1
|
Sloan DC, Liao Y, Ray F, Muntean BS. The G protein modifier KCTD5 tunes the decoding of neuromodulatory signals necessary for motor function in striatal neurons. PLoS Biol 2025; 23:e3003117. [PMID: 40233107 PMCID: PMC12021292 DOI: 10.1371/journal.pbio.3003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 04/24/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
G proteins (Gα and Gβγ subtypes) drive adenylyl cyclase type 5 (AC5) synthesis of cAMP in striatal neurons, which is essential for motor coordination. KCTD5 directly interacts with Gβγ to delimit signaling events, yet downstream impact of KCTD5 in striatal circuits is not known. Here, generation of a conditional Kctd5 knockout mouse identified that loss of striatal KCTD5 leads to a dystonic phenotype, coordination deficits, and skewed transitions between behavioral syllables. 2-photon imaging of a cAMP biosensor revealed electrically evoked dopaminergic responses were significantly augmented in the absence of KCTD5 in striatal circuits. cAMP sensitization was rescued in situ by expression of a Gβγ-scavenging nanobody and motor deficits were partially rescued in vivo by pharmacological antagonism of the indirect striatal cAMP pathway. Therefore, KCTD5 acts as a brake on cAMP signaling in striatal neurons important for tuning dopaminergic signaling and motor coordination.
Collapse
Affiliation(s)
- Douglas C. Sloan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yini Liao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Forest Ray
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
2
|
Romeo D, Ramirez-Calero S, Ravasi T, Rodolfo-Metalpa R, Schunter C. Neural mechanisms of mutualistic fish cleaning behaviour: a study in the wild. Biol Lett 2024; 20:20240339. [PMID: 39406338 PMCID: PMC11479757 DOI: 10.1098/rsbl.2024.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
One crucial interaction for the health of fish communities in coral reefs is performed by cleaner fish by removing ectoparasites from the body of other fish, so-called clients. Studying the underlying mechanisms of this behaviour is essential to understanding how species react to social stimuli and defining the drivers of mutualistic social behaviour. Here, we pinpoint the neural molecular mechanisms in the cleaning behaviour of Labroides dimidiatus in the wild through an in situ interaction experiment at a coral reef in New Caledonia. Five cleaners and clients (Abudefduf saxatilis) were placed into underwater aquaria to interact, while five were not presented with a client. The brain transcriptomes revealed 233 differentially expressed genes in cleaners that were interacting with a client. Among these genes, grin2d, npy, slc6a3 and immediate early genes (IEGs; fosb and fosl1) were related to learning and memory, glutamate and dopamine pathways, which confirm molecular pathways observed in laboratory studies. However, a new potential mechanism was found with npy (neuropeptide Y) as a driver of feeding behaviour. These results show the role of neurotransmitters and IEGs in mutualistic social behaviour, unveiling the mechanism behind the feeding stimulus that leads the cleaner fish to establish mutualistic interactions in coral reefs.
