1
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg C, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.539065. [PMID: 37293040 PMCID: PMC10245571 DOI: 10.1101/2023.05.15.539065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals, yet molecular logic governing cellular specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple new subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the remarkable cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level illustrates molecular logic for cellular specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J. McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Laurence O. Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
4
|
Weimann SR, Zhang C, Burger RM. A Developmental Switch in Cholinergic Mechanisms of Modulation in the Medial Nucleus of the Trapezoid Body. J Neurosci 2024; 44:e0356232023. [PMID: 38383485 PMCID: PMC10883614 DOI: 10.1523/jneurosci.0356-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 02/23/2024] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) has been intensively investigated as a primary source of inhibition in brainstem auditory circuitry. MNTB-derived inhibition plays a critical role in the computation of sound location, as temporal features of sounds are precisely conveyed through the calyx of Held/MNTB synapse. In adult gerbils, cholinergic signaling influences sound-evoked responses of MNTB neurons via nicotinic acetylcholine receptors (nAChRs; Zhang et al., 2021) establishing a modulatory role for cholinergic input to this nucleus. However, the cellular mechanisms through which acetylcholine (ACh) mediates this modulation in the MNTB remain obscure. To investigate these mechanisms, we used whole-cell current and voltage-clamp recordings to examine cholinergic physiology in MNTB neurons from Mongolian gerbils (Meriones unguiculatus) of both sexes. Membrane excitability was assessed in brain slices, in pre-hearing (postnatal days 9-13) and post-hearing onset (P18-20) MNTB neurons during bath application of agonists and antagonists of nicotinic (nAChRs) and muscarinic receptors (mAChRs). Muscarinic activation induced a potent increase in excitability most prominently prior to hearing onset with nAChR modulation emerging at later time points. Pharmacological manipulations further demonstrated that the voltage-gated K+ channel KCNQ (Kv7) is the downstream effector of mAChR activation that impacts excitability early in development. Cholinergic modulation of Kv7 reduces outward K+ conductance and depolarizes resting membrane potential. Immunolabeling revealed expression of Kv7 channels as well as mAChRs containing M1 and M3 subunits. Together, our results suggest that mAChR modulation is prominent but transient in the developing MNTB and that cholinergic modulation functions to shape auditory circuit development.
Collapse
Affiliation(s)
- Sonia R Weimann
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| |
Collapse
|
5
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
6
|
Kwapiszewski JT, Rivera-Perez LM, Roberts MT. Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus. J Assoc Res Otolaryngol 2023; 24:181-196. [PMID: 36627519 PMCID: PMC10121979 DOI: 10.1007/s10162-022-00885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3β4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and β4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.
Collapse
Affiliation(s)
- Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA.
- Department of Molecular and Integrative Pharmacology, University of Michigan, MI, Ann Arbor, 48109, USA.
| |
Collapse
|
7
|
Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hear Res 2022; 425:108516. [DOI: 10.1016/j.heares.2022.108516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
8
|
Hockley A, Wu C, Shore SE. Olivocochlear projections contribute to superior intensity coding in cochlear nucleus small cells. J Physiol 2022; 600:61-73. [PMID: 34761815 PMCID: PMC9067393 DOI: 10.1113/jp282262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Understanding communication signals, especially in noisy environments, is crucial to social interactions. Yet, as we age, acoustic signals can be disrupted by cochlear damage and the subsequent auditory nerve fibre degeneration. The most vulnerable medium- and high-threshold-auditory nerve fibres innervate various cell types in the cochlear nucleus, among which the small cells are unique in receiving this input exclusively. Furthermore, small cells project to medial olivocochlear (MOC) neurons, which in turn send branched collaterals back into the small cell cap. Here, we use single-unit recordings to characterise small cell firing characteristics and demonstrate superior intensity coding in this cell class. We show converse effects when activating/blocking the MOC system, demonstrating that small-cell unique coding properties are facilitated by direct cholinergic input from the MOC system. Small cells also maintain tone-level coding in the presence of background noise. Finally, small cells precisely code low-frequency modulation more accurately than other ventral cochlear nucleus cell types, demonstrating accurate envelope coding that may be important for vocalisation processing. These results highlight the small cell olivocochlear circuit as a key player in signal processing in noisy environments, which may be selectively degraded in ageing or after noise insult. KEY POINTS: Cochlear nucleus small cells receive input from low/medium spontaneous rate auditory nerve fibres and medial olivocochlear neurons. Electrical stimulation of medial olivocochlear neurons in the ventral nucleus of the trapezoid body and blocking cholinergic input to small cells using atropine demonstrates an excitatory cholinergic input to small cells, which increases responses to suprathreshold sound. Unique inputs to small cells produce superior sound intensity coding. This coding of intensity is preserved in the presence of background noise, an effect exclusive to this cell type in the cochlear nucleus. These results suggest that small cells serve an essential function in the ascending auditory system, which may be relevant to disorders such as hidden hearing loss.
