1
|
Hussein MN. Labeling of the serotonergic neuronal circuits emerging from the raphe nuclei via some retrograde tracers. Microsc Res Tech 2024; 87:2894-2914. [PMID: 39041701 DOI: 10.1002/jemt.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter emerging from the raphe nuclei to several brain regions. Serotonergic neuronal connectivity has multiple functions in the brain. In this study, several techniques were used to trace serotonergic neurons in the dorsal raphe (DR) and median raphe (MnR) that project toward the arcuate nucleus of the hypothalamus (Arc), dorsomedial hypothalamic nucleus (DM), lateral hypothalamic area (LH), paraventricular hypothalamic nucleus (PVH), ventromedial hypothalamic nucleus (VMH), fasciola cinereum (FC), and medial habenular nucleus (MHb). Cholera toxin subunit B (CTB), retro-adeno-associated virus (rAAV-CMV-mCherry), glycoprotein-deleted rabies virus (RV-ΔG), and simultaneous microinjection of rAAV2-retro-Cre-tagBFP with AAV-dio-mCherry in C57BL/6 mice were used in this study. In addition, rAAV2-retro-Cre-tagBFP was microinjected into Ai9 mice. Serotonin immunohistochemistry was used for the detection of retrogradely traced serotonergic neurons in the raphe nuclei. The results indicated that rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice was the best method for tracing serotonergic neuron circuits. All of the previously listed nuclei exhibited serotonergic neuronal projections from the DR and MnR, with the exception of the FC, which had very few projections from the DR. The serotonergic neuronal projections were directed toward the Arc by the subpeduncular tegmental (SPTg) nuclei. Moreover, the RV-ΔG tracer revealed monosynaptic non-serotonergic neuronal projections from the DR that were directed toward the Arc. Furthermore, rAAV tracers revealed monosynaptic serotonergic neuronal connections from the raphe nuclei toward Arc. These findings validate the variations in neurotropism among several retrograde tracers. The continued discovery of several novel serotonergic neural circuits is crucial for the future discovery of the functions of these circuits. RESEARCH HIGHLIGHTS: Various kinds of retrograde tracers were microinjected into C57BL/6 and Ai9 mice. The optimum method for characterizing serotonergic neuronal circuits is rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice. The DR, MnR, and SPTg nuclei send monosynaptic serotonergic neuronal projections toward the arcuate nucleus of the hypothalamus. Whole-brain quantification analysis of retrograde-labeled neurons in different brain nuclei following rAAV2-retro-Cre-tagBFP microinjection in the Arc, DM, LH, and VMH is shown. Differential quantitative analysis of median and dorsal raphe serotonergic neurons emerging toward the PVH, DM, LH, Arc, VMH, MHb, and FC is shown.
Collapse
Affiliation(s)
- Mona N Hussein
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Histology and Cytology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
2
|
Howard L, Ishikawa Y, Katayama T, Park SJ, Hill MJ, Blake DJ, Nishida K, Hayashi R, Quantock AJ. Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages. Commun Biol 2024; 7:1495. [PMID: 39532995 PMCID: PMC11557866 DOI: 10.1038/s42003-024-07130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The generation of a self-formed, ectodermal, autonomous multi-zone (SEAM) from human induced pluripotent stem cells (hiPSCs) offers a unique perspective to study the dynamics of ocular cell differentiation over time. Here, by utilising single-cell transcriptomics, we have (i) identified, (ii) molecularly characterised and (iii) ascertained the developmental trajectories of ectodermally-derived ocular cell populations which emerge within SEAMs as they form. Our analysis reveals interdependency between tissues of the early eye and delineates the sequential formation and maturation of distinct cell types over a 12-week period. We demonstrate a progression from pluripotency through to tissue specification and differentiation which encompasses both surface ectodermal and neuroectodermal ocular lineages and the generation of iPSC-derived components of the developing cornea, conjunctiva, lens, and retina. Our findings not only advance the understanding of ocular development in a stem cell-based system of human origin, but also establish a robust methodological paradigm for exploring cellular and molecular dynamics during SEAM formation at single-cell resolution and highlight the potential of hiPSC-derived systems as powerful platforms for modelling human eye development and disease.