Collapse
Affiliation(s)
- Daniele Romeo
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Sandra Ramirez-Calero
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 645, Barcelona08028, Spain
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | | | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
3
|
Kwon OH, Choe J, Kim D, Kim S, Moon C. Sensory Stimulation-dependent Npas4 Expression in the Olfactory Bulb during Early Postnatal Development. Exp Neurobiol 2024; 33:77-98. [PMID: 38724478 PMCID: PMC11089401 DOI: 10.5607/en23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024] Open
Abstract
The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dokyeong Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sunghwan Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Cheil Moon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
4
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Fischer DK, Krick KS, Han C, Woolf MT, Heller EA. Cocaine regulation of Nr4a1 chromatin bivalency and mRNA in male and female mice. Sci Rep 2022; 12:15735. [PMID: 36130958 PMCID: PMC9492678 DOI: 10.1038/s41598-022-19908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Cocaine epigenetically regulates gene expression via changes in histone post-translational modifications (HPTMs). We previously found that the immediate early gene Nr4a1 is epigenetically activated by cocaine in mouse brain reward regions. However, few studies have examined multiple HPTMs at a single gene. Bivalent gene promoters are simultaneously enriched in both activating (H3K4me3 (K4)) and repressive (H3K27me3 (K27)) HPTMs. As such, bivalent genes are lowly expressed but poised for activity-dependent gene regulation. In this study, we identified K4&K27 bivalency at Nr4a1 following investigator-administered cocaine in male and female mice. We applied sequential chromatin immunoprecipitation and qPCR to define Nr4a1 bivalency and expression in striatum (STR), prefrontal cortex (PFC), and hippocampus (HPC). We used Pearson's correlation to quantify relationships within each brain region across treatment conditions for each sex. In female STR, cocaine increased Nr4a1 mRNA while maintaining Nr4a1 K4&K27 bivalency. In male STR, cocaine enriched repressive H3K27me3 and K4&K27 bivalency at Nr4a1 and maintained Nr4a1 mRNA. Furthermore, cocaine epigenetically regulated a putative NR4A1 target, Cartpt, in male PFC. This study defined the epigenetic regulation of Nr4a1 in reward brain regions in male and female mice following cocaine, and, thus, shed light on the biological relevance of sex to cocaine use disorder.
Collapse
Affiliation(s)
- Delaney K Fischer
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keegan S Krick
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chloe Han
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan T Woolf
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Cirnaru MD, Song S, Tshilenge KT, Corwin C, Mleczko J, Galicia Aguirre C, Benlhabib H, Bendl J, Apontes P, Fullard J, Creus-Muncunill J, Reyahi A, Nik AM, Carlsson P, Roussos P, Mooney SD, Ellerby LM, Ehrlich ME. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. eLife 2021; 10:e65979. [PMID: 34609283 PMCID: PMC8492065 DOI: 10.7554/elife.65979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Many diseases are linked to dysregulation of the striatum. Striatal function depends on neuronal compartmentation into striosomes and matrix. Striatal projection neurons are GABAergic medium spiny neurons (MSNs), subtyped by selective expression of receptors, neuropeptides, and other gene families. Neurogenesis of the striosome and matrix occurs in separate waves, but the factors regulating compartmentation and neuronal differentiation are largely unidentified. We performed RNA- and ATAC-seq on sorted striosome and matrix cells at postnatal day 3, using the Nr4a1-EGFP striosome reporter mouse. Focusing on the striosome, we validated the localization and/or role of Irx1, Foxf2, Olig2, and Stat1/2 in the developing striosome and the in vivo enhancer function of a striosome-specific open chromatin region 4.4 Kb downstream of Olig2. These data provide novel tools to dissect and manipulate the networks regulating MSN compartmentation and differentiation, including in human iPSC-derived striatal neurons for disease modeling and drug discovery.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Justyna Mleczko
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Pasha Apontes
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ali M Nik
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mental Illness Research, Education, and Clinical Center (VISN 2 South)BronxUnited States
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
7
|
Shan W, Hu W, Wen Y, Ding X, Ma X, Yan W, Xia Y. Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reprod Toxicol 2021; 103:149-158. [PMID: 34146662 DOI: 10.1016/j.reprotox.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Atrazine is one of the widely used herbicides in the world and most of the current researches on atrazine neurodevelopment toxicity have focused on rodents or zebrafish models in vivo, resulting in relatively high cost, time consumption, and lower translational value to identify its hazard for the developing brain. Major international initiatives have pushed forward to convert the traditional animal-based developmental toxicity tests to in vitro assays using human cells to detect and predict chemical health hazards. In this study, we presented a human neural differentiation model based on human embryonic stem cells (hESC) that can be used to test toxicity at different stages of neural differentiation in vitro. hESC were differentiated into neural stem cells (NSC) and then terminally differentiated towards mixed neurons and glial cells for 21 days. Cell survival, proliferation, cell cycle, apoptosis, and gene expression levels were examined. Our results demonstrated that atrazine inhibited the proliferation of hESC and NSC, and showed different toxic sensitivity on these two kinds of cells. Also, atrazine blocked the NSC cell cycle G1 phase via down-regulating CCND1, CDK2, and CDK4, with no obvious effect on apoptosis. In addition, atrazine curbed EB spontaneous differentiation and NSC-induced neurons and glia cells differentiation. Atrazine altered genes expression levels of PAX6, TUBB3, NCAM1, GFAP, TH, NR4A1, and GRIA1. From the data we obtained, we recognized that the dopaminergic system was not the only target of atrazine neurotoxicity, glutamatergic neurons and astrocytes were also adversely affected.
