1
|
Barone P, Kral A. Editorial, Hear Res 2024. Hear Res 2025; 461:109281. [PMID: 40288926 DOI: 10.1016/j.heares.2025.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Affiliation(s)
- Pascal Barone
- Center for Research of Brain and Cognition (CerCo/CNRS), Toulouse, France.
| | - Andrej Kral
- Dept. of Experimental Otology, Hannover Medical School, Germany; Australian Hearing Hub, Macquarie University, Sydney, Australia.
| |
Collapse
|
2
|
Valentin O, Foster NEV, Intartaglia B, Prud’homme MA, Schönwiesner M, Nozaradan S, Lehmann A. Intact sensorimotor rhythm abilities but altered audiovisual integration in cochlear implant users. PLoS One 2025; 20:e0320815. [PMID: 40173130 PMCID: PMC11964205 DOI: 10.1371/journal.pone.0320815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Perception of rhythm significantly impacts various aspects of daily life, including engaging with music, discerning speech prosody nuances, and coordinating physical activities like walking and sports. Numerous studies in cognitive sciences have highlighted that human rhythmic synchronization is more precise when responding to auditory rhythmic stimuli than to visual ones when the timing cues are identical. However, deaf individuals were shown to display a heightened proficiency in synchronizing their movements with visual timing cues, outperforming hearing controls (HC). Furthermore, it was demonstrated that cochlear implant (CI) users can synchronize their movements with the rhythm of unpitched drum tones. These findings raise an important question: do CI users possess a visual synchronization advantage from their pre-implant deafness, while maintaining auditory synchronization skills comparable to those of HC? Alternatively, does the neural reorganization post-implantation negate the visual synchronization advantage acquired before the implant? This study aims to answer these questions by using a sensorimotor synchronization task to probe multisensory processing abilities in CI users. Specifically, we assessed unimodal and multimodal auditory and visual abilities in CI users compared to HC using a finger tapping synchrony task with four isochronous stimulus conditions: an auditory metronome, a visual metronome, a synchronous presentation of both the auditory and visual metronomes at the same tempo, and an asynchronous presentation of the auditory and visual stimuli at differing tempos. Synchronization to auditory stimuli surpassed synchronization to visual stimuli in both groups. CI users and HC demonstrated similar unisensory synchronization consistency within the visual and auditory conditions. While HC enhanced their consistency in the audio-visual synchronous condition compared to the unisensory visual condition, CI users did not display the same improvement. Furthermore, the interference from incongruent auditory information in the asynchronous condition was comparable in HC and CI users. This study highlights that, although pitch processing is known to be impaired in CI users, our findings suggest that rhythm processing remains relatively spared. As anticipated, CI users demonstrate similar auditory rhythmic synchronization skills to those of HC, in line with existing research. Moreover, we find that, unlike deaf individuals, CI users do not exhibit an advantage in visual rhythmic synchronization, which may be due to the relatively few CI users in the study who had early prolonged pre-implantation deafness. The observed shift in audio-visual integration among CI users suggests that post-deafness or post-implantation reorganization of their auditory cortex may impede the effective integration of temporal auditory stimulation from the implant and visual information.
Collapse
Affiliation(s)
- Olivier Valentin
- School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, Montreal, Quebec, Canada
| | - Nicholas Elgin Vernam Foster
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
| | - Bastien Intartaglia
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, Montreal, Quebec, Canada
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Marie-Anne Prud’homme
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
| | - Marc Schönwiesner
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- International Max Planck Research School on Neuroscience of Communication, Leipzig University, Leipzig, Germany
| | - Sylvie Nozaradan
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Institute of Neuroscience (IONS), Université catholique de Louvain, Louvain-la-Neuve, Belgique
| | - Alexandre Lehmann
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, Montreal, Quebec, Canada
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Badarni-Zahalka O, Dakwar-Kawar O, Adelman C, Khoury-Shoufani S, Attias J. Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis. CHILDREN (BASEL, SWITZERLAND) 2025; 12:278. [PMID: 40150560 PMCID: PMC11940883 DOI: 10.3390/children12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND/OBJECTIVES Cochlear implantation is the primary treatment for severe-to-profound hearing loss, yet outcomes vary significantly among recipients. While visual-auditory cross-modal reorganization has been identified as a contributing factor to this variability, its impact in early-implanted children remains unclear. To address this knowledge gap, we investigated visual processing and its relationship with auditory outcomes in children who received early bilateral cochlear implants. METHODS To examine potential cross-modal reorganization, we recorded visual evoked potentials (VEPs) in response to pattern-reversal stimuli in 25 children with cochlear implants (CIs) (mean implantation age: 1.44 years) and 28 age-matched normal-hearing (NH) controls. Analysis focused on both the occipital region of interest (ROI: O1, OZ, and O2 electrode sites) and right temporal ROI, examining VEP components and their correlation with speech perception outcomes. RESULTS Unlike previous studies in later-implanted children, the overall occipital ROI showed no significant differences between groups. However, the left occipital electrode (O1) revealed reduced P1 amplitudes and delayed N1 latencies in CI users. Importantly, O1 N1 latency negatively correlated with speech-in-noise performance (r = -0.318; p = 0.02). The right temporal region showed no significant differences in VEP N1 between groups and no correlation with speech performance in CI users. CONCLUSIONS Early bilateral cochlear implantation appears to preserve global visual processing, suggesting minimal maladaptive reorganization. However, subtle alterations in left occipital visual processing may influence auditory outcomes, highlighting the importance of early intervention and the complex nature of sensory integration in this population.
Collapse
Affiliation(s)
- Ola Badarni-Zahalka
- Department of Communication, Sciences and Disorders, Haifa University, Haifa 3498838, Israel;
| | - Ornella Dakwar-Kawar
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem 9190501, Israel;
| | - Cahtia Adelman
- Speech & Hearing Department, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel; (C.A.); (S.K.-S.)
- Department of Communication Disorder, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Salma Khoury-Shoufani
- Speech & Hearing Department, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel; (C.A.); (S.K.-S.)
| | - Josef Attias
- Department of Communication, Sciences and Disorders, Haifa University, Haifa 3498838, Israel;
| |
Collapse
|
4
|
Paul BT, Trinh V, Chen J, Le T, Lin V, Dimitrijevic A. Speech outcomes in cochlear implant users depend on visual cross-modal cortical activity measured before or after implantation. Brain Commun 2025; 7:fcaf071. [PMID: 40008325 PMCID: PMC11851104 DOI: 10.1093/braincomms/fcaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cochlear implants can partially restore hearing function in deaf individuals, but long-term speech listening outcomes vary widely across cochlear implant users. Visual cross-modal plasticity, where auditory cortical neurons upregulate visual inputs to assist visual processing, is one factor proposed to worsen cochlear implant users' speech outcomes because it may limit auditory processing capability. However, evidence for this view is conflicting, and the relationship of cross-modal activity to speech perception may depend on other variables such as the type of visual activity and when it is assessed. To clarify, we measured visual cross-modal activity during a silent lip reading task using EEG in a cross-sectional, observational study. The study tested visual brain activation in 14 individuals prior to receiving a cochlear implant, 15 individuals tested at least 1 year after receiving and using a cochlear implant and 13 typical hearing controls who did not use a cochlear implant or hearing aid. Cross-modal responses to the onset of a visual event were positively correlated to speech outcomes in cochlear implant users tested after surgery but were negatively correlated in those tested prior to cochlear implant surgery. In addition, cross-modal increases in neural oscillatory power in the alpha band (8-12 Hz) arising in the lip reading task were associated with worse speech outcomes in both cochlear implant user groups. Taken together, results redress claims that cross-modal plasticity is maladaptive for speech outcomes and instead suggest that this relationship depends on the time point of testing, stage of sensory processing and likely the relevance of the stimulus for speech. In addition, findings form the basis for new neural markers that are predictive of cochlear implant users' long-term speech ability.