Collapse
Affiliation(s)
- Laura Howard
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Yuki Ishikawa
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiko Katayama
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sung-Joon Park
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Matthew J Hill
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Derek J Blake
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
3
|
Michel L, Molina P, Mameli M. The behavioral relevance of a modular organization in the lateral habenula. Neuron 2024; 112:2669-2685. [PMID: 38772374 DOI: 10.1016/j.neuron.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Behavioral strategies for survival rely on the updates the brain continuously makes based on the surrounding environment. External stimuli-neutral, positive, and negative-relay core information to the brain, where a complex anatomical network rapidly organizes actions, including approach or escape, and regulates emotions. Human neuroimaging and physiology in nonhuman primates, rodents, and teleosts suggest a pivotal role of the lateral habenula in translating external information into survival behaviors. Here, we review the literature describing how discrete habenular modules-reflecting the molecular signatures, anatomical connectivity, and functional components-are recruited by environmental stimuli and cooperate to prompt specific behavioral outcomes. We argue that integration of these findings in the context of valence processing for reinforcing or discouraging behaviors is necessary, offering a compelling model to guide future work.
Collapse
Affiliation(s)
- Leo Michel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Patricia Molina
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
4
|
Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, Tan Y, Duan C, Li H, Huang H, Li Y, Cao X, Lingle CJ, Yang Y, Hu H. Brain region-specific action of ketamine as a rapid antidepressant. Science 2024; 385:eado7010. [PMID: 39116252 PMCID: PMC11665575 DOI: 10.1126/science.ado7010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Ketamine has been found to have rapid and potent antidepressant activity. However, despite the ubiquitous brain expression of its molecular target, the N-methyl-d-aspartate receptor (NMDAR), it was not clear whether there is a selective, primary site for ketamine's antidepressant action. We found that ketamine injection in depressive-like mice specifically blocks NMDARs in lateral habenular (LHb) neurons, but not in hippocampal pyramidal neurons. This regional specificity depended on the use-dependent nature of ketamine as a channel blocker, local neural activity, and the extrasynaptic reservoir pool size of NMDARs. Activating hippocampal or inactivating LHb neurons swapped their ketamine sensitivity. Conditional knockout of NMDARs in the LHb occluded ketamine's antidepressant effects and blocked the systemic ketamine-induced elevation of serotonin and brain-derived neurotrophic factor in the hippocampus. This distinction of the primary versus secondary brain target(s) of ketamine should help with the design of more precise and efficient antidepressant treatments.
Collapse
Affiliation(s)
- Min Chen
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Shuangshuang Ma
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Hanxiao Liu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yiyan Dong
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jingxiang Tang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chenchi Duan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200433, China
| | - Hui Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hefeng Huang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai 200062, China
| | - Christopher J. Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Yan Yang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
5
|
Nguyen TVT, Nakamura T, Ichijo H. Topographic Organization of Glutamatergic and GABAergic Parvalbumin-Positive Neurons in the Lateral Habenula. eNeuro 2024; 11:ENEURO.0069-24.2024. [PMID: 38960707 PMCID: PMC11255393 DOI: 10.1523/eneuro.0069-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Parvalbumin-expressing (PV) neurons, classified by their expression of the calcium-binding protein parvalbumin, play crucial roles in the function and plasticity of the lateral habenular nucleus (LHb). This study aimed to deepen our understanding of the LHb by collecting information about the heterogeneity of LHb PV neurons in mice. To achieve this, we investigated the proportions of the transmitter machinery in LHb PV neurons, including GABAergic, glutamatergic, serotonergic, cholinergic, and dopaminergic neurotransmitter markers, using transcriptome analysis, mRNA in situ hybridization chain reaction, and immunohistochemistry. LHb PV neurons comprise three subsets: glutamatergic, GABAergic, and double-positive for glutamatergic and GABAergic machinery. By comparing the percentages of the subsets, we found that the LHb was topographically organized anteroposteriorly; the GABAergic and glutamatergic PV neurons were preferentially distributed in the anterior and posterior LHb, respectively, uncovering the anteroposterior topography of the LHb. In addition, we confirmed the mediolateral topography of lateral GABAergic PV neurons. These findings suggest that PV neurons play distinct roles in different parts of the LHb along the anteroposterior and mediolateral axes, facilitating the topographic function of the LHb. It would be interesting to determine whether their topography is differentially involved in various cognitive and motivational processes associated with the LHb, particularly the involvement of posterior glutamatergic PV neurons.
Collapse
Affiliation(s)
- Thi Van Trang Nguyen
- Department of Anatomy, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tomoya Nakamura
- Department of Anatomy, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
6
|
Harding EK, Zhang Z, Canet-Pons J, Stokes-Heck S, Trang T, Zamponi GW. Expression of GAD2 in excitatory neurons projecting from the ventrolateral periaqueductal gray to the locus coeruleus. iScience 2024; 27:109972. [PMID: 38868198 PMCID: PMC11166693 DOI: 10.1016/j.isci.2024.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
The ventrolateral periaqueductal gray (vlPAG) functionally projects to diverse brain regions, including the locus coeruleus (LC). Excitatory projections from the vlPAG to the LC are well described, while few studies have indicated the possibility of inhibitory projections. Here, we quantified the relative proportion of excitatory and inhibitory vlPAG-LC projections in male and female mice, and found an unexpected overlapping population of neurons expressing both GAD2 and VGLUT2. Combined in vitro optogenetic stimulation and electrophysiology of LC neurons revealed that vlPAG neurons expressing channelrhodopsin-2 under the GAD2 promoter release both GABA and glutamate. Subsequent experiments identified a population of GAD2+/VGLUT2+ vlPAG neurons exclusively releasing glutamate onto LC neurons. Altogether, we demonstrate that ∼25% of vlPAG-LC projections are inhibitory, and that there is a significant GAD2 expressing population of glutamatergic projections. Our findings have broad implications for the utility of GAD2-Cre lines within midbrain and brainstem regions, and especially within the PAG.
