1
|
Lamichhane S, Seo JE, Jeong JH, Lee S, Lee S. Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges. Arch Pharm Res 2025; 48:62-88. [PMID: 39690343 DOI: 10.1007/s12272-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Sasner M, Preuss C, Pandey RS, Uyar A, Garceau D, Kotredes KP, Williams H, Oblak AL, Lin PB, Perkins B, Soni D, Ingraham C, Lee‐Gosselin A, Lamb BT, Howell GR, Carter GW. In vivo validation of late-onset Alzheimer's disease genetic risk factors. Alzheimers Dement 2024; 20:4970-4984. [PMID: 38687251 PMCID: PMC11247676 DOI: 10.1002/alz.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.
Collapse
Affiliation(s)
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Asli Uyar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | | | | | | | - Adrian L. Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Peter Bor‐Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bridget Perkins
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Disha Soni
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Cindy Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Audrey Lee‐Gosselin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | | | - Gregory W. Carter
- The Jackson LaboratoryBar HarborMaineUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| |
Collapse
|
4
|
Sasner M, Preuss C, Pandey RS, Uyar A, Garceau D, Kotredes KP, Williams H, Oblak AL, Lin PBC, Perkins B, Soni D, Ingraham C, Lee-Gosselin A, Lamb BT, Howell GR, Carter GW. In vivo validation of late-onset Alzheimer's disease genetic risk factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572849. [PMID: 38187758 PMCID: PMC10769393 DOI: 10.1101/2023.12.21.572849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.
Collapse
Affiliation(s)
- Michael Sasner
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
| | | | - Ravi S Pandey
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032 USA
| | - Asli Uyar
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032 USA
| | - Dylan Garceau
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
| | | | | | - Adrian L Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Bridget Perkins
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Disha Soni
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Cindy Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Audrey Lee-Gosselin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
| | - Gregory W Carter
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032 USA
| |
Collapse
|
5
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
6
|
Valencia-Olvera AC, Balu D, Faulk N, Amiridis A, Wang Y, Pham C, Avila-Munoz E, York JM, Thatcher GRJ, LaDu MJ. Inhibition of ACAT as a Therapeutic Target for Alzheimer's Disease Is Independent of ApoE4 Lipidation. Neurotherapeutics 2023; 20:1120-1137. [PMID: 37157042 PMCID: PMC10457278 DOI: 10.1007/s13311-023-01375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
APOE4, encoding apolipoprotein E4 (apoE4), is the greatest genetic risk factor for Alzheimer's disease (AD), compared to the common APOE3. While the mechanism(s) underlying APOE4-induced AD risk remains unclear, increasing the lipidation of apoE4 is an important therapeutic target as apoE4-lipoproteins are poorly lipidated compared to apoE3-lipoproteins. ACAT (acyl-CoA: cholesterol-acyltransferase) catalyzes the formation of intracellular cholesteryl-ester droplets, reducing the intracellular free cholesterol (FC) pool. Thus, inhibiting ACAT increases the FC pool and facilitates lipid secretion to extracellular apoE-containing lipoproteins. Previous studies using commercial ACAT inhibitors, including avasimibe (AVAS), as well as ACAT-knock out (KO) mice, exhibit reduced AD-like pathology and amyloid precursor protein (APP) processing in familial AD (FAD)-transgenic (Tg) mice. However, the effects of AVAS with human apoE4 remain unknown. In vitro, AVAS induced apoE efflux at concentrations of AVAS measured in the brains of treated mice. AVAS treatment of male E4FAD-Tg mice (5xFAD+/-APOE4+/+) at 6-8 months had no effect on plasma cholesterol levels or distribution, the original mechanism for AVAS treatment of CVD. In the CNS, AVAS reduced intracellular lipid droplets, indirectly demonstrating target engagement. Surrogate efficacy was demonstrated by an increase in Morris water maze measures of memory and postsynaptic protein levels. Amyloid-beta peptide (Aβ) solubility/deposition and neuroinflammation were reduced, critical components of APOE4-modulated pathology. However, there was no increase in apoE4 levels or apoE4 lipidation, while amyloidogenic and non-amyloidogenic processing of APP were significantly reduced. This suggests that the AVAS-induced reduction in Aβ via reduced APP processing was sufficient to reduce AD pathology, as apoE4-lipoproteins remained poorly lipidated.