Collapse
Affiliation(s)
- Brandon T Paul
- Department of Psychology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Vincent Trinh
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Joseph Chen
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Trung Le
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Vincent Lin
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Andrew Dimitrijevic
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
5
|
Schone HR, Maimon Mor RO, Kollamkulam M, Szymanska MA, Gerrand C, Woollard A, Kang NV, Baker CI, Makin TR. Stable Cortical Body Maps Before and After Arm Amputation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571314. [PMID: 38168448 PMCID: PMC10760201 DOI: 10.1101/2023.12.13.571314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The adult brain's capacity for cortical reorganization remains debated. Using longitudinal neuroimaging in three adults, followed up to five years before and after arm amputation, we compared cortical activity elicited by movement of the hand (pre-amputation) versus phantom hand (post-amputation) and lips (pre/post-amputation). We observed stable representations of both hand and lips. By directly quantifying activity changes across amputation, we overturn decades of animal and human research, demonstrating amputation does not trigger large-scale cortical reorganization.
Collapse
Affiliation(s)
- Hunter R. Schone
- Institute of Cognitive Neuroscience, University College London, London, UK
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roni O. Maimon Mor
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University College London, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Mathew Kollamkulam
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Craig Gerrand
- Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | | | - Norbert V. Kang
- Plastic Surgery Department, Royal Free Hospital NHS Trust, London, UK
| | - Chris I. Baker
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| |
Collapse
|
6
|
Gabr T, Hashem A, Ahmed SR, Zeinhom MG. Visual Reliance in Severe Hearing Loss: Visual Evoked Potentials (VEPs) Study. Audiol Res 2025; 15:3. [PMID: 39846556 PMCID: PMC11755637 DOI: 10.3390/audiolres15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Peripheral hearing loss is associated with the cross-modal re-organization of the auditory cortex, which can occur in both pre- and post-lingual deaf cases. BACKGROUND/OBJECTIVES Whether to rely on the visual cues in cases with severe hearing loss with adequate amplification is a matter of debate. So, this study aims to study visual evoked potentials (VEPs) in children with severe or profound HL, whether fitted with HAs or CIs. METHODS This study included three groups of children matched in age and gender: normal hearing, children with hearing thresholds >70 dBHL and fitted with power HAs, and children fitted with CIs. All cases were subjected to pure tone audiometry (aided and unaided), speech discrimination scores, ophthalmic examinations, and visual evoked potentials (VEPs). RESULTS SD% scores significantly improved with the use of VCs in both CI and HL groups, and a significantly higher P100 amplitude of VEPs in both CI and HL groups (more in children fitted with CIs). CONCLUSIONS Cross-modal reorganization in severe degrees of HL is of great benefit whether they are fitted with HAs or CIs.
Collapse
Affiliation(s)
- Takwa Gabr
- Audiovestibular Medicine Unit, ORL Departement, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Ahmed Hashem
- Ophthalmology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh 33516, Egypt;
| | - Sherihan Rezk Ahmed
- Neurology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh 33516, Egypt; (S.R.A.); (M.G.Z.)
| | - Mohamed G. Zeinhom
- Neurology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh 33516, Egypt; (S.R.A.); (M.G.Z.)
| |
Collapse
|
7
|
Huang W, Huang B, Sun J, Sun Q, Liang Y, Chen H, Wang X, Xiong G. fNIRS Changes in the Middle Temporal and Occipital Cortices After a Cochlear Implant. Laryngoscope 2025; 135:331-338. [PMID: 39140234 PMCID: PMC11635154 DOI: 10.1002/lary.31687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES The relationship between the middle temporal (MTG) and occipital cortices in post-lingually deaf (PLD) individuals is unclear. This study aimed to investigate changes in the MTG and occipital cortices excitability and their effects on the occipital cortex in individuals with PLD after receiving a cochlear implant (CI). METHODS Twenty-six individuals with severe-to-profound binaural sensorineural PLD were assessed clinically. Nine individuals had received a unilateral cochlear implant over 6 months, while 17 had not. Brodmann area 19 (BA19, extra-striate occipital cortex) and MTG (auditory-related area of cortex) were selected as regions of interest. The excitability of the ROI was observed and compared in the surgery and no-surgery groups by functional near-infrared spectroscopy (fNIRS) in the resting state, and correlations between connectivity of the MTG and occipital cortex, and as well as the duration of time that had elapsed following CI surgery, were investigated. RESULTS fNIRS revealed enhanced global cortical connectivity in the BA19 and MTG on the operative side (p < 0.05) and the connectivity between BA19 and the MTG also increased (p < 0.05). The connectivity between the MTG and BA19 was positively correlated with the duration of cochlear implantation, as was the case for BA18. CONCLUSION There was evidence for remodeling of the cerebral cortex: increased excitability was observed in the MTG and BA19, and their connectivity was enhanced, indicating a synergistic effect. Moreover, the MTG may further stimulate the visual cortex by strengthening their connectivity after CI. LEVEL OF EVIDENCE 3 Laryngoscope, 135:331-338, 2025.
Collapse
Affiliation(s)
- Wanyi Huang
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Bixue Huang
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Jincangjian Sun
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Qiyang Sun
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Yue Liang
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Huiting Chen
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Xianren Wang
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| | - Guanxia Xiong
- Department of Otorhinolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of OtorhinolaryngologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Yin Y, Lyu X, Zhou J, Yu K, Huang M, Shen G, Hao C, Wang Z, Yu H, Gao B. Cerebral cortex functional reorganization in preschool children with congenital sensorineural hearing loss: a resting-state fMRI study. Front Neurol 2024; 15:1423956. [PMID: 38988601 PMCID: PMC11234816 DOI: 10.3389/fneur.2024.1423956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose How cortical functional reorganization occurs after hearing loss in preschool children with congenital sensorineural hearing loss (CSNHL) is poorly understood. Therefore, we used resting-state functional MRI (rs-fMRI) to explore the characteristics of cortical reorganization in these patents. Methods Sixty-three preschool children with CSNHL and 32 healthy controls (HCs) were recruited, and the Categories of Auditory Performance (CAP) scores were determined at the 6-month follow-up after cochlear implantation (CI). First, rs-fMRI data were preprocessed, and amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were calculated. Second, whole-brain functional connectivity (FC) analysis was performed using bilateral primary auditory cortex as seed points. Finally, Spearman correlation analysis was performed between the differential ALFF, ReHo and FC values and the CAP score. Results ALFF analysis showed that preschool children with CSNHL had lower ALFF values in the bilateral prefrontal cortex and superior temporal gyrus than HCs, but higher ALFF values in the bilateral thalamus and calcarine gyrus. And correlation analysis showed that some abnormal brain regions were weak negatively correlated with CAP score (p < 0.05). The ReHo values in the bilateral superior temporal gyrus, part of the prefrontal cortex and left insular gyrus were lower, whereas ReHo values in the bilateral thalamus, right caudate nucleus and right precentral gyrus were higher, in children with CSNHL than HCs. However, there was no correlation between ReHo values and the CAP scores (p < 0.05). Using primary auditory cortex (PAC) as seed-based FC further analysis revealed enhanced FC in the visual cortex, proprioceptive cortex and motor cortex. And there were weak negative correlations between the FC values in the bilateral superior temporal gyrus, occipital lobe, left postcentral gyrus and right thalamus were weakly negatively correlated and the CAP score (p < 0.05). Conclusion After auditory deprivation in preschool children with CSNHL, the local functions of auditory cortex, visual cortex, prefrontal cortex and somatic motor cortex are changed, and the prefrontal cortex plays a regulatory role in this process. There is functional reorganization or compensation between children's hearing and these areas, which may not be conducive to auditory language recovery after CI in deaf children.