Collapse
Affiliation(s)
- Erika K. Harding
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zizhen Zhang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Julia Canet-Pons
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Groos D, Helmchen F. The lateral habenula: A hub for value-guided behavior. Cell Rep 2024; 43:113968. [PMID: 38522071 DOI: 10.1016/j.celrep.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.
Collapse
Affiliation(s)
- Dominik Groos
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
9
|
Green MV, Gallegos DA, Boua JV, Bartelt LC, Narayanan A, West AE. Single-Nucleus Transcriptional Profiling of GAD2-Positive Neurons From Mouse Lateral Habenula Reveals Distinct Expression of Neurotransmission- and Depression-Related Genes. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:686-697. [PMID: 37881543 PMCID: PMC10593960 DOI: 10.1016/j.bpsgos.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 10/27/2023] Open
Abstract
Background Glutamatergic projection neurons of the lateral habenula (LHb) drive behavioral state modulation by regulating the activity of midbrain monoaminergic neurons. Identifying circuit mechanisms that modulate LHb output is of interest for understanding control of motivated behaviors. Methods A small population of neurons within the medial subnucleus of the mouse LHb express the GABAergic (gamma-aminobutyric acidergic)-synthesizing enzyme GAD2, and they can inhibit nearby LHb projection neurons; however, these neurons lack markers of classic inhibitory interneurons, and they coexpress the vesicular glutamate transporter VGLUT2. To determine the molecular phenotype of these neurons, we genetically tagged the nuclei of GAD2-positive cells and used fluorescence-activated nuclear sorting to isolate and enrich these nuclei for single-nucleus RNA sequencing. Results Our data confirm that GAD2+/VGLUT2+ neurons intrinsic to the LHb coexpress markers of both glutamatergic and GABAergic transmission and that they are transcriptionally distinct from either GABAergic interneurons or habenular glutamatergic neurons. We identify gene expression programs within these cells that show sex-specific differences in expression and that are implicated in major depressive disorder, which has been linked to LHb hyperactivity. Finally, we identify the Ntng2 gene encoding the cell adhesion protein netrin-G2 as a marker of LHb GAD2+/VGLUT2+ neurons and a gene product that may contribute to their target projections. Conclusions These data show the value of using genetic enrichment of rare cell types for transcriptome studies, and they advance understanding of the molecular composition of a functionally important class of GAD2+ neurons in the LHb.
Collapse
Affiliation(s)
- Matthew V. Green
- Department of Neurobiology, Duke University, Durham, North Carolina
| | | | | | - Luke C. Bartelt
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Arthy Narayanan
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Anne E. West
- Department of Neurobiology, Duke University, Durham, North Carolina
| |
Collapse
|
10
|
Song B, Zhang Y, Xiong G, Luo H, Zhang B, Li Y, Wang Z, Zhou Z, Chang X. Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation. Cell Biol Toxicol 2023; 39:1697-1713. [PMID: 36114956 DOI: 10.1007/s10565-022-09775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Cadmium (Cd) is an extensively existing environmental pollutant that has neurotoxic effects. However, the molecular mechanism of Cd on neuronal maturation is unveiled. Single-cell RNA sequencing (scRNA-seq) has been widely used to uncover cellular heterogeneity and is a powerful tool to reconstruct the developmental trajectory of neurons. In this study, neural stem cells (NSCs) from subventricular zone (SVZ) of newborn mice were treated with CdCl2 for 24 h and differentiated for 7 days to obtain neuronal lineage cells. Then scRNA-seq analysis identified five cell stages with different maturity in neuronal lineage cells. Our findings revealed that Cd altered the trajectory of maturation of neuronal lineage cells by decreasing the number of cells in different stages and hindering their maturation. Cd induced differential transcriptome expression in different cell subpopulations in a stage-specific manner. Specifically, Cd induced oxidative damage and changed the proportion of cell cycle phases in the early stage of neuronal development. Furthermore, the autocrine and paracrine signals of Wnt5a were downregulated in the low mature neurons in response to Cd. Importantly, activation of Wnt5a effectively rescued the number of neurons and promoted their maturation. Taken together, the findings of this study provide new and comprehensive insights into the adverse effect of Cd on neuronal maturation.