Collapse
Affiliation(s)
- Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Naomi Faulk
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | | | - Yueting Wang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612 USA
- Present Address: AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064 USA
| | - Christine Pham
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Eva Avila-Munoz
- Syneos Health, Av. Gustavo Baz 309, La Loma, Tlalnepantla de Baz, 54060 Mexico
| | - Jason M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, University of Arizona, 1703 E Mabel St., Tucson, AZ 85721 USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
7
|
Wang Y, Cai M, Lou Y, Zhang S, Liu X. ZBTB20-AS1 promoted Alzheimer's disease progression through ZBTB20/GSK-3β/Tau pathway. Biochem Biophys Res Commun 2023; 640:88-96. [PMID: 36502636 DOI: 10.1016/j.bbrc.2022.11.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
To elucidate the potential molecular mechanisms of ZBTB20-AS1 on ZBTB20 and GSK-3β/Tau signaling pathway in the pathogenesis of Alzheimer's disease (AD), SH-SY5Y cells were obtained for in vitro experiments and AD models were constructed using β-Amyloid 1-42. CCK8 assay was implemented for determining cell viability. Flow cytometry was used for cell apoptosis detection. Dual-luciferase reporter and RNA-RNA pull down assay was employed for elucidating molecular interactions. Immunohistochemistry, RT-qPCR and western blotting were performed for measuring gene expression. The results showed that expression of LncRNA ZBTB20-AS1 was significantly upregulated, while ZBTB20 was downregulated in SH-SY5Y-AD cells. ZBTB20 was the target gene of LncRNA ZBTB20-AS1. Overexpression of ZBTB20 or knockdown of LncRNA ZBTB20-AS1 inhibited SH-SY5Y-AD cells apoptosis and suppressed GSK3β/Tau pathway, and knockdown of ZBTB20-AS1 increased cell viability and decreased apoptosis. In conclusion, overexpression of ZBTB20-AS1 inhibited ZBTB20 expression and promoted GSK-3β expression and Tau phosphorylation, contributing to the development of AD.
Collapse
Affiliation(s)
- Yanwen Wang
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang, 310013, China
| | - Miao Cai
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang, 310013, China
| | - Yue Lou
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang, 310013, China
| | - Siran Zhang
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang, 310013, China
| | - Xiaoli Liu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang, 310013, China.
| |
Collapse
|
8
|
Lanooij SD, Eisel ULM, van der Zee EA, Kas MJH. Variation in Group Composition Alters an Early-Stage Social Phenotype in hAPP-Transgenic J20 Mice. J Alzheimers Dis 2023; 93:211-224. [PMID: 36970900 DOI: 10.3233/jad-221126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Altered social behavior is one of the symptoms of Alzheimer's disease (AD) that results in social withdrawal and loneliness and provides a major burden on patients and their relatives. Furthermore, loneliness is associated with an increased risk to develop AD and related dementias. OBJECTIVE We aimed to investigate if altered social behavior is an early indicator of amyloid-β (Aβ) pathology in J20 mice, and if co-housing with wild type (WT) mice can positively influence this social phenotype. METHODS The social phenotype of group-housed mice was assessed using an automated behavioral scoring system for longitudinal recordings. Female mice were housed in a same-genotype (4 J20 or WT mice per colony) or mixed-genotype (2 J20 mice + 2 WT mice) colony. At 10 weeks of age, their behavior was assessed for five consecutive days. RESULTS J20 mice showed increased locomotor activity and social sniffing, and reduced social contact compared to WT mice housed in same-genotype colonies. Mixed-genotype housing reduced the social sniffing duration of J20 mice, increased social contact frequency of J20 mice, and increased nest hide by WT mice. CONCLUSION Thus, altered social behavior can be used as an early indicator of Aβ-pathology in female J20 mice. Additionally, when co-housed with WT mice, their social sniffing phenotype is not expressed and their social contact phenotype is reduced. Our findings highlight the presence of a social phenotype in the early stages of AD and indicate a role for social environment variation in the expression of social behavior of WT and J20 mice.