Collapse
Affiliation(s)
- Adam Hockley
- Department of Otolaryngology, Kresge Hearing Research Institute, Ann Arbor, MI, USA
| | - Calvin Wu
- Department of Otolaryngology, Kresge Hearing Research Institute, Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, Kresge Hearing Research Institute, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Rivera-Perez LM, Kwapiszewski JT, Roberts MT. α 3β 4 ∗ Nicotinic Acetylcholine Receptors Strongly Modulate the Excitability of VIP Neurons in the Mouse Inferior Colliculus. Front Neural Circuits 2021; 15:709387. [PMID: 34434092 PMCID: PMC8381226 DOI: 10.3389/fncir.2021.709387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
The inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input from the pontomesencephalic tegmentum. Activation of nicotinic acetylcholine receptors (nAChRs) in the IC can alter acoustic processing and enhance auditory task performance. However, how nAChRs affect the excitability of specific classes of IC neurons remains unknown. Recently, we identified vasoactive intestinal peptide (VIP) neurons as a distinct class of glutamatergic principal neurons in the IC. Here, in experiments using male and female mice, we show that cholinergic terminals are routinely located adjacent to the somas and dendrites of VIP neurons. Using whole-cell electrophysiology in brain slices, we found that acetylcholine drives surprisingly strong and long-lasting excitation and inward currents in VIP neurons. This excitation was unaffected by the muscarinic receptor antagonist atropine. Application of nAChR antagonists revealed that acetylcholine excites VIP neurons mainly via activation of α3β4∗ nAChRs, a nAChR subtype that is rare in the brain. Furthermore, we show that acetylcholine excites VIP neurons directly and does not require intermediate activation of presynaptic inputs that might express nAChRs. Lastly, we found that low frequency trains of acetylcholine puffs elicited temporal summation in VIP neurons, suggesting that in vivo-like patterns of cholinergic input can reshape activity for prolonged periods. These results reveal the first cellular mechanisms of nAChR regulation in the IC, identify a functional role for α3β4∗ nAChRs in the auditory system, and suggest that cholinergic input can potently influence auditory processing by increasing excitability in VIP neurons and their postsynaptic targets.
Collapse
Affiliation(s)
- Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021; 15:715369. [PMID: 34335196 PMCID: PMC8319744 DOI: 10.3389/fncir.2021.715369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
The superior olivary complex (SOC) is a major computation center in the brainstem auditory system. Despite previous reports of high expression levels of cholinergic receptors in the SOC, few studies have addressed the functional role of acetylcholine in the region. The source of the cholinergic innervation is unknown for all but one of the nuclei of the SOC, limiting our understanding of cholinergic modulation. The medial nucleus of the trapezoid body, a key inhibitory link in monaural and binaural circuits, receives cholinergic input from other SOC nuclei and also from the pontomesencephalic tegmentum. Here, we investigate whether these same regions are sources of cholinergic input to other SOC nuclei. We also investigate whether individual cholinergic cells can send collateral projections bilaterally (i.e., into both SOCs), as has been shown at other levels of the subcortical auditory system. We injected retrograde tract tracers into the SOC in gerbils, then identified retrogradely-labeled cells that were also immunolabeled for choline acetyltransferase, a marker for cholinergic cells. We found that both the SOC and the pontomesencephalic tegmentum (PMT) send cholinergic projections into the SOC, and these projections appear to innervate all major SOC nuclei. We also observed a small cholinergic projection into the SOC from the lateral paragigantocellular nucleus of the reticular formation. These various sources likely serve different functions; e.g., the PMT has been associated with things such as arousal and sensory gating whereas the SOC may provide feedback more closely tuned to specific auditory stimuli. Further, individual cholinergic neurons in each of these regions can send branching projections into both SOCs. Such projections present an opportunity for cholinergic modulation to be coordinated across the auditory brainstem.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
11
|
Koert E, Kuenzel T. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells. J Neurophysiol 2021; 125:915-937. [PMID: 33471627 DOI: 10.1152/jn.00331.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spherical bushy cells (SBCs) in the anteroventral cochlear nucleus receive a single or very few powerful axosomatic inputs from the auditory nerve. However, SBCs are also contacted by small regular bouton synapses of the auditory nerve, located in their dendritic tree. The function of these small inputs is unknown. It was speculated that the interaction of axosomatic inputs with small dendritic inputs improved temporal precision, but direct evidence for this is missing. In a compartment model of spherical bushy cells with a stylized or realistic three-dimensional (3-D) representation of the bushy dendrite, we explored this hypothesis. Phase-locked dendritic inputs caused both tonic depolarization and a modulation of the model SBC membrane potential at the frequency of the stimulus. For plausible model parameters, dendritic inputs were subthreshold. Instead, the tonic depolarization increased the excitability of the SBC model and the modulation of the membrane