1
|
Rossi KL, Budzinski RC, Medeiros ES, Boaretto BRR, Muller L, Feudel U. Dynamical properties and mechanisms of metastability: A perspective in neuroscience. Phys Rev E 2025; 111:021001. [PMID: 40103058 DOI: 10.1103/physreve.111.021001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 03/20/2025]
Abstract
Metastability, characterized by a variability of regimes in time, is a ubiquitous type of neural dynamics. It has been formulated in many different ways in the neuroscience literature, however, which may cause some confusion. In this Perspective, we discuss metastability from the point of view of dynamical systems theory. We extract from the literature a very simple but general definition through the concept of metastable regimes as long-lived but transient epochs of activity with unique dynamical properties. This definition serves as an umbrella term that encompasses formulations from other works, and readily connects to concepts from dynamical systems theory. This allows us to examine general dynamical properties of metastable regimes, propose in a didactic manner several dynamics-based mechanisms that generate them, and discuss a theoretical tool to characterize them quantitatively. This Perspective leads to insights that help to address issues debated in the literature and also suggests pathways for future research.
Collapse
Affiliation(s)
- Kalel L Rossi
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| | - Roberto C Budzinski
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Everton S Medeiros
- São Paulo State University (UNESP), Institute of Geosciences and Exact Sciences, Avenida 24A 1515, 13506-900 Rio Claro, São Paulo, Brazil
| | - Bruno R R Boaretto
- Universidade Federal de São Paulo, Institute of Science and Technology, 12247-014 São José dos Campos, São Paulo, Brazil
- Universitat Politecnica de Catalunya, Department of Physics, 08222 Terrassa, Barcelona, Spain
| | - Lyle Muller
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Ulrike Feudel
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| |
Collapse
|
2
|
Tamvacakis AN, Lillvis JL, Sakurai A, Katz PS. The Consistency of Gastropod Identified Neurons Distinguishes Intra-Individual Plasticity From Inter-Individual Variability in Neural Circuits. Front Behav Neurosci 2022; 16:855235. [PMID: 35309684 PMCID: PMC8928192 DOI: 10.3389/fnbeh.2022.855235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Gastropod mollusks are known for their large, individually identifiable neurons, which are amenable to long-term intracellular recordings that can be repeated from animal to animal. The constancy of individual neurons can help distinguish state-dependent or temporal variation within an individual from actual variability between individual animals. Investigations into the circuitry underlying rhythmic swimming movements of the gastropod species, Tritonia exsulans and Pleurobranchaea californica have uncovered intra- and inter-individual variability in synaptic connectivity and serotonergic neuromodulation. Tritonia has a reliably evoked escape swim behavior that is produced by a central pattern generator (CPG) composed of a small number of identifiable neurons. There is apparent individual variability in some of the connections between neurons that is inconsequential for the production of the swim behavior under normal conditions, but determines whether that individual can swim following a neural lesion. Serotonergic neuromodulation of synaptic strength intrinsic to the CPG creates neural circuit plasticity within an individual and contributes to reorganization of the network during recovery from injury and during learning. In Pleurobranchaea, variability over time in the modulatory actions of serotonin and in expression of serotonin receptor genes in an identified neuron directly reflects variation in swimming behavior. Tracking behavior and electrophysiology over hours to days was necessary to identify the functional consequences of these intra-individual, time-dependent variations. This work demonstrates the importance of unambiguous neuron identification, properly assessing the animal and network states, and tracking behavior and physiology over time to distinguish plasticity within the same animal at different times from variability across individual animals.
Collapse
Affiliation(s)
| | | | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- *Correspondence: Paul S. Katz,
| |
Collapse
|
3
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
4
|
Cutuli D, Landolfo E, Nobili A, De Bartolo P, Sacchetti S, Chirico D, Marini F, Pieroni L, Ronci M, D'Amelio M, D'Amato FR, Farioli-Vecchioli S, Petrosini L. Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:150. [PMID: 33198763 PMCID: PMC7667851 DOI: 10.1186/s13195-020-00705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Background In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. Results The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. Conclusions The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy. .,University of Rome "Sapienza", Rome, Italy.