Collapse
Affiliation(s)
- Yi Yin
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyue Lyu
- Guizhou Medical University, Guiyang, China
| | - Jian Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunlin Yu
- The Key Laboratory for Chemistry of Natural Product of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guiquan Shen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Cheng Hao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhengfu Wang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Nematova S, Zinszer B, Morlet T, Morini G, Petitto LA, Jasińska KK. Impact of ASL Exposure on Spoken Phonemic Discrimination in Adult CI Users: A Functional Near-Infrared Spectroscopy Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:553-588. [PMID: 38939730 PMCID: PMC11210937 DOI: 10.1162/nol_a_00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/11/2024] [Indexed: 06/29/2024]
Abstract
We examined the impact of exposure to a signed language (American Sign Language, or ASL) at different ages on the neural systems that support spoken language phonemic discrimination in deaf individuals with cochlear implants (CIs). Deaf CI users (N = 18, age = 18-24 yrs) who were exposed to a signed language at different ages and hearing individuals (N = 18, age = 18-21 yrs) completed a phonemic discrimination task in a spoken native (English) and non-native (Hindi) language while undergoing functional near-infrared spectroscopy neuroimaging. Behaviorally, deaf CI users who received a CI early versus later in life showed better English phonemic discrimination, albeit phonemic discrimination was poor relative to hearing individuals. Importantly, the age of exposure to ASL was not related to phonemic discrimination. Neurally, early-life language exposure, irrespective of modality, was associated with greater neural activation of left-hemisphere language areas critically involved in phonological processing during the phonemic discrimination task in deaf CI users. In particular, early exposure to ASL was associated with increased activation in the left hemisphere's classic language regions for native versus non-native language phonemic contrasts for deaf CI users who received a CI later in life. For deaf CI users who received a CI early in life, the age of exposure to ASL was not related to neural activation during phonemic discrimination. Together, the findings suggest that early signed language exposure does not negatively impact spoken language processing in deaf CI users, but may instead potentially offset the negative effects of language deprivation that deaf children without any signed language exposure experience prior to implantation. This empirical evidence aligns with and lends support to recent perspectives regarding the impact of ASL exposure in the context of CI usage.
Collapse
Affiliation(s)
- Shakhlo Nematova
- Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, USA
| | - Benjamin Zinszer
- Department of Psychology, Swarthmore College, Swarthmore, PA, USA
| | - Thierry Morlet
- Nemours Children’s Hospital, Delaware, Wilmington, DE, USA
| | - Giovanna Morini
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Laura-Ann Petitto
- Brain and Language Center for Neuroimaging, Gallaudet University, Washington, DC, USA
| | - Kaja K. Jasińska
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Corina DP, Coffey-Corina S, Pierotti E, Mankel K, Miller LM. Electrophysiological study of visual processing in children with cochlear implants. Neuropsychologia 2024; 194:108774. [PMID: 38145800 DOI: 10.1016/j.neuropsychologia.2023.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Electrophysiological studies of congenitally deaf children and adults have reported atypical visual evoked potentials (VEPs) which have been associated with both behavioral enhancements of visual attention as well as poorer performance and outcomes in tests of spoken language speech processing. This pattern has often been interpreted as a maladaptive consequence of early auditory deprivation, whereby a remapping of auditory cortex by the visual system ultimately reduces resources necessary for optimal rehabilitative outcomes of spoken language acquisition and use. Making use of a novel electrophysiological paradigm, we compare VEPs in children with severe to profound congenital deafness who received a cochlear implant(s) prior to 31 months (n = 28) and typically developing age matched controls (n = 28). We observe amplitude enhancements and in some cases latency differences in occipitally expressed P1 and N1 VEP components in CI-using children as well as an early frontal negativity, N1a. We relate these findings to developmental factors such as chronological age and spoken language understanding. We further evaluate whether VEPs are additionally modulated by auditory stimulation. Collectively, these data provide a means to examine the extent to which atypical VEPs are consistent with prior accounts of maladaptive cross-modal plasticity. Our results support a view that VEP changes reflect alterations to visual-sensory attention and saliency mechanisms rather than a re-mapping of auditory cortex. The present data suggests that early auditory deprivation may have temporally prolonged effects on visual system processing even after activation and use of cochlear implant.
Collapse
Affiliation(s)
- David P Corina
- Center for Mind and Brain, University of California, Davis, USA; Department of Linguistics, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
| | - S Coffey-Corina
- Center for Mind and Brain, University of California, Davis, USA
| | - E Pierotti
- Center for Mind and Brain, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA
| | - Kelsey Mankel
- Center for Mind and Brain, University of California, Davis, USA
| | - Lee M Miller
- Center for Mind and Brain, University of California, Davis, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA; Department of Otolaryngology / Head and Neck Surgery, University of California, Davis, USA
| |
Collapse
|
11
|
Alemi R, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien A, Miller S, Schafer E, Gemignani J, Koirala N, Gracco VL, Deroche M. Motor Processing in Children With Cochlear Implants as Assessed by Functional Near-Infrared Spectroscopy. Percept Mot Skills 2024; 131:74-105. [PMID: 37977135 PMCID: PMC10863375 DOI: 10.1177/00315125231213167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Auditory-motor and visual-motor networks are often coupled in daily activities, such as when listening to music and dancing; but these networks are known to be highly malleable as a function of sensory input. Thus, congenital deafness may modify neural activities within the connections between the motor, auditory, and visual cortices. Here, we investigated whether the cortical responses of children with cochlear implants (CI) to a simple and repetitive motor task would differ from that of children with typical hearing (TH) and we sought to understand whether this response related to their language development. Participants were 75 school-aged children, including 50 with CI (with varying language abilities) and 25 controls with TH. We used functional near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain, as children squeezed the back triggers of a joystick that vibrated or not with the squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin concentration (HbO) and a decrease in deoxygenated hemoglobin concentration (HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual cortex (supposedly an irrelevant region) was deactivated in this task, particularly for children with CI who had good language skills when compared to those with CI who had language delays. Presence or absence of vibrotactile feedback made no difference in cortical activation. These findings support the potential of fNIRS to examine cognitive functions related to language in children with CI.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Caleb Wilson
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Bien
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padua, Padova, Italy
| | | | | | - Mickael Deroche
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
12
|
Alemi R, Wolfe J, Neumann S, Manning J, Towler W, Koirala N, Gracco VL, Deroche M. Audiovisual integration in children with cochlear implants revealed through EEG and fNIRS. Brain Res Bull 2023; 205:110817. [PMID: 37989460 DOI: 10.1016/j.brainresbull.2023.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Sensory deprivation can offset the balance of audio versus visual information in multimodal processing. Such a phenomenon could persist for children born deaf, even after they receive cochlear implants (CIs), and could potentially explain why one modality is given priority over the other. Here, we recorded cortical responses to a single speaker uttering two syllables, presented in audio-only (A), visual-only (V), and audio-visual (AV) modes. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were successively recorded in seventy-five school-aged children. Twenty-five were children with normal hearing (NH) and fifty wore CIs, among whom 26 had relatively high language abilities (HL) comparable to those of NH children, while 24 others had low language abilities (LL). In EEG data, visual-evoked potentials were captured in occipital regions, in response to V and AV stimuli, and they were accentuated in the HL group compared to the LL group (the NH group being intermediate). Close to the vertex, auditory-evoked potentials were captured in response to A and AV stimuli and reflected a differential treatment of the two syllables but only in the NH group. None of the EEG metrics revealed any interaction between group and modality. In fNIRS data, each modality induced a corresponding activity in visual or auditory regions, but no group difference was observed in A, V, or AV stimulation. The present study did not reveal any sign of abnormal AV integration in children with CI. An efficient multimodal integrative network (at least for rudimentary speech materials) is clearly not a sufficient condition to exhibit good language and literacy.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada.
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Will Towler
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Nabin Koirala
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | | | - Mickael Deroche
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
13
|
Abstract
Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.
Collapse
Affiliation(s)
- Tamar R Makin
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
14
|
Merrikhi Y, Mirzaei A, Kok MA, Meredith MA, Lomber SG. Deafness induces complete crossmodal plasticity in a belt region of dorsal auditory cortex. Eur J Neurosci 2023; 58:3058-3073. [PMID: 37408361 DOI: 10.1111/ejn.16075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Many neural areas, where patterned activity is lost following deafness, have the capacity to become activated by the remaining sensory systems. This crossmodal plasticity can be measured at perceptual/behavioural as well as physiological levels. The dorsal zone (DZ) of auditory cortex of deaf cats is involved in supranormal visual motion detection, but its physiological level of crossmodal reorganisation is not well understood. The present study of early-deaf DZ (and hearing controls) used multiple single-channel recording methods to examine neuronal responses to visual, auditory, somatosensory and combined stimulation. In early-deaf DZ, no auditory activation was observed, but 100% of the neurons were responsive to visual cues of which 21% were also influenced by somatosensory stimulation. Visual and somatosensory responses were not anatomically organised as they are in hearing cats, and fewer multisensory neurons were present in the deaf condition. These crossmodal physiological results closely correspond with and support the perceptual/behavioural enhancements that occur following hearing loss.