Collapse
Affiliation(s)
- Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Yang SH, Yang E, Lee J, Kim JY, Yoo H, Park HS, Jung JT, Lee D, Chun S, Jo YS, Pyeon GH, Park JY, Lee HW, Kim H. Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice. Nat Commun 2023; 14:2435. [PMID: 37105975 PMCID: PMC10140019 DOI: 10.1038/s41467-023-38180-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Stress management is necessary for vertebrate survival. Chronic stress drives depression by excitation of the lateral habenula (LHb), which silences dopaminergic neurons in the ventral tegmental area (VTA) via GABAergic neuronal projection from the rostromedial tegmental nucleus (RMTg). However, the effect of acute stress on this LHb-RMTg-VTA pathway is not clearly understood. Here, we used fluorescent in situ hybridisation and in vivo electrophysiology in mice to show that LHb aromatic L-amino acid decarboxylase-expressing neurons (D-neurons) are activated by acute stressors and suppress RMTg GABAergic neurons via trace aminergic signalling, thus activating VTA dopaminergic neurons. We show that the LHb regulates RMTg GABAergic neurons biphasically under acute stress. This study, carried out on male mice, has elucidated a molecular mechanism in the efferent LHb-RMTg-VTA pathway whereby trace aminergic signalling enables the brain to manage acute stress by preventing the hypoactivity of VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jaekwang Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Hyung Sun Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jin Taek Jung
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, 02841, South Korea
| | - Gyeong Hee Pyeon
- School of Psychology, Korea University, Seoul, 02841, South Korea
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
Tajima Y, Ito K, Yuan Y, Frank MO, Saito Y, Darnell RB. NOVA1 acts on Impact to regulate hypothalamic function and translation in inhibitory neurons. Cell Rep 2023; 42:112050. [PMID: 36716149 PMCID: PMC10382602 DOI: 10.1016/j.celrep.2023.112050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 01/15/2023] [Indexed: 01/30/2023] Open
Abstract
We describe a patient haploinsufficient for the neuronal RNA binding protein NOVA1 who developed a behavioral motor hyperactivity disorder, suggesting a role of NOVA1 in postnatal motor inhibition. To investigate Nova1's action in adult Gad2+ inhibitory neurons, we generated a conditional Nova1-null mouse (Nova1-cKOGad2-cre). Strikingly, the phenotypes of these mice show many similarities to the NOVA1 haploinsufficient patient and identify a function of Nova1 in the hypothalamus. Molecularly, Nova1 loss in Gad2-positive neurons alters downstream expression of Impact mRNA, along with a subset of RNAs encoding electron transport chain-related factors and ribosomal proteins. NOVA1 stabilizes Impact mRNA by binding its 3' UTR, antagonizing the actions of miR-138 and miR-124. Together, these studies demonstrate actions of NOVA1 in adult hypothalamic neurons, mechanisms by which it functions in translation and metabolism, including through direct binding to Impact mRNA, and illuminate its role in human neurologic disease.
Collapse
Affiliation(s)
- Yoko Tajima
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yuan Yuan
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mayu O Frank
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Investigating Deep Brain Stimulation of the Habenula: A Review of Clinical Studies. Neuromodulation 2023; 26:292-301. [PMID: 35840520 DOI: 10.1016/j.neurom.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to examine the current scientific literature on deep brain stimulation (DBS) targeting the habenula for the treatment of neuropsychiatric disorders including schizophrenia, major depressive disorder, and obsessive-compulsive disorder (OCD). MATERIALS AND METHODS Two authors performed independent data base searches using the PubMed, Cochrane, PsycINFO, and Web of Science search engines. The data bases were searched for the query ("deep brain stimulation" and "habenula"). The inclusion criteria involved screening for human clinical trials written in English and published from 2007 to 2020. From the eligible studies, data were collected on the mean age, sex, number of patients included, and disorder treated. Patient outcomes of each study were summarized. RESULTS The search yielded six studies, which included 11 patients in the final analysis. Treated conditions included refractory depression, bipolar disorder, OCD, schizophrenia, and major depressive disorder. Patients with bipolar disorder unmedicated for at least two months had smaller habenula volumes than healthy controls. High-frequency stimulation of the lateral habenula attenuated the rise of serotonin in the dorsal raphe nucleus for treating depression. Bilateral habenula DBS and patient OCD symptoms were reduced and maintained at one-year follow up. Low- and high-frequency stimulation DBS can simulate input paths to the lateral habenula to treat addiction, including cocaine addiction. More data are needed to draw conclusions as to the impact of DBS for schizophrenia and obesity. CONCLUSIONS The habenula is a novel target that could aid in reducing neuropsychiatric symptoms and should be considered in circuit-specific investigation of neuromodulation for psychiatric disorders. More information needs to be gathered and assessed before this treatment is fully approved for treatment of neuropsychiatric conditions.