Collapse
Affiliation(s)
- Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
8
|
Riluzole Administration to Rats with Levodopa-Induced Dyskinesia Leads to Loss of DNA Methylation in Neuronal Genes. Cells 2021; 10:cells10061442. [PMID: 34207710 PMCID: PMC8228416 DOI: 10.3390/cells10061442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson’s disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.
Collapse
|
9
|
Facilitating mGluR4 activity reverses the long-term deleterious consequences of chronic morphine exposure in male mice. Neuropsychopharmacology 2021; 46:1373-1385. [PMID: 33349673 PMCID: PMC8136479 DOI: 10.1038/s41386-020-00927-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.
Collapse
|
10
|
Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: the involvement of DNA methylation in the prefrontal cortex. Pain 2021; 162:514-530. [PMID: 32796318 PMCID: PMC7808350 DOI: 10.1097/j.pain.0000000000002031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT Chronic pain reduces life quality and is an important clinical problem associated with emotional and cognitive dysfunction. Epigenetic regulation of DNA methylation is involved in the induction of abnormal behaviors and pathological gene expression. We examined whether acupuncture can restore epigenetic changes caused by chronic pain, and identified the underlying mechanisms in neuropathic pain mice. Acupuncture treatment for 6 months (3 days/week) improved mechanical/cold allodynia and the emotional/cognitive dysfunction caused by left partial sciatic nerve ligation (PSNL)-induced neuropathic pain. The effects of acupuncture were associated with global DNA methylation recovery in the prefrontal cortex (PFC). Analysis of DNA methylation patterns in PFC indicated that 1364 overlapping genes among 4442 and 4416 methylated genes in the PSNL vs sham and PSNL vs acupuncture points groups, respectively, were highly associated with the DNA methylation process. Acupuncture restored the reduced expression of 5-methylcytosine, methyl-cytosine-phospho-guanine binding protein 2, and DNA methyltransferase family enzymes induced by PSNL in PFC. Methylation levels of Nr4a1 and Chkb associated with mitochondrial dysfunction were decreased in PFC of the PSNL mice, and increased by acupuncture. By contrast, high expression of Nr4a1 and Chkb mRNA in PSNL mice decreased after acupuncture. We also found that acupuncture inhibited the expression of Ras pathway-related genes such as Rasgrp1 and Rassf1. Finally, the expression of Nr4a1, Rasgrp1, Rassf1, and Chkb mRNA increased in the neuronal cells treated with Mecp2 small interfering RNA. These results suggest that acupuncture can relieve chronic pain-induced comorbid conditions by altering DNA methylation of Nr4a1, Rasgrp1, Rassf1, and Chkb in the PFC.