Collapse
Affiliation(s)
- Yaser Merrikhi
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ali Mirzaei
- Department of Biology, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | - Melanie A Kok
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - M Alex Meredith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Kral A, Sharma A. Crossmodal plasticity in hearing loss. Trends Neurosci 2023; 46:377-393. [PMID: 36990952 PMCID: PMC10121905 DOI: 10.1016/j.tins.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Crossmodal plasticity is a textbook example of the ability of the brain to reorganize based on use. We review evidence from the auditory system showing that such reorganization has significant limits, is dependent on pre-existing circuitry and top-down interactions, and that extensive reorganization is often absent. We argue that the evidence does not support the hypothesis that crossmodal reorganization is responsible for closing critical periods in deafness, and crossmodal plasticity instead represents a neuronal process that is dynamically adaptable. We evaluate the evidence for crossmodal changes in both developmental and adult-onset deafness, which start as early as mild-moderate hearing loss and show reversibility when hearing is restored. Finally, crossmodal plasticity does not appear to affect the neuronal preconditions for successful hearing restoration. Given its dynamic and versatile nature, we describe how this plasticity can be exploited for improving clinical outcomes after neurosensory restoration.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anu Sharma
- Department of Speech Language and Hearing Science, Center for Neuroscience, Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
16
|
Kral A. Hearing and Cognition in Childhood. Laryngorhinootologie 2023; 102:S3-S11. [PMID: 37130527 PMCID: PMC10184669 DOI: 10.1055/a-1973-5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human brain shows extensive development of the cerebral cortex after birth. This is extensively altered by the absence of auditory input: the development of cortical synapses in the auditory system is delayed and their degradation is increased. Recent work shows that the synapses responsible for corticocortical processing of stimuli and their embedding into multisensory interactions and cognition are particularly affected. Since the brain is heavily reciprocally interconnected, inborn deafness manifests not only in deficits in auditory processing, but also in cognitive (non-auditory) functions that are affected differently between individuals. It requires individualized approaches in therapy of deafness in childhood.
Collapse
Affiliation(s)
- Andrej Kral
- Institut für AudioNeuroTechnologie (VIANNA) & Abt. für experimentelle Otologie, Exzellenzcluster Hearing4All, Medizinische Hochschule Hannover (Abteilungsleiter und Institutsleiter: Prof. Dr. A. Kral) & Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
17
|
Evidence of visual crossmodal reorganization positively relates to speech outcomes in cochlear implant users. Sci Rep 2022; 12:17749. [PMID: 36273017 PMCID: PMC9587996 DOI: 10.1038/s41598-022-22117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 01/18/2023] Open
Abstract
Deaf individuals who use a cochlear implant (CI) have remarkably different outcomes for auditory speech communication ability. One factor assumed to affect CI outcomes is visual crossmodal plasticity in auditory cortex, where deprived auditory regions begin to support non-auditory functions such as vision. Previous research has viewed crossmodal plasticity as harmful for speech outcomes for CI users if it interferes with sound processing, while others have demonstrated that plasticity related to visual language may be beneficial for speech recovery. To clarify, we used electroencephalography (EEG) to measure brain responses to a partial face speaking a silent single-syllable word (visual language) in 15 CI users and 13 age-matched typical-hearing controls. We used source analysis on EEG activity to measure crossmodal visual responses in auditory cortex and then compared them to CI users' speech-in-noise listening ability. CI users' brain response to the onset of the video stimulus (face) was larger than controls in left auditory cortex, consistent with crossmodal activation after deafness. CI users also produced a mixture of alpha (8-12 Hz) synchronization and desynchronization in auditory cortex while watching lip movement while controls instead showed desynchronization. CI users with higher speech scores had stronger crossmodal responses in auditory cortex to the onset of the video, but those with lower speech scores had increases in alpha power during lip movement in auditory areas. Therefore, evidence of crossmodal reorganization in CI users does not necessarily predict poor speech outcomes, and differences in crossmodal activation during lip reading may instead relate to strategies or differences that CI users use in audiovisual speech communication.
Collapse
|
18
|
Manini B, Vinogradova V, Woll B, Cameron D, Eimer M, Cardin V. Sensory experience modulates the reorganization of auditory regions for executive processing. Brain 2022; 145:3698-3710. [PMID: 35653493 PMCID: PMC9586534 DOI: 10.1093/brain/awac205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Crossmodal plasticity refers to the reorganization of sensory cortices in the absence of their typical main sensory input. Understanding this phenomenon provides insights into brain function and its potential for change and enhancement. Using functional MRI, we investigated how early deafness influences crossmodal plasticity and the organization of executive functions in the adult human brain. Deaf (n = 25; age: mean = 41.68, range = 19-66, SD = 14.38; 16 female, 9 male) and hearing (n = 20; age: mean = 37.50, range = 18-66, SD = 16.85; 15 female, 5 male) participants performed four visual tasks tapping into different components of executive processing: task switching, working memory, planning and inhibition. Our results show that deaf individuals specifically recruit 'auditory' regions during task switching. Neural activity in superior temporal regions, most significantly in the right hemisphere, are good predictors of behavioural performance during task switching in the group of deaf individuals, highlighting the functional relevance of the observed cortical reorganization. Our results show executive processing in typically sensory regions, suggesting that the development and ultimate role of brain regions are influenced by perceptual environmental experience.
Collapse
Affiliation(s)
- Barbara Manini
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| | | | - Bencie Woll
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Martin Eimer
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Velia Cardin
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| |
Collapse
|
19
|
Villwock A, Grin K. Somatosensory processing in deaf and deafblind individuals: How does the brain adapt as a function of sensory and linguistic experience? A critical review. Front Psychol 2022; 13:938842. [PMID: 36324786 PMCID: PMC9618853 DOI: 10.3389/fpsyg.2022.938842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
How do deaf and deafblind individuals process touch? This question offers a unique model to understand the prospects and constraints of neural plasticity. Our brain constantly receives and processes signals from the environment and combines them into the most reliable information content. The nervous system adapts its functional and structural organization according to the input, and perceptual processing develops as a function of individual experience. However, there are still many unresolved questions regarding the deciding factors for these changes in deaf and deafblind individuals, and so far, findings are not consistent. To date, most studies have not taken the sensory and linguistic experiences of the included participants into account. As a result, the impact of sensory deprivation vs. language experience on somatosensory processing remains inconclusive. Even less is known about the impact of deafblindness on brain development. The resulting neural adaptations could be even more substantial, but no clear patterns have yet been identified. How do deafblind individuals process sensory input? Studies on deafblindness have mostly focused on single cases or groups of late-blind individuals. Importantly, the language backgrounds of deafblind communities are highly variable and include the usage of tactile languages. So far, this kind of linguistic experience and its consequences have not been considered in studies on basic perceptual functions. Here, we will provide a critical review of the literature, aiming at identifying determinants for neuroplasticity and gaps in our current knowledge of somatosensory processing in deaf and deafblind individuals.
Collapse
Affiliation(s)
- Agnes Villwock
- Sign Languages, Department of Rehabilitation Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
20
|
Gabr T, Eldessouki T, Hashem A, Elgamal S, Zeinhom M. Cochlear implants: Visual evoked potentials study. Int J Pediatr Otorhinolaryngol 2022; 161:111250. [PMID: 35930866 DOI: 10.1016/j.ijporl.2022.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
UNLABELLED Cochlear implants (CIs) are a successful alternative in cases with severe-to-profound HL. In these individuals, visual cross-modal re-organization can occur because of hearing loss where the visual cortex will recruit auditory cortical areas for visual processing. OBJECTIVES This work is designed to study visual evoked potentials (VEPs) in children fitted with CIs in comparison to normal hearing children. METHOD This work included 2 groups of children: Group I included 20 normal hearing children and study group included 25 children fitted with unilateral CIs. All cases were subjected to Thorough otological history. Check up on CIs performance using physical check and Aided sound field examination, ophthalmic examination and Pattern Visual Evoked Potentials (pVEPs). RESULTS Both groups showed no significant difference as regard age or sex. And both had normal ophthalmic examinations. Children of the study groups showed satisfactory aided response. As regard pVEPs, the study group showed significant higher P100 amplitude in comparison to the control group. CONCLUSION This study showed that deafness could induced cortical organization in the visual cortex and not limited to the auditory cortex only.
