1
|
Kumar Goothy SS, S Chouhan R, Raghavan RV, Ratajczak W, Watson S, Robinson R, Macias S, Mckeown J. A Randomized, Double Blind, Sham-Controlled Clinical Trial to Evaluate the Efficacy of Electrical Vestibular Nerve Stimulation (VeNS), Compared to a Sham Control for Generalized Anxiety Disorder. Clin EEG Neurosci 2025:15500594251328080. [PMID: 40129134 DOI: 10.1177/15500594251328080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Aims and Objectives: It has been hypothesised that vestibular stimulation may have a modulatory effect on anxiety. The aim of this randomised, double blind, sham-controlled trial was to determine the efficacy and safety of a non-invasive electrical vestibular nerve stimulation (VeNS) device as a treatment for anxiety compared to a sham stimulation device. Materials and methods: A total of 60 participants (mean age [SD]: 35.6 [8.1]) with a generalized anxiety disorder assessment (GAD-7) score of ≥10 were randomised to receive either an active VeNS device (n = 34) or a sham control device (n = 26). Both groups were asked to complete 20 stimulation sessions (30 min duration) at a rate of 3-5 sessions per week at a research clinic. The primary outcome was change in GAD-7 score from baseline to the end of study (when each participant finished their 20 stimulation sessions). Secondary outcomes were change in Insomnia Severity Index (ISI), and the Short Form 36 Health Survey (SF-36) scores (8 domains). Results: One participant allocated to the sham group withdrew from the study. The mean (SD) number of weeks it took to complete the 20 stimulation sessions was 5.8. The active group had a statistically greater reduction in GAD-7 score compared to the sham group (-7.4 versus -2.2, P < .001; respectively). A total of 97% (n = 33) of the active group achieved a clinically meaningful reduction (defined as ≥4-point reduction) in GAD-7 from baseline to the follow up visit compared to 24% (n = 6) of the sham group (P < .001). Additionally, the active group showed a significant improvement in ISI (-4.9 versus 2.2, P < .001) and greater improvements on all eight SF36 domains (P < .001) compared with the sham group. There was no device related reported adverse events. Conclusion: Regular non-invasive electrical vestibular nerve stimulation appears to have a clinically meaningful benefit when used as an intervention for Generalized Anxiety Disorder.
Collapse
Affiliation(s)
- Sai Sailesh Kumar Goothy
- Indian Center of Neurophysiology, Vizag, Andhra Pradesh, India
- Dr. Y.S.R University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Rohit S Chouhan
- Indian Center of Neurophysiology, Vizag, Andhra Pradesh, India
| | - R Vijaya Raghavan
- Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | | | | | | | | |
Collapse
|
2
|
Bagatelas ED, Kavalali ET. Chronic modulation of cAMP signaling elicits synaptic scaling irrespective of activity. iScience 2024; 27:110176. [PMID: 38989459 PMCID: PMC11233962 DOI: 10.1016/j.isci.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Homeostatic plasticity mechanisms act in a negative feedback manner to stabilize neuronal firing around a set point. Classically, homeostatic synaptic plasticity is elicited via rather drastic manipulation of activity in a neuronal population. Here, we employed a chemogenetic approach to regulate activity via eliciting G protein-coupled receptor (GPCR) signaling in hippocampal neurons to trigger homeostatic synaptic plasticity. We demonstrate that chronic activation of hM4D(Gi) signaling induces mild and transient activity suppression, yet still triggers synaptic upscaling akin to tetrodotoxin (TTX)-induced complete activity suppression. Therefore, this homeostatic regulation was irrespective of Gi-signaling regulation of activity, but it was mimicked or occluded by direct manipulation of cyclic AMP (cAMP) signaling in a manner that intersected with the retinoic acid receptor alpha (RARα) signaling pathway. Our data suggest chemogenetic tools can uniquely be used to probe cell-autonomous mechanisms of synaptic scaling and operate via direct modulation of second messenger signaling bypassing activity regulation.