Collapse
|
14
|
Green MV, Gallegos DA, Boua JV, Bartelt LC, Narayanan A, West AE. Single-nucleus transcriptional profiling of GAD2-positive neurons from mouse lateral habenula reveals distinct expression of neurotransmission- and depression-related genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523312. [PMID: 36711842 PMCID: PMC9882053 DOI: 10.1101/2023.01.09.523312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glutamatergic projection neurons of the lateral habenula (LHb) drive behavioral state modulation by regulating the activity of midbrain monoaminergic neurons. Identifying circuit mechanisms that modulate LHb output is of interest for understanding control of motivated behaviors. A small population of neurons within the medial subnucleus of the mouse LHb express the GABAergic synthesizing enzyme GAD2, and they can inhibit nearby LHb projection neurons; however, these neurons lack markers of classic inhibitory interneurons and they co-express the vesicular glutamate transporter VGLUT2. To determine the molecular phenotype of these neurons, we genetically tagged the nuclei of GAD2-positive cells and used fluorescence-activated nuclear sorting to isolate and enrich these nuclei for single nuclear RNA sequencing (FANS-snRNAseq). Our data confirm that GAD2+/VGLUT2+ neurons intrinsic to the LHb co-express markers of both glutamatergic and GABAergic transmission and that they are transcriptionally distinct from either GABAergic interneurons or habenular glutamatergic neurons. We identify gene expression programs within these cells that show sex-specific differences in expression and that are implicated in major depressive disorder (MDD), which has been linked to LHb hyperactivity. Finally, we identify the Ntng2 gene encoding the cell adhesion protein Netrin-G2 as a marker of LHb GAD2+/VGLUT+ neurons and a gene product that may contribute to their target projections. These data show the value of using genetic enrichment of rare cell types for transcriptome studies, and they advance understanding of the molecular composition of a functionally important class of GAD2+ neurons in the LHb.
Collapse
Affiliation(s)
- Matthew V Green
- Department of Neurobiology, Duke University, Durham NC 27710
| | | | | | - Luke C Bartelt
- Department of Neurobiology, Duke University, Durham NC 27710
| | - Arthy Narayanan
- Department of Neurobiology, Duke University, Durham NC 27710
| | - Anne E West
- Department of Neurobiology, Duke University, Durham NC 27710
| |
Collapse
|
15
|
Eftekharpour E, Shcholok T. Cre-recombinase systems for induction of neuron-specific knockout models: a guide for biomedical researchers. Neural Regen Res 2023; 18:273-279. [PMID: 35900402 PMCID: PMC9396489 DOI: 10.4103/1673-5374.346541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology. Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location, respectively. Using these technologies in mouse embryos led to the generation of mouse knockout models and many scientific discoveries. The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as clustered regularly interspaced short palindromic repeats for targetted gene deletion. However, several limitations including unwanted off-target gene deletion have hindered their widespread use in the field. Cre-recombinase technology has provided additional capacity for cell-specific gene deletion. In this review, we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes. This article has been constructed to provide some background information for the new trainees on the mechanism and to provide necessary information for the design, and application of the Cre-recombinase system through reviewing the most frequent promoters that are currently available for genetic manipulation of neurons. We additionally will provide a summary of the latest technological developments that can be used for targeting neurons. This may also serve as a general guide for the selection of appropriate models for biomedical research.