Collapse
|
11
|
Crittenden JR, Gipson TA, Smith AC, Bowden HA, Yildirim F, Fischer KB, Yim M, Housman DE, Graybiel AM. Striatal transcriptome changes linked to drug-induced repetitive behaviors. Eur J Neurosci 2021; 53:2450-2468. [PMID: 33759265 DOI: 10.1111/ejn.15116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Disruptive or excessive repetitive motor patterns (stereotypies) are cardinal symptoms in numerous neuropsychiatric disorders. Stereotypies are also evoked by psychomotor stimulants such as amphetamine. The acquisition of motor sequences is paralleled by changes in activity patterns in the striatum, and stereotypies have been linked to abnormal plasticity in these reinforcement-related circuits. Here, we designed experiments in mice to identify transcriptomic changes that underlie striatal plasticity occurring alongside the development of drug-induced stereotypic behavior. We identified three schedules of amphetamine treatment inducing different degrees of stereotypy and used bulk RNAseq to compare striatal gene expression changes among groups of mice treated with the different drug-dose schedules and vehicle-treated, cage-mate controls. Mice were identified as naïve, sensitized, or tolerant to drug-induced stereotypy. All drug-treated groups exhibited expression changes in genes that encode members of the extracellular signal-regulated kinase (ERK) cascades known to regulate psychomotor stimulant responses. In the sensitized group with the most prolonged stereotypy, we found dysregulation of 20 genes that were not changed in other groups. Gene set enrichment analysis indicated highly significant overlap with genes regulated by neuregulin 1 (Nrg1). Nrg1 is known to be a schizophrenia and autism susceptibility gene that encodes a ligand for Erb-B receptors, which are involved in neuronal migration, myelination, and cell survival, including that of dopamine-containing neurons. Stimulant abuse is a risk factor for schizophrenia onset, and these two disorders share behavioral stereotypy phenotypes. Our results raise the possibility that drug-induced sensitization of the Nrg1 signaling pathway might underlie these links.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theresa A Gipson
- Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hilary A Bowden
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle B Fischer
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Yim
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David E Housman
- Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Melis C, Beauvais G, Muntean BS, Cirnaru MD, Otrimski G, Creus-Muncunill J, Martemyanov KA, Gonzalez-Alegre P, Ehrlich ME. Striatal Dopamine Induced ERK Phosphorylation Is Altered in Mouse Models of Monogenic Dystonia. Mov Disord 2021; 36:1147-1157. [PMID: 33458877 DOI: 10.1002/mds.28476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Similar to some monogenic forms of dystonia, levodopa-induced dyskinesia is a hyperkinetic movement disorder with abnormal nigrostriatal dopaminergic neurotransmission. Molecularly, it is characterized by hyper-induction of phosphorylation of extracellular signal-related kinase in response to dopamine in medium spiny neurons of the direct pathway. OBJECTIVES The objective of this study was to determine if mouse models of monogenic dystonia exhibit molecular features of levodopa-induced dyskinesia. METHODS Western blotting and quantitative immunofluorescence was used to assay baseline and/or dopamine-induced levels of the phosphorylated kinase in the striatum in mouse models of DYT1, DYT6, and DYT25 expressing a reporter in dopamine D1 receptor-expressing projection neurons. Cyclic adenosine monophosphate (cAMP) immunoassay and adenylyl cyclase activity assays were also performed. RESULTS In DYT1 and DYT6 models, blocking dopamine reuptake with cocaine leads to enhanced extracellular signal-related kinase phosphorylation in dorsomedial striatal medium spiny neurons in the direct pathway, which is abolished by pretreatment with the N-methyl-d-aspartate antagonist MK-801. Phosphorylation is decreased in a model of DYT25. Levels of basal and stimulated cAMP and adenylyl cyclase activity were normal in the DYT1 and DYT6 mice and decreased in the DYT25 mice. Oxotremorine induced increased abnormal movements in the DYT1 knock-in mice. CONCLUSIONS The increased dopamine induction of extracellular signal-related kinase phosphorylation in 2 genetic types of dystonia, similar to what occurs in levodopa-induced dyskinesia, and its decrease in a third, suggests that abnormal signal transduction in response to dopamine in the postsynaptic nigrostriatal pathway might be a point of convergence for dystonia and other hyperkinetic movement disorders, potentially offering common therapeutic targets. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chiara Melis
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Genevieve Beauvais
- Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Garrett Otrimski
- Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Prager EM, Dorman DB, Hobel ZB, Malgady JM, Blackwell KT, Plotkin JL. Dopamine Oppositely Modulates State Transitions in Striosome and Matrix Direct Pathway Striatal Spiny Neurons. Neuron 2020; 108:1091-1102.e5. [PMID: 33080228 PMCID: PMC7769890 DOI: 10.1016/j.neuron.2020.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Corticostriatal synaptic integration is partitioned among striosome (patch) and matrix compartments of the dorsal striatum, allowing compartmentalized control of discrete aspects of behavior. Despite the significance of such organization, it's unclear how compartment-specific striatal output is dynamically achieved, particularly considering new evidence that overlap of afferents is substantial. We show that dopamine oppositely shapes responses to convergent excitatory inputs in mouse striosome and matrix striatal spiny projection neurons (SPNs). Activation of postsynaptic D1 dopamine receptors promoted the generation of long-lasting synaptically evoked "up-states" in matrix SPNs but opposed it in striosomes, which were more excitable under basal conditions. Differences in dopaminergic modulation were mediated, in part, by dendritic voltage-gated calcium channels (VGCCs): pharmacological manipulation of L-type VGCCs reversed compartment-specific responses to D1 receptor activation. These results support a novel mechanism for the selection of striatal circuit components, where fluctuating levels of dopamine shift the balance of compartment-specific striatal output.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Daniel B Dorman
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Zachary B Hobel
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA; Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Khan AA, Huat TJ, Al Mutery A, El-Serafi AT, Kacem HH, Abdallah SH, Reza MF, Abdullah JM, Jaafar H. Significant transcriptomic changes are associated with differentiation of bone marrow-derived mesenchymal stem cells into neural progenitor-like cells in the presence of bFGF and EGF. Cell Biosci 2020; 10:126. [PMID: 33133516 PMCID: PMC7594431 DOI: 10.1186/s13578-020-00487-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) isolated from bone marrow have different developmental origins, including neural crest. MSCs can differentiate into neural progenitor-like cells (NPCs) under the influence of bFGF and EGF. NPCs can terminally differentiate into neurons that express beta-III-tubulin and elicit action potential. The main aim of the study was to identify key genetic markers involved in differentiation of MSCs into NPCs through transcriptomic analysis. METHOD Total RNA was isolated from MSCs and MSCs-derived NPCs followed by cDNA library construction for transcriptomic analysis. Sample libraries that passed the quality and quantity assessments were subjected to high throughput mRNA sequencing using NextSeq®500. Differential gene expression analysis was performed using the DESeq2 R package with MSC samples being a reference group. The expression of eight differentially regulated genes was counter validated using real-time PCR. RESULTS In total, of the 3,252 differentially regulated genes between MSCs and NPCs with two or more folds, 1,771 were upregulated genes, whereas 1,481 were downregulated in NPCs. Amongst these differential genes, 104 transcription factors were upregulated, and 45 were downregulated in NPCs. Neurogenesis related genes were upregulated in NPCs and the main non-redundant gene ontology (GO) terms enriched in NPCs were the autonomic nervous system, cell surface receptor signalling pathways), extracellular structure organisation, and programmed cell death. The main non-redundant GO terms enriched in MSCs included cytoskeleton organisation cytoskeleton structural constituent, mitotic cell cycle), and the mitotic cell cycle process Gene set enrichment analysis also confirmed cell cycle regulated pathways as well as Biocarta integrin pathway were upregulated in MSCs. Transcription factors enrichment analysis by ChEA3 revealed Foxs1 and HEYL, amongst the top five transcription factors, inhibits and enhances, respectively, the NPCs differentiation of MSCs. CONCLUSIONS The vast differences in the transcriptomic profiles between NPCs and MSCs revealed a set of markers that can identify the differentiation stage of NPCs as well as provide new targets to enhance MSCs differentiation into NPCs.
Collapse
Affiliation(s)
- Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Tee Jong Huat
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Ahmed Taher El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, P.O. Box 581 83, Linköping, Sweden
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Sallam Hasan Abdallah
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Muhammed Faruque Reza
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Jafri Malin Abdullah
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
15
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|