Collapse
Affiliation(s)
- Elena D. Bagatelas
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37209, USA
| | - Ege T. Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
3
|
Fukata Y, Fukata M, MacGillavry HD, Nair D, Hosy E. Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles. J Neurosci 2024; 44:e2104232024. [PMID: 38839340 PMCID: PMC11154862 DOI: 10.1523/jneurosci.2104-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR5297, Bordeaux F-33000, France
| |
Collapse
|
4
|
Stokes E, Zhuang Y, Toledano M, Vasquez J, Azouz G, Hui M, Tyler I, Shi X, Aoto J, Beier KT. Cationic peptides erase memories by removing synaptic AMPA receptors through endophilin-mediated endocytosis. RESEARCH SQUARE 2023:rs.3.rs-3559525. [PMID: 38045269 PMCID: PMC10690331 DOI: 10.21203/rs.3.rs-3559525/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Administration of the Zeta Inhibitory Peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP). However, mice lacking its putative target, the protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making ZIP's mechanism unclear. Here, we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone. This effect was fully blocked by drugs that block macropinocytosis and is dependent on endophilin A2 (endoA2)-mediated endocytosis. ZIP and other cationic peptides selectively removed newly inserted AMPAR nanoclusters, providing a mechanism by which these peptides erase memories without effects on basal synaptic function. Lastly, cationic peptides can be administered locally and/or systemically and can be combined with local microinjection of macropinocytosis inhibitors to modulate memories on local and brain-wide scales. Our findings have critical implications for an entire field of memory mechanisms and highlight a previously unappreciated mechanism by which memories can be lost.
Collapse
Affiliation(s)
- Eric Stokes
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Michael Toledano
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Jose Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Ghalia Azouz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Isabella Tyler
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Jason Aoto
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA
| | - Kevin T. Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA 92697-4560
| |
Collapse
|
5
|
Rajeev P, Singh N, Kechkar A, Butler C, Ramanan N, Sibarita JB, Jose M, Nair D. Nanoscale regulation of Ca2+ dependent phase transitions and real-time dynamics of SAP97/hDLG. Nat Commun 2022; 13:4236. [PMID: 35869063 PMCID: PMC9307800 DOI: 10.1038/s41467-022-31912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Synapse associated protein-97/Human Disk Large (SAP97/hDLG) is a conserved, alternatively spliced, modular, scaffolding protein critical in regulating the molecular organization of cell-cell junctions in vertebrates. We confirm that the molecular determinants of first order phase transition of SAP97/hDLG is controlled by morpho-functional changes in its nanoscale organization. Furthermore, the nanoscale molecular signatures of these signalling islands and phase transitions are altered in response to changes in cytosolic Ca2+. Additionally, exchange kinetics of alternatively spliced isoforms of the intrinsically disordered region in SAP97/hDLG C-terminus shows differential sensitivities to Ca2+ bound Calmodulin, affirming that the molecular signatures of local phase transitions of SAP97/hDLG depends on their nanoscale heterogeneity and compositionality of isoforms. SAP97/hDLG is a ubiquitous, alternatively spliced, and conserved modular scaffolding protein involved in the organization cell junctions and excitatory synapses. Here, authors confirm that SAP97/hDLG condenses in to nanosized molecular domains in both heterologous cells and hippocampal pyramidal neurons. Authors demonstrate that in vivo and in vitro condensation, molecular signatures of nanoscale condensates and exchange kinetics of SAP97/hDLG is modulated by the local availability of alternatively spliced isoforms. Additionally, SAP97/hDLG isoforms exhibits a differential sensitivity to Ca2+ bound Calmodulin, resulting in altered properties of nanocondensates and their real-time regulation
Collapse
|
6
|
Speranza L, Filiz KD, Goebel S, Perrone-Capano C, Pulcrano S, Volpicelli F, Francesconi A. Combined DiI and Antibody Labeling Reveals Complex Dysgenesis of Hippocampal Dendritic Spines in a Mouse Model of Fragile X Syndrome. Biomedicines 2022; 10:2692. [PMID: 36359212 PMCID: PMC9687937 DOI: 10.3390/biomedicines10112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kardelen Dalım Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah Goebel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
7
|
Abstract
Immunolabeling of surface AMPA receptors (AMPARs) can be used for in vivo or ex vivo examination of synaptic scaling, a type of homeostatic plasticity. Here, we present a protocol to analyze changes in synaptic weights using immunohistochemistry for surface AMPARs coupled with optical imaging analysis. We detail immunostaining of AMPARs in mouse brain sections, followed by confocal imaging of surface AMPARs in dendritic region of hippocampal CA1. We then describe using Fiji/ImageJ and rank order plots for analyzing synaptic weight. For complete details on the use and execution of this protocol, please refer to Suzuki et al. (2021).