Collapse
|
16
|
Parker D. Neurobiological reduction: From cellular explanations of behavior to interventions. Front Psychol 2022; 13:987101. [PMID: 36619115 PMCID: PMC9815460 DOI: 10.3389/fpsyg.2022.987101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Scientific reductionism, the view that higher level functions can be explained by properties at some lower-level or levels, has been an assumption of nervous system analyses since the acceptance of the neuron doctrine in the late 19th century, and became a dominant experimental approach with the development of intracellular recording techniques in the mid-20th century. Subsequent refinements of electrophysiological approaches and the continual development of molecular and genetic techniques have promoted a focus on molecular and cellular mechanisms in experimental analyses and explanations of sensory, motor, and cognitive functions. Reductionist assumptions have also influenced our views of the etiology and treatment of psychopathologies, and have more recently led to claims that we can, or even should, pharmacologically enhance the normal brain. Reductionism remains an area of active debate in the philosophy of science. In neuroscience and psychology, the debate typically focuses on the mind-brain question and the mechanisms of cognition, and how or if they can be explained in neurobiological terms. However, these debates are affected by the complexity of the phenomena being considered and the difficulty of obtaining the necessary neurobiological detail. We can instead ask whether features identified in neurobiological analyses of simpler aspects in simpler nervous systems support current molecular and cellular approaches to explaining systems or behaviors. While my view is that they do not, this does not invite the opposing view prevalent in dichotomous thinking that molecular and cellular detail is irrelevant and we should focus on computations or representations. We instead need to consider how to address the long-standing dilemma of how a nervous system that ostensibly functions through discrete cell to cell communication can generate population effects across multiple spatial and temporal scales to generate behavior.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Bhandare A, van de Wiel J, Roberts R, Braren I, Huckstepp R, Dale N. Analyzing the brainstem circuits for respiratory chemosensitivity in freely moving mice. eLife 2022; 11:e70671. [PMID: 36300918 PMCID: PMC9643001 DOI: 10.7554/elife.70671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of systemic PCO2 is a life-preserving homeostatic mechanism. In the medulla oblongata, the retrotrapezoid nucleus (RTN) and rostral medullary Raphe are proposed as CO2 chemosensory nuclei mediating adaptive respiratory changes. Hypercapnia also induces active expiration, an adaptive change thought to be controlled by the lateral parafacial region (pFL). Here, we use GCaMP6 expression and head-mounted mini-microscopes to image Ca2+ activity in these nuclei in awake adult mice during hypercapnia. Activity in the pFL supports its role as a homogenous neuronal population that drives active expiration. Our data show that chemosensory responses in the RTN and Raphe differ in their temporal characteristics and sensitivity to CO2, raising the possibility these nuclei act in a coordinated way to generate adaptive ventilatory responses to hypercapnia. Our analysis revises the understanding of chemosensory control in awake adult mouse and paves the way to understanding how breathing is coordinated with complex non-ventilatory behaviours.
Collapse
Affiliation(s)
- Amol Bhandare
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | | | - Reno Roberts
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Institute of Experimental Pharmacology and ToxicologyHamburgGermany
| | - Robert Huckstepp
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
18
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
19
|
S-ketamine administration in pregnant mice induces ADHD- and depression-like behaviors in offspring mice. Behav Brain Res 2022; 433:113996. [PMID: 35817136 DOI: 10.1016/j.bbr.2022.113996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Anesthesia and psychotropic drugs in pregnant women may cause long-term effects on the brain development of unborn babies. The authors set out to investigate the neurotoxicity of S-ketamine, which possesses anesthetic and antidepressant effects and may cause attention deficit hyperactivity disorder (ADHD)- and depression-like behaviors in offspring mice. METHODS Pregnant mice were administered with low-, medium-, and high-dose S-ketamine (15, 30, and 60 mg/kg) by intraperitoneal injection for 5 days from gestational day 14-18. At 21 days after birth, an elevated plus-maze test, fear conditioning, open field test, and forced swimming test were used to assess ADHD- and depression-like behaviors. Neuronal amount, glial activation, synaptic function indicated by ki67, and inhibitory presynaptic proteins revealed by GAD2 in the hippocampus, amygdala, habenula nucleus, and lateral hypothalamus (LHA) were determined by immunofluorescence assay. RESULTS All the pregnant mice exposed to high-dose S-ketamine administration had miscarriage after the first injection. Both low-dose and medium-dose S-ketamine administration significantly increased the open-arm time and attenuated frozen time in the fear conditioning, which indicates impulsivity and memory dysfunction-like behaviors. Medium-dose S-ketamine administration reduced locomotor activity in the open field and increased immobility time in the forced swimming test, indicating depression-like behaviors. Changes in astrocytic activation, synaptic dysfunction, and decreased inhibitory presynaptic proteins were found in the hippocampus, amygdala, and habenula nucleus. CONCLUSIONS These results demonstrate that S-ketamine may lead to detrimental effects, including ADHD-and depression-like behaviors in offspring mice. More studies should be promoted to determine the neurotoxicity of S-ketamine in the developing brain.