Collapse
Affiliation(s)
- Takwa Gabr
- Audiovestibular Medicine Unit, Otolaryngology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh, Egypt.
| | - Tarek Eldessouki
- Audiovestibular Medicine Unit, Otolaryngology Department, Beni Suef University Hospitals, Beni Suef, Egypt
| | - Ahmed Hashem
- Ophthalmology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh, Egypt
| | - Shimaa Elgamal
- Neurology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh, Egypt
| | - Mohamed Zeinhom
- Neurology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh, Egypt
| |
Collapse
|
21
|
Corina DP, Coffey-Corina S, Pierotti E, Bormann B, LaMarr T, Lawyer L, Backer KC, Miller LM. Electrophysiological Examination of Ambient Speech Processing in Children With Cochlear Implants. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:3502-3517. [PMID: 36037517 PMCID: PMC9913291 DOI: 10.1044/2022_jslhr-22-00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This research examined the expression of cortical auditory evoked potentials in a cohort of children who received cochlear implants (CIs) for treatment of congenital deafness (n = 28) and typically hearing controls (n = 28). METHOD We make use of a novel electroencephalography paradigm that permits the assessment of auditory responses to ambiently presented speech and evaluates the contributions of concurrent visual stimulation on this activity. RESULTS Our findings show group differences in the expression of auditory sensory and perceptual event-related potential components occurring in 80- to 200-ms and 200- to 300-ms time windows, with reductions in amplitude and a greater latency difference for CI-using children. Relative to typically hearing children, current source density analysis showed muted responses to concurrent visual stimulation in CI-using children, suggesting less cortical specialization and/or reduced responsiveness to auditory information that limits the detection of the interaction between sensory systems. CONCLUSION These findings indicate that even in the face of early interventions, CI-using children may exhibit disruptions in the development of auditory and multisensory processing.
Collapse
Affiliation(s)
- David P. Corina
- Department of Linguistics, University of California, Davis
- Department of Psychology, University of California, Davis
- Center for Mind and Brain, University of California, Davis
| | | | - Elizabeth Pierotti
- Department of Psychology, University of California, Davis
- Center for Mind and Brain, University of California, Davis
| | - Brett Bormann
- Center for Mind and Brain, University of California, Davis
- Neurobiology, Physiology and Behavior, University of California, Davis
| | - Todd LaMarr
- Center for Mind and Brain, University of California, Davis
| | - Laurel Lawyer
- Center for Mind and Brain, University of California, Davis
| | | | - Lee M. Miller
- Center for Mind and Brain, University of California, Davis
- Neurobiology, Physiology and Behavior, University of California, Davis
- Department of Otolaryngology/Head and Neck Surgery, University of California, Davis
| |
Collapse
|
22
|
Zhou X, Feng M, Hu Y, Zhang C, Zhang Q, Luo X, Yuan W. The Effects of Cortical Reorganization and Applications of Functional Near-Infrared Spectroscopy in Deaf People and Cochlear Implant Users. Brain Sci 2022; 12:brainsci12091150. [PMID: 36138885 PMCID: PMC9496692 DOI: 10.3390/brainsci12091150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
A cochlear implant (CI) is currently the only FDA-approved biomedical device that can restore hearing for the majority of patients with severe-to-profound sensorineural hearing loss (SNHL). While prelingually and postlingually deaf individuals benefit substantially from CI, the outcomes after implantation vary greatly. Numerous studies have attempted to study the variables that affect CI outcomes, including the personal characteristics of CI candidates, environmental variables, and device-related variables. Up to 80% of the results remained unexplainable because all these variables could only roughly predict auditory performance with a CI. Brain structure/function differences after hearing deprivation, that is, cortical reorganization, has gradually attracted the attention of neuroscientists. The cross-modal reorganization in the auditory cortex following deafness is thought to be a key factor in the success of CI. In recent years, the adaptive and maladaptive effects of this reorganization on CI rehabilitation have been argued because the neural mechanisms of how this reorganization impacts CI learning and rehabilitation have not been revealed. Due to the lack of brain processes describing how this plasticity affects CI learning and rehabilitation, the adaptive and deleterious consequences of this reorganization on CI outcomes have recently been the subject of debate. This review describes the evidence for different roles of cross-modal reorganization in CI performance and attempts to explore the possible reasons. Additionally, understanding the core influencing mechanism requires taking into account the cortical changes from deafness to hearing restoration. However, methodological issues have restricted longitudinal research on cortical function in CI. Functional near-infrared spectroscopy (fNIRS) has been increasingly used for the study of brain function and language assessment in CI because of its unique advantages, which are considered to have great potential. Here, we review studies on auditory cortex reorganization in deaf patients and CI recipients, and then we try to illustrate the feasibility of fNIRS as a neuroimaging tool in predicting and assessing speech performance in CI recipients. Here, we review research on the cross-modal reorganization of the auditory cortex in deaf patients and CI recipients and seek to demonstrate the viability of using fNIRS as a neuroimaging technique to predict and evaluate speech function in CI recipients.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Menglong Feng
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yaqin Hu
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chanyuan Zhang
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qingling Zhang
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiaoqin Luo
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Yuan
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence: ; Tel.: +86-23-63535180
| |
Collapse
|
23
|
Abstract
Cochlear implants have been the most successful neural prosthesis, with one million users globally. Researchers used the source-filter model and speech vocoder to design the modern multi-channel implants, allowing implantees to achieve 70%-80% correct sentence recognition in quiet, on average. Researchers also used the cochlear implant to help understand basic mechanisms underlying loudness, pitch, and cortical plasticity. While front-end processing advances improved speech recognition in noise, the unilateral implant speech recognition in quiet has plateaued since the early 1990s. This lack of progress calls for action on re-designing the cochlear stimulating interface and collaboration with the general neurotechnology community.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology-Head and Neck Surgery and Center for Hearing Research, University of California, 110 Medical Sciences E, Irvine, California 92697, USA
| |
Collapse
|
24
|
Palaniswami H, Abraham A, Yerraguntla K. Auditory cortical stimulability in non habilitated individuals – An evidence from CAEPs. J Otol 2022; 17:146-155. [PMID: 35847577 PMCID: PMC9270565 DOI: 10.1016/j.joto.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
|
25
|
Sen S, Khalsa NN, Tong N, Ovadia-Caro S, Wang X, Bi Y, Striem-Amit E. The Role of Visual Experience in Individual Differences of Brain Connectivity. J Neurosci 2022; 42:5070-5084. [PMID: 35589393 PMCID: PMC9233442 DOI: 10.1523/jneurosci.1700-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022] Open
Abstract
Visual cortex organization is highly consistent across individuals. But to what degree does this consistency depend on life experience, in particular sensory experience? In this study, we asked whether visual cortex reorganization in congenital blindness results in connectivity patterns that are particularly variable across individuals, focusing on resting-state functional connectivity (RSFC) patterns from the primary visual cortex. We show that the absence of shared visual experience results in more variable RSFC patterns across blind individuals than sighted controls. Increased variability is specifically found in areas that show a group difference between the blind and sighted in their RSFC. These findings reveal a relationship between brain plasticity and individual variability; reorganization manifests variably across individuals. We further investigated the different patterns of reorganization in the blind, showing that the connectivity to frontal regions, proposed to have a role in the reorganization of the visual cortex of the blind toward higher cognitive roles, is highly variable. Further, we link some of the variability in visual-to-frontal connectivity to another environmental factor-duration of formal education. Together, these findings show a role of postnatal sensory and socioeconomic experience in imposing consistency on brain organization. By revealing the idiosyncratic nature of neural reorganization, these findings highlight the importance of considering individual differences in fitting sensory aids and restoration approaches for vision loss.SIGNIFICANCE STATEMENT The typical visual system is highly consistent across individuals. What are the origins of this consistency? Comparing the consistency of visual cortex connectivity between people born blind and sighted people, we showed that blindness results in higher variability, suggesting a key impact of postnatal individual experience on brain organization. Further, connectivity patterns that changed following blindness were particularly variable, resulting in diverse patterns of brain reorganization. Individual differences in reorganization were also directly affected by nonvisual experiences in the blind (years of formal education). Together, these findings show a role of sensory and socioeconomic experiences in creating individual differences in brain organization and endorse the use of individual profiles for rehabilitation and restoration of vision loss.