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University of Rome "Sapienza", Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Doriana Chirico
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, Italy
| | - Federica Marini
- Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marcello D'Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | | | | | | |
Collapse
|
5
|
Colton GF, Cook AP, Nusbaum MP. Different microcircuit responses to comparable input from one versus both copies of an identified projection neuron. J Exp Biol 2020; 223:jeb228114. [PMID: 32820029 PMCID: PMC7648612 DOI: 10.1242/jeb.228114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Neuronal inputs to microcircuits are often present as multiple copies of apparently equivalent neurons. Thus far, however, little is known regarding the relative influence on microcircuit output of activating all or only some copies of such an input. We examine this issue in the crab (Cancer borealis) stomatogastric ganglion, where the gastric mill (chewing) microcircuit is activated by modulatory commissural neuron 1 (MCN1), a bilaterally paired modulatory projection neuron. Both MCN1s contain the same co-transmitters, influence the same gastric mill microcircuit neurons, can drive the biphasic gastric mill rhythm, and are co-activated by all identified MCN1-activating pathways. Here, we determine whether the gastric mill microcircuit response is equivalent when stimulating one or both MCN1s under conditions where the pair are matched to collectively fire at the same overall rate and pattern as single MCN1 stimulation. The dual MCN1 stimulations elicited more consistently coordinated rhythms, and these rhythms exhibited longer phases and cycle periods. These different outcomes from single and dual MCN1 stimulation may have resulted from the relatively modest, and equivalent, firing rate of the gastric mill neuron LG (lateral gastric) during each matched set of stimulations. The LG neuron-mediated, ionotropic inhibition of the MCN1 axon terminals is the trigger for the transition from the retraction to protraction phase. This LG neuron influence on MCN1 was more effective during the dual stimulations, where each MCN1 firing rate was half that occurring during the matched single stimulations. Thus, equivalent individual- and co-activation of a class of modulatory projection neurons does not necessarily drive equivalent microcircuit output.
Collapse
Affiliation(s)
- Gabriel F Colton
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron P Cook
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Nusbaum
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Neuroprotective Role of Dietary Supplementation with Omega-3 Fatty Acids in the Presence of Basal Forebrain Cholinergic Neurons Degeneration in Aged Mice. Int J Mol Sci 2020; 21:ijms21051741. [PMID: 32143275 PMCID: PMC7084583 DOI: 10.3390/ijms21051741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 01/05/2023] Open
Abstract
As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.
Collapse
|
7
|
Functional Recovery of a Locomotor Network after Injury: Plasticity beyond the Central Nervous System. eNeuro 2018; 5:eN-NWR-0195-18. [PMID: 30073189 PMCID: PMC6071192 DOI: 10.1523/eneuro.0195-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Many animals depend on descending information from the brain for the initiation and proper execution of locomotion. Interestingly, after injury and the loss of such inputs, locomotor function can sometimes be regained without the regrowth of central connections. In the medicinal leech, Hirudo verbana, we have shown that crawling reemerges after removal of descending inputs. Here, we studied the mechanisms underlying this return of locomotion by asking if central pattern generators (CPGs) in crawl-recovered leeches are sufficient to produce crawl-specific intersegmental coordination. From recovered animals, we treated isolated chains of ganglia with dopamine to activate the crawl CPGs (one crawl CPG per ganglion) and observed fictive crawl-like bursting in the dorsal-longitudinal-excitor motoneuron (DE-3), an established crawl-monitor neuron. However, these preparations did not exhibit crawl-specific coordination across the CPGs. Although the crawl CPGs always generated bidirectional activation of adjacent CPGs, we never observed crawl-appropriate intersegmental phase delays. Because central circuits alone were unable to organize crawl-specific coordination, we tested the coordinating role of the peripheral nervous system. In transected leeches normally destined for recovery, we removed afferent information to the anterior-most (lead) ganglion located below the nerve-cord transection site. In these dually treated animals, overt crawling was greatly delayed or prevented. After filling the peripheral nerves with Neurobiotin tracer distal to the nerve-root lesion, we found a perfect correlation between regrowth of peripheral neuronal fibers and crawl recovery. Our study establishes that during recovery after injury, crawl-specific intersegmental coordination switches to a new dependence on afferent information.
Collapse
|