Collapse
|
20
|
Levinstein MR, Bergkamp DJ, Lewis ZK, Tsobanoudis A, Hashikawa K, Stuber GD, Neumaier JF. PACAP-expressing neurons in the lateral habenula diminish negative emotional valence. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12801. [PMID: 35304804 PMCID: PMC9444940 DOI: 10.1111/gbb.12801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
The lateral habenula (LHb) is a small, bilateral, epithalamic nucleus which processes aversive information. While primarily glutamatergic, LHb neurons express genes coding for many neuropeptides, such as Adcyap1 the gene encoding pituitary adenylate cyclase-activating polypeptide (PACAP), which itself has been associated with anxiety and stress disorders. Using Cre-dependent viral vectors, we targeted and characterized these neurons based on their anatomical projections and found that they projected to both the raphe and rostromedial tegmentum but only weakly to ventral tegmental area. Using RiboTag to capture ribosomal-associated mRNA from these neurons and reanalysis of existing single cell RNA sequencing data, we did not identify a unique molecular phenotype that characterized these PACAP-expressing neurons in LHb. In order to understand the function of these neurons, we conditionally expressed hM3 Dq DREADD selectively in LHb PACAP-expressing neurons and chemogenetically excited these neurons during behavioral testing in the open field test, contextual fear conditioning, sucrose preference, novelty suppressed feeding, and conditioned place preference. We found that Gq activation of these neurons produce behaviors opposite to what is expected from the LHb as a whole-they decreased anxiety-like and fear behavior and produced a conditioned place preference. In conclusion, PACAP-expressing neurons in LHb represents a molecularly diverse population of cells that oppose the actions of the remainder of LHb neurons by being rewarding or diminishing the negative consequences of aversive events.
Collapse
Affiliation(s)
- Marjorie R. Levinstein
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA,Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA,Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research ProgramBaltimoreMarylandUSA
| | - David J. Bergkamp
- Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA,Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Zoë K. Lewis
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Alex Tsobanoudis
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Koichi Hashikawa
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA,Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA,Center for Neurobiology of Addiction, Pain, and EmotionUniversity of WashingtonSeattleWashingtonUSA
| | - Garret D. Stuber
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA,Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA,Center for Neurobiology of Addiction, Pain, and EmotionUniversity of WashingtonSeattleWashingtonUSA
| | - John F. Neumaier
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA,Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA,Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA,Center for Neurobiology of Addiction, Pain, and EmotionUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
21
|
A diencephalic circuit in rats for opioid analgesia but not positive reinforcement. Nat Commun 2022; 13:764. [PMID: 35140231 PMCID: PMC8828762 DOI: 10.1038/s41467-022-28332-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Mu opioid receptor (MOR) agonists are potent analgesics, but also cause sedation, respiratory depression, and addiction risk. The epithalamic lateral habenula (LHb) signals aversive states including pain, and here we found that it is a potent site for MOR-agonist analgesia-like responses in rats. Importantly, LHb MOR activation is not reinforcing in the absence of noxious input. The LHb receives excitatory inputs from multiple sites including the ventral tegmental area, lateral hypothalamus, entopeduncular nucleus, and the lateral preoptic area of the hypothalamus (LPO). Here we report that LHb-projecting glutamatergic LPO neurons are excited by noxious stimulation and are preferentially inhibited by MOR selective agonists. Critically, optogenetic stimulation of LHb-projecting LPO neurons produces an aversive state that is relieved by LHb MOR activation, and optogenetic inhibition of LHb-projecting LPO neurons relieves the aversiveness of ongoing pain. Opioids are potent analgesics but also have addiction risk. Here a lateral preoptic area to lateral habenula connection is identified by which opioids relieve ongoing pain but do not produce reward in animals that do not have ongoing pain.
Collapse
|
22
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Webster JF, Lecca S, Wozny C. Inhibition Within the Lateral Habenula-Implications for Affective Disorders. Front Behav Neurosci 2021; 15:786011. [PMID: 34899206 PMCID: PMC8661446 DOI: 10.3389/fnbeh.2021.786011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
The lateral habenula (LHb) is a key brain region implicated in the pathology of major depressive disorder (MDD). Specifically, excitatory LHb neurons are known to be hyperactive in MDD, thus resulting in a greater excitatory output mainly to downstream inhibitory neurons in the rostromedial tegmental nucleus. This likely results in suppression of downstream dopaminergic ventral tegmental area neurons, therefore, resulting in an overall reduction in reward signalling. In line with this, increasing evidence implicates aberrant inhibitory signalling onto LHb neurons as a co-causative factor in MDD, likely as a result of disinhibition of excitatory neurons. Consistently, growing evidence now suggests that normalising inhibitory signalling within the LHb may be a potential therapeutic strategy for MDD. Despite these recent advances, however, the exact pharmacological and neural circuit mechanisms which control inhibitory signalling within the LHb are still incompletely understood. Thus, in this review article, we aim to provide an up-to-date summary of the current state of knowledge of the mechanisms by which inhibitory signalling is processed within the LHb, with a view of exploring how this may be targeted as a future therapy for MDD.