Collapse
Affiliation(s)
- Sriparna Sen
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Nanak Nihal Khalsa
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Ningcong Tong
- Department of Psychology, Harvard University, Cambridge, MA 02138
| | - Smadar Ovadia-Caro
- Department of Cognitive Sciences, University of Haifa, Haifa 3498838, Israel
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
26
|
Rączy K, Hölig C, Guerreiro MJS, Lingareddy S, Kekunnaya R, Röder B. Typical resting state activity of the brain requires visual input during an early sensitive period. Brain Commun 2022; 4:fcac146. [PMID: 35836836 PMCID: PMC9275761 DOI: 10.1093/braincomms/fcac146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Sensory deprivation, following a total loss of one sensory modality e.g. vision, has been demonstrated to result in compensatory plasticity. It is yet not known to which extent neural changes, e.g. higher resting-state activity in visual areas (cross-modal plasticity) as a consequence of blindness, reverse, when sight is restored. Here, we used functional MRI to acquire blood oxygen level-dependent resting-state activity during an eyes open and an eyes closed state in congenital cataract-reversal individuals, developmental cataract-reversal individuals, congenitally permanently blind individuals and sighted controls. The amplitude of low frequency fluctuation of the blood oxygen level-dependent signal—a neural marker of spontaneous brain activity during rest—was analyzed. In accordance with previous reports, in normally sighted controls we observed an increase in amplitude of low-frequency fluctuation during rest with the eyes open compared with rest with eyes closed in visual association areas and in parietal cortex but a decrease in auditory and sensorimotor regions. In congenital cataract-reversal individuals, we found an increase of the amplitude of slow blood oxygen level-dependent fluctuations in visual cortex during rest with eyes open compared with rest with eyes closed too but this increase was larger in amplitude than in normally sighted controls. In contrast, congenital cataract-reversal individuals lagged a similar increase in parietal regions and did not show the typical decrease of amplitude of low-frequency fluctuation in auditory cortex. Congenitally blind individuals displayed an overall higher amplitude in slow blood oxygen level-dependent fluctuations in visual cortex compared with sighted individuals and compared with congenital cataract-reversal individuals in the eyes closed condition. Higher amplitude of low-frequency fluctuation in visual cortex of congenital cataract-reversal individuals than in normally sighted controls during eyes open might indicate an altered excitatory–inhibitory balance of visual neural circuits. By contrast, the lower parietal increase and the missing downregulation in auditory regions suggest a reduced influence of the visual system on multisensory and the other sensory systems after restoring sight in congenitally blind individuals. These results demonstrate a crucial dependence of visual and multisensory neural system functioning on visual experience during a sensitive phase in human brain development.
Collapse
Affiliation(s)
- Katarzyna Rączy
- University of Hamburg Biological Psychology and Neuropsychology, , 20146 Hamburg, Germany
| | - Cordula Hölig
- University of Hamburg Biological Psychology and Neuropsychology, , 20146 Hamburg, Germany
| | - Maria J. S. Guerreiro
- University of Hamburg Biological Psychology and Neuropsychology, , 20146 Hamburg, Germany
- Biological Psychology, Department of Psychology, Carl Von Ossietzky University of Oldenburg , 26111, Oldenburg, Germany
| | | | - Ramesh Kekunnaya
- Child Sight Institute, LV Prasad Eye Institute Jasti V Ramanamma Children's Eye Care Center, , 500034 Hyderabad, India
| | - Brigitte Röder
- University of Hamburg Biological Psychology and Neuropsychology, , 20146 Hamburg, Germany
| |
Collapse
|
27
|
Michalski N, Petit C. Central auditory deficits associated with genetic forms of peripheral deafness. Hum Genet 2022; 141:335-345. [PMID: 34435241 PMCID: PMC9034985 DOI: 10.1007/s00439-021-02339-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023]
Abstract
Since the 1990s, the study of inherited hearing disorders, mostly those detected at birth, in the prelingual period or in young adults, has led to the identification of their causal genes. The genes responsible for more than 140 isolated (non-syndromic) and about 400 syndromic forms of deafness have already been discovered. Studies of mouse models of these monogenic forms of deafness have provided considerable insight into the molecular mechanisms of hearing, particularly those involved in the development and/or physiology of the auditory sensory organ, the cochlea. In parallel, studies of these models have also made it possible to decipher the pathophysiological mechanisms underlying hearing impairment. This has led a number of laboratories to investigate the potential of gene therapy for curing these forms of deafness. Proof-of-concept has now been obtained for the treatment of several forms of deafness in mouse models, paving the way for clinical trials of cochlear gene therapy in patients in the near future. Nevertheless, peripheral deafness may also be associated with central auditory dysfunctions and may extend well beyond the auditory system itself, as a consequence of alterations to the encoded sensory inputs or involvement of the causal deafness genes in the development and/or functioning of central auditory circuits. Investigating the diversity, causes and underlying mechanisms of these central dysfunctions, the ways in which they could impede the expected benefits of hearing restoration by peripheral gene therapy, and determining how these problems could be remedied is becoming a research field in its own right. Here, we provide an overview of the current knowledge about the central deficits associated with genetic forms of deafness.
Collapse
Affiliation(s)
- Nicolas Michalski
- Institut de l'Audition, Institut Pasteur, INSERM, 75012, Paris, France.
| | - Christine Petit
- Institut de l'Audition, Institut Pasteur, INSERM, 75012, Paris, France.
| |
Collapse
|
28
|
Event-related potential correlates of visuo-tactile motion processing in congenitally deaf humans. Neuropsychologia 2022; 170:108209. [DOI: 10.1016/j.neuropsychologia.2022.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023]
|
29
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
30
|
Lai K, Liu J, Wang J, Zheng Y, Liang M, Wang S. Resting-state EEG reveals global network deficiency in prelingually deaf children with late cochlear implantation. Front Pediatr 2022; 10:909069. [PMID: 36147821 PMCID: PMC9487891 DOI: 10.3389/fped.2022.909069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
There are individual differences in rehabilitation after cochlear implantation that can be explained by brain plasticity. However, from the perspective of brain networks, the effect of implantation age on brain plasticity is unclear. The present study investigated electroencephalography functional networks in the resting state, including eyes-closed and eyes-open conditions, in 31 children with early cochlear implantation, 24 children with late cochlear implantation, and 29 children with normal hearing. Resting-state functional connectivity was measured with phase lag index, and we investigated the connectivity between the sensory regions for each frequency band. Network topology was examined using minimum spanning tree to obtain the network backbone characteristics. The results showed stronger connectivity between auditory and visual regions but reduced global network efficiency in children with late cochlear implantation in the theta and alpha bands. Significant correlations were observed between functional backbone characteristics and speech perception scores in children with cochlear implantation. Collectively, these results reveal an important effect of implantation age on the extent of brain plasticity from a network perspective and indicate that characteristics of the brain network can reflect the extent of rehabilitation of children with cochlear implantation.
Collapse
Affiliation(s)
- Kaiying Lai
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jiahao Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
31
|
Abstract
The auditory cortex of people with sensorineural hearing loss can be re-afferented using a cochlear implant (CI): a neural prosthesis that bypasses the damaged cells in the cochlea to directly stimulate the auditory nerve. Although CIs are the most successful neural prosthesis to date, some CI users still do not achieve satisfactory outcomes using these devices. To explain variability in outcomes, clinicians and researchers have increasingly focused their attention on neuroscientific investigations that examined how the auditory cortices respond to the electric signals that originate from the CI. This chapter provides an overview of the literature that examined how the auditory cortex changes its functional properties in response to inputs from the CI, in animal models and in humans. We focus first on the basic responses to sounds delivered through electrical hearing and, next, we examine the integrity of two fundamental aspects of the auditory system: tonotopy and processing of binaural cues. When addressing the effects of CIs in humans, we also consider speech-evoked responses. We conclude by discussing to what extent this neuroscientific literature can contribute to clinical practices and help to overcome variability in outcomes.