potential caused a phase-dependent increase in the efficacy of the main axosomatic input. This improved response rate and entrainment for low-input frequencies and temporal precision of output at and above the characteristic frequency. A careful exploration of morphological and biophysical parameters of the bushy dendrite suggested a functional explanation for the peculiar shape of the bushy dendrite. Our model for the first time directly implied a role for the small excitatory dendritic inputs in auditory processing: they modulate the efficacy of the main input and are thus a plausible mechanism for the improvement of temporal precision and fidelity in these central auditory neurons.NEW & NOTEWORTHY We modeled dendritic inputs from the auditory nerve that spherical bushy cells of the cochlear nucleus receive. Dendritic inputs caused both tonic depolarization and modulation of the membrane potential at the input frequency. This improved the rate, entrainment, and temporal precision of output action potentials. Our simulations suggest a role for small dendritic inputs in auditory processing: they modulate the efficacy of the main input supporting temporal precision and fidelity in these central auditory neurons.
Collapse
Affiliation(s)
- Elisabeth Koert
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 41:674-688. [PMID: 33268542 DOI: 10.1523/jneurosci.1633-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/29/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4β2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.
Collapse
|
13
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
14
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Cholinergic Projections From the Pedunculopontine Tegmental Nucleus Contact Excitatory and Inhibitory Neurons in the Inferior Colliculus. Front Neural Circuits 2020; 14:43. [PMID: 32765226 PMCID: PMC7378781 DOI: 10.3389/fncir.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The inferior colliculus processes nearly all ascending auditory information. Most collicular cells respond to sound, and for a majority of these cells, the responses can be modulated by acetylcholine (ACh). The cholinergic effects are varied and, for the most part, the underlying mechanisms are unknown. The major source of cholinergic input to the inferior colliculus is the pedunculopontine tegmental nucleus (PPT), part of the pontomesencephalic tegmentum known for projections to the thalamus and roles in arousal and the sleep-wake cycle. Characterization of PPT inputs to the inferior colliculus has been complicated by the mixed neurotransmitter population within the PPT. Using selective viral-tract tracing techniques in a ChAT-Cre Long Evans rat, the present study characterizes the distribution and targets of cholinergic projections from PPT to the inferior colliculus. Following the deposit of viral vector in one PPT, cholinergic axons studded with boutons were present bilaterally in the inferior colliculus, with the greater density of axons and boutons ipsilateral to the injection site. On both sides, cholinergic axons were present throughout the inferior colliculus, distributing boutons to the central nucleus, lateral cortex, and dorsal cortex. In each inferior colliculus (IC) subdivision, the cholinergic PPT axons appear to contact both GABAergic and glutamatergic neurons. These findings suggest cholinergic projections from the PPT have a widespread influence over the IC, likely affecting many aspects of midbrain auditory processing. Moreover, the effects are likely to be mediated by direct cholinergic actions on both excitatory and inhibitory circuits in the inferior colliculus.
Collapse
Affiliation(s)
- William A. Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brett R. Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
15
|
Gillet C, Kurth S, Kuenzel T. Muscarinic modulation of M and h currents in gerbil spherical bushy cells. PLoS One 2020; 15:e0226954. [PMID: 31940388 PMCID: PMC6961914 DOI: 10.1371/journal.pone.0226954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Descending cholinergic fibers innervate the cochlear nucleus. Spherical bushy cells, principal neurons of the anterior part of the ventral cochlear nucleus, are depolarized by cholinergic agonists on two different time scales. A fast and transient response is mediated by alpha-7 homomeric nicotinic receptors while a slow and long-lasting response is mediated by muscarinic receptors. Spherical bushy cells were shown to express M3 receptors, but the receptor subtypes involved in the slow muscarinic response were not physiologically identified yet. Whole-cell patch clamp recordings combined with pharmacology and immunohistochemistry were performed to identify the muscarinic receptor subtypes and the effector currents involved. Spherical bushy cells also expressed both M1 and M2 receptors. The M1 signal was stronger and mainly somatic while the M2 signal was localized in the neuropil and on the soma of bushy cells. Physiologically, the M-current was observed for the gerbil spherical bushy cells and was inhibited by oxotremorine-M application. Surprisingly, long application of carbachol showed only a transient depolarization. Even though no muscarinic depolarization could be detected, the input resistance increased suggesting a decrease in the cell conductance that matched with the closure of M-channels. The hyperpolarization-activated currents were also affected by muscarinic activation and counteracted the effect of the inactivation of M-current on the membrane potential. We hypothesize that this double muscarinic action might allow adaptation of effects during long durations of cholinergic activation.