Collapse
Affiliation(s)
- Jack F Webster
- Strathclyde Institute for Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom
| | - Salvatore Lecca
- The Department of Fundamental Neurosciences, The University of Lausanne, Lausanne, Switzerland
| | - Christian Wozny
- Strathclyde Institute for Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom.,MSH Medical School Hamburg, IMM Institute for Molecular Medicine, Medical University, Hamburg, Germany
| |
Collapse
|
24
|
Genetically Targeted Connectivity Tracing Excludes Dopaminergic Inputs to the Interpeduncular Nucleus from the Ventral Tegmentum and Substantia Nigra. eNeuro 2021; 8:ENEURO.0127-21.2021. [PMID: 34088738 PMCID: PMC8223495 DOI: 10.1523/eneuro.0127-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The “habenulopeduncular system” consists of the medial habenula (MHb) and its principal target of innervation, the interpeduncular nucleus (IP). Neurons in the ventral MHb (MHbV) express acetylcholine along with glutamate, and both the MHb and IP are rich in nicotinic acetylcholine receptors. Much of the work on this system has focused on nicotinic mechanisms and their clinical implications for nicotine use, particularly because the IP expresses the α5 nicotinic receptor subunit, encoded by the CHRNA5 gene, which is genetically linked to smoking risk. A working model has emerged in which nicotine use may be determined by the balance of reinforcement mediated in part by nicotine effects on dopamine reward pathways, and an aversive “brake” on nicotine consumption encoded in the MHb-IP pathway. However, recent work has proposed that the IP also receives direct dopaminergic input from the ventral tegmental area (VTA). If correct, this would significantly impact the prevailing model of IP function. Here, we have used Chrna5Cre mice to perform rabies virus-mediated retrograde tracing of global inputs to the IP. We have also used Cre-dependent adeno-associated virus (AAV) anterograde tracing using Slc6a3Cre (DATCre) mice to map VTA dopaminergic efferents, and we have examined tract-tracing data using other transgenic models for dopaminergic neurons available in a public database. Consistent with the existing literature using non-genetic tracing methods, none of these experiments show a significant anatomic connection from the VTA or substantia nigra (SN) to the IP, and thus do not support a model of direct dopaminergic input to the habenulopeduncular system.
Collapse
|
25
|
Du Y, Wu YX, Guo F, Qu FH, Hu TT, Tan B, Wang Y, Hu WW, Chen Z, Zhang SH. Lateral Habenula Serves as a Potential Therapeutic Target for Neuropathic Pain. Neurosci Bull 2021; 37:1339-1344. [PMID: 34086264 DOI: 10.1007/s12264-021-00728-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu-Xing Wu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ting-Ting Hu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Larson ED, Vandenbeuch A, Anderson CB, Kinnamon SC. GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types. Chem Senses 2021; 46:bjab033. [PMID: 34160573 PMCID: PMC8276891 DOI: 10.1093/chemse/bjab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In taste buds, Type I cells represent the majority of cells (50-60%) and primarily have a glial-like function in taste buds. However, recent studies suggest that they have additional sensory and signaling functions including amiloride-sensitive salt transduction, oxytocin modulation of taste, and substance P mediated GABA release. Nonetheless, the overall function of Type I cells in transduction and signaling remains unclear, primarily because of the lack of a reliable reporter for this cell type. GAD65 expression is specific to Type I taste cells and GAD65 has been used as a Cre driver to study Type I cells in salt taste transduction. To test the specificity of transgene-driven expression, we crossed GAD65Cre mice with floxed tdTomato and Channelrhodopsin (ChR2) lines and examined the progeny with immunochemistry, chorda tympani recording, and calcium imaging. We report that while many tdTomato+ taste cells express NTPDase2, a specific marker of Type I cells, we see some expression of tdTomato in both Gustducin and SNAP25-positive taste cells. We also see ChR2 in cells just outside the fungiform taste buds. Chorda tympani recordings in the GAD65Cre/ChR2 mice show large responses to blue light. Furthermore, several isolated tdTomato-positive taste cells responded to KCl depolarization with increases in intracellular calcium, indicating the presence of voltage-gated calcium channels. Taken together, these data suggest that GAD65Cre mice drive expression in multiple taste cell types and thus cannot be considered a reliable reporter of Type I cell function.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Sue C Kinnamon
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| |
Collapse
|
27
|
Lyu S, Guo Y, Zhang L, Wang Y, Tang G, Li R, Yang J, Gao S, Ma B, Liu J. Blockade of GABA transporter-1 and GABA transporter-3 in the lateral habenula improves depressive-like behaviors in a rat model of Parkinson's disease. Neuropharmacology 2020; 181:108369. [DOI: 10.1016/j.neuropharm.2020.108369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
28
|
Abstract
A recent study has shown that local inhibitory GAD2-positive neurons regulate the activity of lateral habenula neurons, thereby governing aggressive behavior in male mice.
Collapse
Affiliation(s)
- Jack F Webster
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christian Wozny
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|