Collapse
Affiliation(s)
- Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | |
Collapse
|
32
|
Merrikhi Y, Kok MA, Carrasco A, Meredith MA, Lomber SG. MULTISENSORY RESPONSES IN A BELT REGION OF THE DORSAL AUDITORY CORTICAL PATHWAY. Eur J Neurosci 2021; 55:589-610. [PMID: 34927294 DOI: 10.1111/ejn.15573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
A basic function of the cerebral cortex is to receive and integrate information from different sensory modalities into a comprehensive percept of the environment. Neurons that demonstrate multisensory convergence occur across the necortex, but are especially prevalent in higher-order, association areas. However, a recent study of a cat higher-order auditory area, the dorsal zone (DZ) of auditory cortex, did not observe any multisensory features. Therefore, the goal of the present investigation was to address this conflict using recording and testing methodologies that are established for exposing and studying multisensory neuronal processing. Among the 482 neurons studied, we found that 76.6% were influenced by non-auditory stimuli. Of these neurons, 99% were affected by visual stimulation, but only 11% by somatosensory. Furthermore, a large proportion of the multisensory neurons showed integrated responses to multisensory stimulation, constituted a majority of the excitatory and inhibitory neurons encountered (as identified by the duration of their waveshape), and exhibited a distinct spatial distribution within DZ. These findings demonstrate that the dorsal zone of auditory cortex robustly exhibits multisensory properties and that the proportions of multisensory neurons encountered are consistent with those identified in other higher-order cortices.
Collapse
Affiliation(s)
- Yaser Merrikhi
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Melanie A Kok
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Andres Carrasco
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - M Alex Meredith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Knipper M, Mazurek B, van Dijk P, Schulze H. Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. J Assoc Res Otolaryngol 2021; 22:609-621. [PMID: 34686939 PMCID: PMC8599745 DOI: 10.1007/s10162-021-00815-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
A curative therapy for tinnitus currently does not exist. One may actually exist but cannot currently be causally linked to tinnitus due to the lack of consistency of concepts about the neural correlate of tinnitus. Depending on predictions, these concepts would require either a suppression or enhancement of brain activity or an increase in inhibition or disinhibition. Although procedures with a potential to silence tinnitus may exist, the lack of rationale for their curative success hampers an optimization of therapeutic protocols. We discuss here six candidate contributors to tinnitus that have been suggested by a variety of scientific experts in the field and that were addressed in a virtual panel discussion at the ARO round table in February 2021. In this discussion, several potential tinnitus contributors were considered: (i) inhibitory circuits, (ii) attention, (iii) stress, (iv) unidentified sub-entities, (v) maladaptive information transmission, and (vi) minor cochlear deafferentation. Finally, (vii) some potential therapeutic approaches were discussed. The results of this discussion is reflected here in view of potential blind spots that may still remain and that have been ignored in most tinnitus literature. We strongly suggest to consider the high impact of connecting the controversial findings to unravel the whole complexity of the tinnitus phenomenon; an essential prerequisite for establishing suitable therapeutic approaches.
Collapse
Affiliation(s)
- Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre (THRC), Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Germany.
| | - Birgit Mazurek
- Tinnitus Center Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Pim van Dijk
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
| |
Collapse
|
34
|
Prince P, Paul BT, Chen J, Le T, Lin V, Dimitrijevic A. Neural correlates of visual stimulus encoding and verbal working memory differ between cochlear implant users and normal-hearing controls. Eur J Neurosci 2021; 54:5016-5037. [PMID: 34146363 PMCID: PMC8457219 DOI: 10.1111/ejn.15365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
A common concern for individuals with severe‐to‐profound hearing loss fitted with cochlear implants (CIs) is difficulty following conversations in noisy environments. Recent work has suggested that these difficulties are related to individual differences in brain function, including verbal working memory and the degree of cross‐modal reorganization of auditory areas for visual processing. However, the neural basis for these relationships is not fully understood. Here, we investigated neural correlates of visual verbal working memory and sensory plasticity in 14 CI users and age‐matched normal‐hearing (NH) controls. While we recorded the high‐density electroencephalogram (EEG), participants completed a modified Sternberg visual working memory task where sets of letters and numbers were presented visually and then recalled at a later time. Results suggested that CI users had comparable behavioural working memory performance compared with NH. However, CI users had more pronounced neural activity during visual stimulus encoding, including stronger visual‐evoked activity in auditory and visual cortices, larger modulations of neural oscillations and increased frontotemporal connectivity. In contrast, during memory retention of the characters, CI users had descriptively weaker neural oscillations and significantly lower frontotemporal connectivity. We interpret the differences in neural correlates of visual stimulus processing in CI users through the lens of cross‐modal and intramodal plasticity.
Collapse
Affiliation(s)
- Priyanka Prince
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brandon T Paul
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychology, Ryerson University, Toronto, Ontario, Canada
| | - Joseph Chen
- Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Faculty of Medicine, Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Trung Le
- Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Faculty of Medicine, Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Lin
- Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Faculty of Medicine, Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Dimitrijevic
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Faculty of Medicine, Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Bednaya E, Pavani F, Ricciardi E, Pietrini P, Bottari D. Oscillatory signatures of Repetition Suppression and Novelty Detection reveal altered induced visual responses in early deafness. Cortex 2021; 142:138-153. [PMID: 34265736 DOI: 10.1016/j.cortex.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
The ability to differentiate between repeated and novel events represents a fundamental property of the visual system. Neural responses are typically reduced upon stimulus repetition, a phenomenon called Repetition Suppression (RS). On the contrary, following a novel visual stimulus, the neural response is generally enhanced, a phenomenon referred to as Novelty Detection (ND). Here, we aimed to investigate the impact of early deafness on the oscillatory signatures of RS and ND brain responses. To this aim, electrophysiological data were acquired in early deaf and hearing control individuals during processing of repeated and novel visual events unattended by participants. By studying evoked and induced oscillatory brain activities, as well as inter-trial phase coherence, we linked response modulations to feedback and/or feedforward processes. Results revealed selective experience-dependent changes on both RS and ND mechanisms. Compared to hearing controls, early deaf individuals displayed: (i) greater attenuation of the response following stimulus repetition, selectively in the induced theta-band (4-7 Hz); (ii) reduced desynchronization following the onset of novel visual stimuli, in the induced alpha and beta bands (8-12 and 13-25 Hz); (iii) comparable modulation of evoked responses and inter-trial phase coherence. The selectivity of the effects in the induced responses parallels findings observed in the auditory cortex of deaf animal models following intracochlear electric stimulation. The present results support the idea that early deafness alters induced oscillatory activity and the functional tuning of basic visual processing.
Collapse
Affiliation(s)
- Evgenia Bednaya
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Italy; Department of Psychology and Cognitive Science, University of Trento, Italy
| | | | - Pietro Pietrini
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
| | - Davide Bottari
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy.
| |
Collapse
|
36
|
Amoruso E, Kromm M, Spampinato D, Kop B, Muret D, Rothwell J, Rocchi L, Makin TR. Stimulating the deprived motor 'hand' area causes facial muscle responses in one-handers. Brain Stimul 2021; 14:347-350. [PMID: 33549718 DOI: 10.1016/j.brs.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Benjamin Kop
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
37
|
Yusuf PA, Hubka P, Tillein J, Vinck M, Kral A. Deafness Weakens Interareal Couplings in the Auditory Cortex. Front Neurosci 2021; 14:625721. [PMID: 33551733 PMCID: PMC7858676 DOI: 10.3389/fnins.2020.625721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
The function of the cerebral cortex essentially depends on the ability to form functional assemblies across different cortical areas serving different functions. Here we investigated how developmental hearing experience affects functional and effective interareal connectivity in the auditory cortex in an animal model with years-long and complete auditory deprivation (deafness) from birth, the congenitally deaf cat (CDC). Using intracortical multielectrode arrays, neuronal activity of adult hearing controls and CDCs was registered in the primary auditory cortex and the secondary posterior auditory field (PAF). Ongoing activity as well as responses to acoustic stimulation (in adult hearing controls) and electric stimulation applied via cochlear implants (in adult hearing controls and CDCs) were analyzed. As functional connectivity measures pairwise phase consistency and Granger causality were used. While the number of coupled sites was nearly identical between controls and CDCs, a reduced coupling strength between the primary and the higher order field was found in CDCs under auditory stimulation. Such stimulus-related decoupling was particularly pronounced in the alpha band and in top–down direction. Ongoing connectivity did not show such a decoupling. These findings suggest that developmental experience is essential for functional interareal interactions during sensory processing. The outcomes demonstrate that corticocortical couplings, particularly top-down connectivity, are compromised following congenital sensory deprivation.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Department of Medical Physics/Medical Technology Core Cluster IMERI, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.,Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Peter Hubka
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany.,Department of Otorhinolaryngology, Goethe University, Frankfurt am Main, Germany.,MedEL Company, Innsbruck, Austria
| | - Martin Vinck
- Ernst Strüngmann Institut for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Centre for Neuroscience, Radboud University, Department of Neuroinformatics, Nijmegen, Netherlands
| | - Andrej Kral
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany.,Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
38
|
Röder B, Kekunnaya R, Guerreiro MJS. Neural mechanisms of visual sensitive periods in humans. Neurosci Biobehav Rev 2020; 120:86-99. [PMID: 33242562 DOI: 10.1016/j.neubiorev.2020.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Sensitive periods in brain development are phases of enhanced susceptibility to experience. Here we discuss research from human and non-human neuroscience studies which have demonstrated a) differences in the way infants vs. adults learn; b) how the brain adapts to atypical conditions, in particular a congenital vs. a late onset blindness (sensitive periods for atypical brain development); and c) the extent to which neural systems are capable of acquiring a typical brain organization after sight restoration following a congenital vs. late phase of pattern vision deprivation (sensitive periods for typical brain development). By integrating these three lines of research, we propose neural mechanisms characteristic of sensitive periods vs. adult neuroplasticity and learning.