Collapse
Affiliation(s)
- Charlène Gillet
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Stefanie Kurth
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- * E-mail:
| |
Collapse
|
16
|
Kuenzel T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hear Res 2019; 384:107824. [DOI: 10.1016/j.heares.2019.107824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
|
17
|
Malinowski ST, Wolf J, Kuenzel T. Intrinsic and Synaptic Dynamics Contribute to Adaptation in the Core of the Avian Central Nucleus of the Inferior Colliculus. Front Neural Circuits 2019; 13:46. [PMID: 31379514 PMCID: PMC6646678 DOI: 10.3389/fncir.2019.00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The reduction of neuronal responses to repeated stimulus presentation occurs in many sensory neurons, also in the inferior colliculus of birds. The cellular mechanisms that cause response adaptation are not well described. Adaptation must be explicable by changes in the activity of input neurons, short-term synaptic plasticity of the incoming connections, excitability changes of the neuron under consideration or influences of inhibitory or modulatory network connections. Using whole-cell recordings in acute brain slices of the embryonic chicken brain we wanted to understand the intrinsic and synaptic contributions to adaptation in the core of the central nucleus of the inferior colliculus (ICCc). We described two neuron types in the chicken ICCc based on their action potential firing patterns: Phasic/onset neurons showed strong intrinsic adaptation but recovered more rapidly. Tonic/sustained firing neurons had weaker adaptation but often had additional slow components of recovery from adaptation. Morphological analysis suggested two neuron classes, but no physiological parameter aligned with this classification. Chicken ICCc neurons received mostly mixed AMPA- and NMDA-type glutamatergic synaptic inputs. In the majority of ICCc neurons the input synapses underwent short-term depression. With a simulation of the putative population output activity of the chicken ICCc we showed that the different adaptation profiles of the neuron classes could shift the emphasize of stimulus encoding from transients at long intervals to ongoing parts at short intervals. Thus, we report here that description of biophysical and synaptic properties can help to explain adaptive phenomena in central auditory neurons.
Collapse
Affiliation(s)
- Sebastian T Malinowski
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Jana Wolf
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Linker LA, Carlson L, Godfrey DA, Parli JA, Ross CD. Quantitative distribution of choline acetyltransferase activity in rat trapezoid body. Hear Res 2018; 370:264-271. [PMID: 30177425 PMCID: PMC6240496 DOI: 10.1016/j.heares.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 02/04/2023]
Abstract
There is evidence for a function of acetylcholine in the cochlear nucleus, primarily in a feedback, modulatory effect on auditory processing. Using a microdissection and quantitative microassay approach, choline acetyltransferase activity was mapped in the trapezoid bodies of rats, in which the activity is relatively higher than in cats or hamsters. Maps of series of sections through the trapezoid body demonstrated generally higher choline acetyltransferase activity rostrally than caudally, particularly in its portion ventral to the medial part of the spinal trigeminal tract. In the lateral part of the trapezoid body, near the cochlear nucleus, activities tended to be higher in more superficial portions than in deeper portions. Calculation of choline acetyltransferase activity in the total trapezoid body cross-section of a rat with a comprehensive trapezoid body map gave a value 3-4 times that estimated for the centrifugal labyrinthine bundle, which is mostly composed of the olivocochlear bundle, in the same rat. Comparisons with other rats suggest that the ratio may not usually be this high, but it is still consistent with our previous results suggesting that the centrifugal cholinergic innervation of the rat cochlear nucleus reaching it via a trapezoid body route is much higher than that reaching it via branches from the olivocochlear bundle. The higher choline acetyltransferase activity rostrally than caudally in the trapezoid body is consistent with evidence that the centrifugal cholinergic innervation of the cochlear nucleus derives predominantly from locations at or rostral to its anterior part, in the superior olivary complex and pontomesencephalic tegmentum.