Collapse
Affiliation(s)
- Kanzo Suzuki
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ege T. Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Lisa M. Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Sun SY, Li XW, Cao R, Zhao Y, Sheng N, Tang AH. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development. Front Synaptic Neurosci 2022; 14:748184. [PMID: 35685244 PMCID: PMC9171000 DOI: 10.3389/fnsyn.2022.748184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons. We found that volumes of synaptic clusters and their subsynaptic heterogeneity increase as synapses get matured. Synapse sizes of presynaptic and postsynaptic compartments correlated well at all stages, while only more mature synapses demonstrated a significant correlation between presynaptic and postsynaptic nano-organizations. After a long incubation with an inhibitor of action potentials or AMPA receptors, both presynaptic and postsynaptic compartments showed increased synaptic cluster volume and subsynaptic heterogeneity; however, the trans-synaptic alignment was intact. Together, our results characterize the evolvement of subsynaptic protein architectures during development and demonstrate that the nanocolumn is organized more likely by an intrinsic mechanism and independent of synaptic activities.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Wei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ai-Hui Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
9
|
Wu CH, Tatavarty V, Jean Beltran PM, Guerrero AA, Keshishian H, Krug K, MacMullan MA, Li L, Carr SA, Cottrell JR, Turrigiano GG. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. eLife 2022; 11:e74277. [PMID: 35471151 PMCID: PMC9084893 DOI: 10.7554/elife.74277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Homeostatic synaptic plasticity requires widespread remodeling of synaptic signaling and scaffolding networks, but the role of post-translational modifications in this process has not been systematically studied. Using deep-scale quantitative analysis of the phosphoproteome in mouse neocortical neurons, we found widespread and temporally complex changes during synaptic scaling up and down. We observed 424 bidirectionally modulated phosphosites that were strongly enriched for synapse-associated proteins, including S1539 in the autism spectrum disorder-associated synaptic scaffold protein Shank3. Using a parallel proteomic analysis performed on Shank3 isolated from rat neocortical neurons by immunoaffinity, we identified two sites that were persistently hypophosphorylated during scaling up and transiently hyperphosphorylated during scaling down: one (rat S1615) that corresponded to S1539 in mouse, and a second highly conserved site, rat S1586. The phosphorylation status of these sites modified the synaptic localization of Shank3 during scaling protocols, and dephosphorylation of these sites via PP2A activity was essential for the maintenance of synaptic scaling up. Finally, phosphomimetic mutations at these sites prevented scaling up but not down, while phosphodeficient mutations prevented scaling down but not up. These mutations did not impact baseline synaptic strength, indicating that they gate, rather than drive, the induction of synaptic scaling. Thus, an activity-dependent switch between hypo- and hyperphosphorylation at S1586 and S1615 of Shank3 enables scaling up or down, respectively. Collectively, our data show that activity-dependent phosphoproteome dynamics are important for the functional reconfiguration of synaptic scaffolds and can bias synapses toward upward or downward homeostatic plasticity.