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Dimopoulos TT, Lippi SLP, Davila JF, Barkey RE, Doherty EN, Flinn JM. White Button Mushroom ( Agaricus bisporus) Supplementation Ameliorates Spatial Memory Deficits and Plaque Formation in an Amyloid Precursor Protein Mouse Model of Alzheimer's Disease. Brain Sci 2022; 12:brainsci12101364. [PMID: 36291298 PMCID: PMC9599624 DOI: 10.3390/brainsci12101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s Disease (AD) is characterized by cognitive impairment and the presence of amyloid-β (Aβ) plaques and tau tangles. This study was conducted to assess the effects of white button mushroom (WBM) supplementation on spatial memory and plaque formation in mice with mutations in amyloid (Aβ). Mice with amyloid precursor protein (hAPP) mutations and their wildtype (WT) littermates were fed a 10% white button mushroom (WBM) feed ad libitum three times per week, in addition to their normal diet. Morris water maze (MWM) was conducted at 14 and 32 weeks of age to assess spatial memory and Aβ plaque pathology in the hippocampus was analyzed. Our results showed that hAPP mice on the WBM diet were faster in reaching the platform in the MWM compared to hAPP mice on the control diet at 32 weeks (p < 0.05). Significantly fewer plaque deposits were found in the hippocampi of hAPP mice on the WBM diet compared to those on the control diet at 32 weeks (p < 0.05). Overall, hAPP mice on the WBM diet had improved spatial memory at 32 weeks of age compared to those on the control diet and exhibited fewer amyloid plaques.
Collapse
Affiliation(s)
- Thalia T. Dimopoulos
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Stephen L. P. Lippi
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | - Rachel E. Barkey
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Erin N. Doherty
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Jane M. Flinn
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
- Correspondence:
| |
Collapse
|
10
|
Reagan AM, Onos KD, Heuer SE, Sasner M, Howell GR. Improving mouse models for the study of Alzheimer's disease. Curr Top Dev Biol 2022; 148:79-113. [PMID: 35461569 DOI: 10.1016/bs.ctdb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.
Collapse
Affiliation(s)
| | | | - Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
11
|
Das M, Mao W, Shao E, Tamhankar S, Yu GQ, Yu X, Ho K, Wang X, Wang J, Mucke L. Interdependence of neural network dysfunction and microglial alterations in Alzheimer's disease-related models. iScience 2021; 24:103245. [PMID: 34755090 PMCID: PMC8561005 DOI: 10.1016/j.isci.2021.103245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Nonconvulsive epileptiform activity and microglial alterations have been detected in people with Alzheimer's disease (AD) and related mouse models. However, the relationship between these abnormalities remains to be elucidated. We suppressed epileptiform activity by treatment with the antiepileptic drug levetiracetam or by genetic ablation of tau and found that these interventions reversed or prevented aberrant microglial gene expression in brain tissues of aged human amyloid precursor protein transgenic mice, which simulate several key aspects of AD. The most robustly modulated genes included multiple factors previously implicated in AD pathogenesis, including TREM2, the hypofunction of which increases disease risk. Genetic reduction of TREM2 exacerbated epileptiform activity after mice were injected with kainate. We conclude that AD-related epileptiform activity markedly changes the molecular profile of microglia, inducing both maladaptive and adaptive alterations in their activities. Increased expression of TREM2 seems to support microglial activities that counteract this type of network dysfunction.
Collapse
Affiliation(s)
- Melanie Das
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Wenjie Mao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Soniya Tamhankar
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jiaming Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|