | - Robert A. Huggins
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | | | - John F. Jardine
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Rebecca M. Lopez
- School of Physical Therapy & Rehabilitation SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | | | - Yannis Pitisladis
- Collaborating Centre of Sports MedicineUniversity of BrightonBrightonUK
| | - Riana R. Pryor
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Zachary J. Schlader
- Department of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIAUSA
| | - Caroline J. Smith
- Department of Health and Exercise ScienceAppalachian State UniversityBooneNCUSA
| | - Denise L. Smith
- Department of Health and Human Physiological SciencesFirst Responder Health and Safety LaboratorySkidmore CollegeSaratoga SpringsNYUSA
| | - June T. Spector
- Department of Environmental and Occupational Health SciencesSchool of Public HealthUniversity of WashingtonSeattleWAUSA
| | | | - W. Jon Williams
- Centers for Disease Control and Prevention (CDC)National Personal Protective Technology Laboratory (NPPTL)National Institute for Occupational Safety and Health (NIOSH)PittsburghPAUSA
| | - Nicole T. Vargas
- Faculty of Health SciencesUniversity of SydneySydneyNSWAustralia
| | - Susan W. Yeargin
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| |
Collapse
|
9
|
Rum L, Sten O, Vendrame E, Belluscio V, Camomilla V, Vannozzi G, Truppa L, Notarantonio M, Sciarra T, Lazich A, Mannini A, Bergamini E. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. SENSORS 2021; 21:s21051858. [PMID: 33799941 PMCID: PMC7961424 DOI: 10.3390/s21051858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
The interest and competitiveness in sports for persons with disabilities has increased significantly in the recent years, creating a demand for technological tools supporting practice. Wearable sensors offer non-invasive, portable and overall convenient ways to monitor sports practice. This systematic review aims at providing current evidence on the application of wearable sensors in sports for persons with disability. A search for articles published in English before May 2020 was performed on Scopus, Web-Of-Science, PubMed and EBSCO databases, searching titles, abstracts and keywords with a search string involving terms regarding wearable sensors, sports and disability. After full paper screening, 39 studies were included. Inertial and EMG sensors were the most commonly adopted wearable technologies, while wheelchair sports were the most investigated. Four main target applications of wearable sensors relevant to sports for people with disability were identified and discussed: athlete classification, injury prevention, performance characterization for training optimization and equipment customization. The collected evidence provides an overview on the application of wearable sensors in sports for persons with disability, providing useful indication for researchers, coaches and trainers. Several gaps in the different target applications are highlighted altogether with recommendation on future directions.
Collapse
Affiliation(s)
- Lorenzo Rum
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Oscar Sten
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Eleonora Vendrame
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Valeria Belluscio
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Valentina Camomilla
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Giuseppe Vannozzi
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
- Correspondence: ; Tel.: +39-0636733522
| | - Luigi Truppa
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Marco Notarantonio
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Aldo Lazich
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Andrea Mannini
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy
| | - Elena Bergamini
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| |
Collapse
|
10
|
Di Tocco J, Sabbadini R, Raiano L, Fani F, Ripani S, Schena E, Formica D, Massaroni C. Breath-Jockey: Development and Feasibility Assessment of a Wearable System for Respiratory Rate and Kinematic Parameter Estimation for Gallop Athletes. SENSORS (BASEL, SWITZERLAND) 2020; 21:E152. [PMID: 33383689 PMCID: PMC7795240 DOI: 10.3390/s21010152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 01/18/2023]
Abstract
In recent years, wearable devices for physiological parameter monitoring in sports and physical activities have been gaining momentum. In particular, some studies have focused their attention on using available commercial monitoring systems mainly on horses during training sessions or competitions. Only a few studies have focused on the jockey's physiological and kinematic parameters. Although at a glance, it seems jockeys do not make a lot of effort during riding, it is quite the opposite. Indeed, especially during competitions, they profuse a short but high intensity effort. To this extend, we propose a wearable system integrating conductive textiles and an M-IMU to simultaneously monitor the respiratory rate (RR) and kinematic parameters of the riding activity. Firstly, we tested the developed wearable system on a healthy volunteer mimicking the typical riding movements of jockeys and compared the performances with a reference instrument. Lastly, we tested the system on two gallop jockeys during the "137∘ Derby Italiano di Galoppo". The proposed system is able to track both the RR and the kinematic parameters during the various phases of the competition both at rest and during the race.