Collapse
Affiliation(s)
- Chi-Hong Wu
- Department of Biology, Brandeis UniversityWalthamUnited States
| | | | | | | | - Hasmik Keshishian
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Karsten Krug
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Melanie A MacMullan
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Li Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | | |
Collapse
|
10
|
Dastidar SG, Nair D. A Ribosomal Perspective on Neuronal Local Protein Synthesis. Front Mol Neurosci 2022; 15:823135. [PMID: 35283723 PMCID: PMC8904363 DOI: 10.3389/fnmol.2022.823135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Continued mRNA translation and protein production are critical for various neuronal functions. In addition to the precise sorting of proteins from cell soma to distant locations, protein synthesis allows a dynamic remodeling of the local proteome in a spatially variable manner. This spatial heterogeneity of protein synthesis is shaped by several factors such as injury, guidance cues, developmental cues, neuromodulators, and synaptic activity. In matured neurons, thousands of synapses are non-uniformly distributed throughout the dendritic arbor. At any given moment, the activity of individual synapses varies over a wide range, giving rise to the variability in protein synthesis. While past studies have primarily focused on the translation factors or the identity of translated mRNAs to explain the source of this variation, the role of ribosomes in this regard continues to remain unclear. Here, we discuss how several stochastic mechanisms modulate ribosomal functions, contributing to the variability in neuronal protein expression. Also, we point out several underexplored factors such as local ion concentration, availability of tRNA or ATP during translation, and molecular composition and organization of a compartment that can influence protein synthesis and its variability in neurons.
Collapse
|
11
|
Bhandari A, Ward TW, Smith J, Van Hook MJ. Structural and functional plasticity in the dorsolateral geniculate nucleus of mice following bilateral enucleation. Neuroscience 2022; 488:44-59. [PMID: 35131394 PMCID: PMC8960354 DOI: 10.1016/j.neuroscience.2022.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
Within the nervous system, plasticity mechanisms attempt to stabilize network activity following disruption by injury, disease, or degeneration. Optic nerve injury and age-related diseases can induce homeostatic-like responses in adulthood. We tested this possibility in the thalamocortical (TC) neurons in the dorsolateral geniculate nucleus (dLGN) using patch-clamp electrophysiology, optogenetics, immunostaining, and single-cell dendritic analysis following loss of visual input via bilateral enucleation. We observed progressive loss of vGlut2-positive retinal terminals in the dLGN indicating degeneration post-enucleation that was coincident with changes in microglial morphology indicative of microglial activation. Consistent with the decline of vGlut2 puncta, we also observed loss of retinogeniculate (RG) synaptic function assessed using optogenetic activation of RG axons while performing whole-cell voltage clamp recordings from TC neurons in brain slices. Surprisingly, we did not detect any significant changes in the frequency of miniature post-synaptic currents (mEPSCs) or corticothalamic feedback synapses. Analysis of TC neuron dendritic structure from single-cell dye fills revealed a gradual loss of dendrites proximal to the soma, where TC neurons receive the bulk of RG inputs. Finally, analysis of action potential firing demonstrated that TC neurons have increased excitability following enucleation, firing more action potentials in response to depolarizing current injections. Our findings show that degeneration of the retinal axons/optic nerve and loss of RG synaptic inputs induces structural and functional changes in TC neurons, consistent with neuronal attempts at compensatory plasticity in the dLGN.
Collapse
|
12
|
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Lordkipanidze T. Aging affects cognition and hippocampal ultrastructure in male Wistar rats. Dev Neurobiol 2021; 81:833-846. [PMID: 34047044 DOI: 10.1002/dneu.22839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
It is now well established that aging is associated with emotional and cognitive changes. Although the basis of such changes is not fully understood, ultrastructural alterations in key brain areas are likely contributing factors. Recently, we reported that aging-related anxiety in male Wistar rats is associated with ultrastructural changes in the central nucleus of amygdala, an area that plays important role in emotional regulation. In this study, we evaluated the cognitive performance of adolescent, adult, and aged male Wistar rats in multi-branch maze (MBM) as well as in Morris water maze (MWM). We also performed ultrastructural analysis of the CA1 region of the hippocampus, an area intimately involved in cognitive function. The behavioral data indicate significant impairments in few indices of cognitive functions in both tests in aged rats compared to the other two age groups. Concomitantly, a total number of presynaptic vesicles as well as vesicles in the resting pool were significantly lower, whereas postsynaptic mitochondrial area was significantly higher in aged rats compared to the other age groups. No significant differences in presynaptic terminal area or postsynaptic mitochondrial number were detected between the three age groups. These results indicate that selective ultrastructural changes in specific hippocampal region may accompany cognitive decline in aging rats.