Collapse
Affiliation(s)
- Lauren A Linker
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lissette Carlson
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Donald A Godfrey
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Judy A Parli
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - C David Ross
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
19
|
Robertson D, Mulders WHAM. Cholinergic responses of acoustically-characterized cochlear nucleus neurons: An in vivo iontophoretic study in Guinea pig. Hear Res 2018; 367:97-105. [PMID: 30081246 DOI: 10.1016/j.heares.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 11/27/2022]
Abstract
The responses of guinea pig cochlear nucleus neurons to in vivo iontophoretic application of various neurotransmitter agonists were recorded with extracellular multi-barrelled electrodes. Where possible, neurons were physiologically identified using strict criteria. Emphasis was placed on the action of cholinergic agonists in relation to the possible action of olivocochlear collateral innervation. Excitatory responses (increase in action potential firing) to glutamate were confirmed in a number of neuronal response types. Application of acetylcholine (ACh) or the broad spectrum cholinergic agonist carbachol produced reliable excitatory responses in about 47% of neurons (n = 29 out of 61 neurons). The remaining neurons were unresponsive to cholinergic agonists and no inhibitory responses were observed. Cholinergic responses were more common in dorsal cochlear nucleus (DCN) (73% of 30 neurons tested) than in ventral cochlear nucleus (VCN) (23% of 31 neurons). Of the total neuron sample in which cholinergic responses were investigated, 41 neurons were able to be categorized according to established acoustic response features. Excitatory responses to cholinergic agonists were seen in "Pauser-buildup" (Pb) and "Transient chopper" (Ct) response types. Primary-like neurons (PL and Pn) as well as "Onset chopper" (Oc) neurons (n = 6) were unresponsive to either ACh or carbachol. Oc neurons also did not show any effect on their acoustic responses. Robust cholinergic responses were also seen in several VCN and DCN neurons that were either unresponsive to sound, or had acoustic response properties that did not fit standard classification. The results suggest a relatively more robust cholinergic innervation of DCN compared to VCN. The excitatory cholinergic responses of some Ct neurons and the lack of effect on Oc neurons are consistent with previous results in mouse brain slice studies, but are in conflict with reports of medial olivocochlear collateral excitatory responses in onset-type neurons in vivo. The results also indicate that a number of neurons of unknown identity may also receive cholinergic input.
Collapse
Affiliation(s)
- Donald Robertson
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.
| | - Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia; Ear Science Institute Australia, 1/1 Salvado Rd, Subiaco, Western Australia, 6008, Australia
| |
Collapse
|
20
|
Gillet C, Goyer D, Kurth S, Griebel H, Kuenzel T. Cholinergic innervation of principal neurons in the cochlear nucleus of the Mongolian gerbil. J Comp Neurol 2018; 526:1647-1661. [DOI: 10.1002/cne.24433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Charlène Gillet
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| | - David Goyer
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan; Kresge Hearing Research Institute; Ann Arbor Michigan 48109
| | - Stefanie Kurth
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| | - Hannah Griebel
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| | - Thomas Kuenzel
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| |
Collapse
|
21
|
Keine C, Rübsamen R, Englitz B. Inhibition in the auditory brainstem enhances signal representation and regulates gain in complex acoustic environments. eLife 2016; 5. [PMID: 27855778 PMCID: PMC5148601 DOI: 10.7554/elife.19295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/17/2016] [Indexed: 12/30/2022] Open
Abstract
Inhibition plays a crucial role in neural signal processing, shaping and limiting responses. In the auditory system, inhibition already modulates second order neurons in the cochlear nucleus, e.g. spherical bushy cells (SBCs). While the physiological basis of inhibition and excitation is well described, their functional interaction in signal processing remains elusive. Using a combination of in vivo loose-patch recordings, iontophoretic drug application, and detailed signal analysis in the Mongolian Gerbil, we demonstrate that inhibition is widely co-tuned with excitation, and leads only to minor sharpening of the spectral response properties. Combinations of complex stimuli and neuronal input-output analysis based on spectrotemporal receptive fields revealed inhibition to render the neuronal output temporally sparser and more reproducible than the input. Overall, inhibition plays a central role in improving the temporal response fidelity of SBCs across a wide range of input intensities and thereby provides the basis for high-fidelity signal processing.
Collapse
Affiliation(s)
- Christian Keine
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Rudolf Rübsamen
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands
| |
Collapse
|