Collapse
Affiliation(s)
- Joshua Di Tocco
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (J.D.T.); (R.S.); (E.S.)
| | - Riccardo Sabbadini
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (J.D.T.); (R.S.); (E.S.)
| | - Luigi Raiano
- Unit of Neurophysiology and Neuroengineering of Human Technology Interaction (NeXT), Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (L.R.); (D.F.)
| | - Federica Fani
- Avery Dennison RBIS Italy, Prov.le Bonifica, 64010 Ancarano, Italy; (F.F.); (S.R.)
| | - Simone Ripani
- Avery Dennison RBIS Italy, Prov.le Bonifica, 64010 Ancarano, Italy; (F.F.); (S.R.)
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (J.D.T.); (R.S.); (E.S.)
| | - Domenico Formica
- Unit of Neurophysiology and Neuroengineering of Human Technology Interaction (NeXT), Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (L.R.); (D.F.)
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (J.D.T.); (R.S.); (E.S.)
| |
Collapse
|
11
|
Kiely M, Warrington GD, McGoldrick A, Pugh J, Cullen S. Physiological Demands of Professional Flat and Jump Horse Racing. J Strength Cond Res 2020; 34:2173-2177. [PMID: 32735425 DOI: 10.1519/jsc.0000000000003677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kiely, M, Warrington, GD, McGoldrick, A, Pugh, J, and Cullen, S. Physiological demands of professional flat and jump horse racing. J Strength Cond Res 34(8): 2173-2177, 2020-No information is currently available on the effect of race distance on the physiological demands of jockeys. This study aimed to quantify the respective demands of short and long flat and jump race distances. Twenty professional jockeys (10 flat and 10 jump) participated in the study. The subjects initially performed a graded incremental exercise test to volitional exhaustion on a treadmill to determine the peak heart rate (HR) and blood lactate concentrations. Two competitive races (short and long) were then monitored on 2 separate occasions for each jockey type to obtain hydration, HR, blood lactate concentration, and rating of perceived exertion data. Mean distances for the 4 races were: 1,247.2 ± 184.7 m (short flat race), 2,313.4 ± 142.2 m (long flat race), 3,480.2 ± 355.3 m (short jump race), and 4,546.4 ± 194.3 m (long jump race). The mean HR for the long flat race was 151 ± 19 b·min (79 ± 11% of HRpeak), which was significantly lower than all other race distances (p = 0.000, effect size [ES] = 0.469). A longer jump race resulted in a significantly higher reported rate of perceived exertion (RPE) (14 ± 2.8) than the short jump race (11.0 ± 1.5) (p = 0.009, ES = 0.271), whereas no significant difference was revealed between peak HR responses or blood lactate concentrations when comparing other race distances (p < 0.05). The finding of this study supports previous limited research, which suggests that horse racing is a high-intensity sport, whereas RPE and mean HR fluctuate according to the race distance.
Collapse
Affiliation(s)
- Michael Kiely
- Department of Sport and Exercise Science, Waterford Institute of Technology, Waterford, Ireland
| | - Giles D Warrington
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,The Irish Horse Racing Regulatory Board, Kildare, Ireland; and.,Health Research Institute, Educational Health Sciences, University of Limerick, Limerick, Ireland
| | | | - Jennifer Pugh
- The Irish Horse Racing Regulatory Board, Kildare, Ireland; and
| | - SarahJane Cullen
- Department of Sport and Exercise Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|