Collapse
Affiliation(s)
- Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology Howard, University College of Medicine, Washington, District of Columbia, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
13
|
Kedia S, Ramanan N, Nair D. Quantifying molecular aggregation by super resolution microscopy within an excitatory synapse from mouse hippocampal neurons. STAR Protoc 2021; 2:100470. [PMID: 33937876 PMCID: PMC8076707 DOI: 10.1016/j.xpro.2021.100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Super-resolution microscopy (SRM) has been widely adopted to probe molecular distribution at excitatory synapses. We present an SRM paradigm to evaluate the nanoscale organization heterogeneity between neuronal subcompartments. Using mouse hippocampal neurons, we describe the identification of the morphological characteristics of nanodomains within functional zones of a single excitatory synapse. This information can be used to correlate structure and function at molecular resolution in single synapses. The protocol can be applied to immunocytochemical/histochemical samples across different imaging paradigms. For complete details on the use and execution of this protocol, please refer to Kedia et al. (2021).
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | | | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Fan XY, Shi G, Zhao P. Neonatal Sevoflurane Exposure Impairs Learning and Memory by the Hypermethylation of Hippocampal Synaptic Genes. Mol Neurobiol 2021; 58:895-904. [PMID: 33052583 DOI: 10.1007/s12035-020-02161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Sevoflurane anesthesia is widely used in pediatric patients. Clinical studies report memory impairment in those exposed to general anesthesia early in life. DNA methylation is essential for the modulation of synaptic plasticity through regulating the transcription of synaptic genes. Therefore, we tested whether neonatal sevoflurane exposure affects learning and memory underlying the hippocampal DNA methylation of synaptic genes. Male Sprague-Dawley rats were exposed to 3% sevoflurane or air for 2 h daily from postnatal day 7 (P7) to P9. 5-aza-2-deoxycytidine (5-AZA), an inhibitor of DNA methyltransferases (DNMTs), was intraperitoneally injected 30 min before sevoflurane or air exposure on P7-9. The rats were euthanized 6, 12, 24 h, and 28 days after the last sevoflurane exposure, followed by the determination of global and gene-specific DNA methylation. The expression of synaptic proteins and synaptic density and the transcription of Dnmts and ten eleven translocations (Tets) in the hippocampus were measured. The ability of learning and memory was assessed using Morris water maze, novel object recognition, and intruder tests. Repeated neonatal sevoflurane exposure impaired cognitive, social, and spatial memory. The memory impairment was associated with the increased Dnmt1, Dnmt3a, and 5-methylcytosine level and the decreased Tet1 and 5-hydromethylcytosine level. Sevoflurane subsequently induced hypermethylation of Shank2, Psd95, Syn1, and Syp gene and down-regulated the expression of synaptic proteins, which finally led to the decrease of synaptic density in a time-dependent manner. Notably, 5-AZA pretreatment ameliorated learning and memory in sevoflurane-treated rats. In conclusion, neonatal exposure to sevoflurane can impair learning and memory through DNA methylation of synaptic genes.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Guang Shi
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
15
|
Ravalia AS, Lau J, Barron JC, Purchase SLM, Southwell AL, Hayden MR, Nafar F, Parsons MP. Super-resolution imaging reveals extrastriatal synaptic dysfunction in presymptomatic Huntington disease mice. Neurobiol Dis 2021; 152:105293. [PMID: 33556538 DOI: 10.1016/j.nbd.2021.105293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptic structure and function are compromised prior to cell death and symptom onset in a variety of neurodegenerative diseases. In Huntington disease (HD), a CAG repeat expansion in the gene encoding the huntingtin protein results in a presymptomatic stage that typically spans multiple decades and is followed by striking degeneration of striatal tissue and the progression of debilitating motor symptoms. Many lines of evidence demonstrate that the HD presymptomatic window is associated with injurious effects to striatal synapses, many of which appear to be prerequisites to subsequent cell death. While the striatum is the most vulnerable region in the HD brain, it is widely recognized that HD is a brain-wide disease, affecting numerous extrastriatal regions that contribute to debilitating non-motor symptoms including cognitive dysfunction. Currently, we have a poor understanding of the synaptic integrity, or lack thereof, in extrastriatal regions in the presymptomatic HD brain. If early therapeutic intervention seeks to maintain healthy synaptic function, it is important to understand early HD-associated synaptopathy at a brain-wide, rather than striatal-exclusive, level. Here, we focused on the hippocampus as this structure is generally thought to be affected only in manifest HD despite the subtle cognitive deficits known to emerge in prodromal HD. We used super-resolution microscopy and multi-electrode array electrophysiology as sensitive measures of excitatory synapse structure and function, respectively, in the hippocampus of presymptomatic heterozygous HD mice (Q175FDN model). We found clear evidence for enhanced AMPA receptor subunit clustering and hyperexcitability well before the onset of a detectable HD-like behavioral phenotype. In addition, activity-dependent re-organization of synaptic protein nanostructure, and functional measures of synaptic plasticity were impaired in presymptomatic HD mice. These data demonstrate that synaptic abnormalities in the presymptomatic HD brain are not exclusive to the striatum, and highlight the need to better understand the region-dependent complexities of early synaptopathy in the HD brain.
Collapse
Affiliation(s)
- Adam S Ravalia
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - James Lau
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Jessica C Barron
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Stephanie L M Purchase
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Amber L Southwell
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Firoozeh Nafar
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Matthew P Parsons
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
16
|
Kedia S, Ramakrishna P, Netrakanti PR, Singh N, Sisodia SS, Jose M, Kumar S, Mahadevan A, Ramanan N, Nadkarni S, Nair D. Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease. iScience 2020; 24:101924. [PMID: 33409475 PMCID: PMC7773964 DOI: 10.1016/j.isci.2020.101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite intuitive insights into differential proteolysis of amyloid precursor protein (APP), the stochasticity behind local product formation through amyloidogenic pathway at individual synapses remain unclear. Here, we show that the major components of amyloidogenic machinery namely, APP and secretases are discretely organized into nanodomains of high local concentration compared to their immediate environment in functional zones of the synapse. Additionally, with the aid of multiple models of Alzheimer's disease (AD), we confirm that this discrete nanoscale chemical map of amyloidogenic machinery is altered at excitatory synapses. Furthermore, we provide realistic models of amyloidogenic processing in unitary vesicles originating from the endocytic zone of excitatory synapses. Thus, we show how an alteration in the stochasticity of synaptic nanoscale organization contributes to the dynamic range of C-terminal fragments β (CTFβ) production, defining the heterogeneity of amyloidogenic processing at individual synapses, leading to long-term synaptic deficits as seen in AD. Components of amyloidogenic machinery are organized into nanodomains Assembly of nanodomains differs between functional zones of the synapse Stochasticity of nanoscale organization dictates dynamic range of APP proteolysis Variability in composition of amyloidogenic machinery is associated with AD
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sangram S Sisodia
- Center for Molecular Neurobiology, Department of Neurobiology, The University of Chicago, IL 60637, USA
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sathish Kumar
- Department of Neurology, University of Bonn, Bonn 53127, Germany
| | - Anita Mahadevan
- Department of Neuropathology, NIMHANS, Bangalore 560029, India
| | | | - Suhita Nadkarni
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Gasimov E. Age‐related behavioral and ultrastructural changes in the rat amygdala. Dev Neurobiol 2020; 80:433-442. [DOI: 10.1002/dneu.22788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Nino Lomidze
- School of Life Sciences and Medicine Ilia State University Tbilisi GA USA
| | - Mzia G. Zhvania
- School of Life Sciences and Medicine Ilia State University Tbilisi GA USA
- Department of Brain Ultrastructure and Nanoarchitecture Ivane Beritashvili Center of Experimental Biomedicine Tbilisi GA USA
| | - Yousef Tizabi
- Department of Pharmacology Howard University College of Medicine Washington DC USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture Ivane Beritashvili Center of Experimental Biomedicine Tbilisi GA USA
- Medical School New Vision University Tbilisi Georgia
| | - Nino Pochkhidze
- Department of Brain Ultrastructure and Nanoarchitecture Ivane Beritashvili Center of Experimental Biomedicine Tbilisi GA USA
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology Azerbaijan Medical University Baku Baku Azerbaijan
| | - Eldar Gasimov
- Department of Histology, Embryology and Cytology Azerbaijan Medical University Baku Baku Azerbaijan
| |
Collapse
|