Collapse
Affiliation(s)
- Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Germany.
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | | |
Collapse
|
39
|
Zhang J, Huang S, Nan W, Zhou H, Wang J, Wang H, Salvi R, Yin S. Switching Tinnitus-On: Maps and source localization of spontaneous EEG. Clin Neurophysiol 2020; 132:345-357. [PMID: 33450557 DOI: 10.1016/j.clinph.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To identify the spectrotemporal changes and sources in patients that could "turn on" tinnitus with multichannel electroencephalography (EEG) system. METHODS Multichannel EEG was recorded from six patients during the Tinnitus-On and Tinnitus-Off states. The EEG power spectrum and eLORETA-based sources were measured. RESULTS There was a global increase in delta and theta during Tinnitus-On plus large changes in alpha 1 and alpha 2. During the Tinnitus-On state, many new sources in delta, theta, alpha 1 and gamma bands emerged in the opposite hemisphere in the inferior temporal gyrus (Brodmann area, BA 20), middle temporal gyrus (BA 21), lateral perirhinal cortex (BA 36), ventral entorhinal cortex (BA 28) and anterior pole of the temporal gyrus (BA 38). CONCLUSIONS The emergence of new delta, theta and gamma band sources in the inferior temporal gyrus (BA 20), middle temporal gyrus (BA 21) and lateral perirhinal cortex (BA 36) plus the appearance of new delta and theta sources in the ventral entorhinal cortex (BA28) and anterior pole of the temporal lobe (BA 38) may comprise a network capable of evoking the phantom sound of tinnitus by simultaneously engaging brain regions involved in memory, sound recognition, and distress which together contribute to tinnitus severity. SIGNIFICANCE The sudden appearance of new sources of activity in the opposite hemisphere within the inferior temporal gyrus, middle temporal gyrus and perirhinal cortex may initiate the perception of tinnitus perception.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Shujian Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Huiqun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, Canada
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Richard Salvi
- SUNY Distinguished Professor Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, USA
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
40
|
Cross-modal plasticity and central deficiencies: the case of deafness and the use of cochlear implants. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32977890 DOI: 10.1016/b978-0-444-64148-9.00025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The primary objective of this chapter is to describe the consequences of central deficiencies on the neurodevelopment of children. We approach this topic from the standpoint of congenital deafness. Thus we first present the current state of knowledge on cortical reorganization following congenital deafness. The allocation of auditory cortices to other sensory systems can enhance sensory processing and therefore the cognitive functions related to them. Second, we explore the linguistic development of deaf children. Given that the English written system is speech-based, its acquisition is complex and atypical for deaf children, usually leading to poorer achievements. Next, we explore the impact of a neural prosthesis named the cochlear implant on the neurocognitive and linguistic development of deaf children. In some cases, it allows the individuals to, at least partially, regain access to the lost sense. We also comment on the specific needs of the deaf population when it comes to neuropsychological assessment. Finally, we touch on the specific context of deaf children born of deaf parents, and therefore naturally exposed to sign language as the only means of communication.
Collapse
|
41
|
Heimler B, Amedi A. Are critical periods reversible in the adult brain? Insights on cortical specializations based on sensory deprivation studies. Neurosci Biobehav Rev 2020; 116:494-507. [DOI: 10.1016/j.neubiorev.2020.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
|
42
|
Reorganized Brain White Matter in Early- and Late-Onset Deafness With Diffusion Tensor Imaging. Ear Hear 2020; 42:223-234. [PMID: 32833702 DOI: 10.1097/aud.0000000000000917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Individuals with early- and late-onset deafness showed different functional and morphological brain changes, but white matter alterations in both deaf groups still need to be elucidated. This study aimed to investigate changes in white matter integrity and white matter anatomical connectivity in both early- and late-onset deaf groups compared with hearing group. DESIGN Diffusion tensor imaging data from 7 early-onset deaf (50.7 ± 6.5 years), 11 late-onset deaf (50.9 ± 12.3 years), and 9 hearing adults (48.9 ± 9.5 years) were preprocessed using FSL software. To find changes in white matter integrity, tract-based spatial statistics was used, which implemented on FSL software. Fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) were calculated and compared among the groups with age as a nuisance variable. To find out the effect of onset age or duration of deafness to the white matter integrity, onset-age or duration of deafness was treated as a variable of interest in the general linear model implemented on tract-based spatial statistics. White matter connectivity was constructed by a deterministic tractography and compared among the groups. RESULTS In comparison to the hearing group, the early-onset deaf group did not show any significant changes but the late-onset deaf group showed decreased FA and increased RD in the several white matter areas. AD in the late-onset deaf group was not significantly different compared with the hearing group. The regions included the corpus callosum, posterior and superior corona radiata, internal capsule, posterior thalamic radiation, superior longitudinal fasciculus, and tapetum of the right hemisphere. Increased RD was also additionally observed in the right external capsule, fornix, and cerebral peduncle. The onset age or duration of deafness was not significantly correlated with the white matter integrity in the early-onset deaf group. In contrast, the onset age showed a significantly positive correlation with the RD, and a negative correlation with the FA, in the late-onset deaf group. The correlated white matter areas were also similar to the findings of comparison with the hearing group. In comparison to the hearing group, the early-onset deaf group did not show altered white matter connectivity, while the late-onset deaf group showed decreased white matter connectivity in between the right lingual and hippocampal areas. CONCLUSIONS The present results suggest that late-onset deaf adults showed decreased FA and increased RD, and early-onset deaf adults showed no difference compared with the hearing group. In the late-onset deaf adults, onset-age showed a significantly positive correlation with RD and negative correlation with FA. Duration of deafness was not significantly correlated with the changes. Increased RD indicating demyelination occurred in the brain, and the changes were not limited to the auditory cortex but expanded to almost whole brain areas, suggesting significant effect of auditory deprivation on the brain later in life. The altered white matter connectivity in between the right limbic-occipital areas observed in the late-onset deaf group might be caused by altered language functions after auditory deprivation. Future studies are necessary incorporating functional and anatomical aspects of the brain changes in deaf group.
Collapse
|
43
|
Mushtaq F, Wiggins IM, Kitterick PT, Anderson CA, Hartley DEH. The Benefit of Cross-Modal Reorganization on Speech Perception in Pediatric Cochlear Implant Recipients Revealed Using Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2020; 14:308. [PMID: 32922273 PMCID: PMC7457128 DOI: 10.3389/fnhum.2020.00308] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Cochlear implants (CIs) are the most successful treatment for severe-to-profound deafness in children. However, speech outcomes with a CI often lag behind those of normally-hearing children. Some authors have attributed these deficits to the takeover of the auditory temporal cortex by vision following deafness, which has prompted some clinicians to discourage the rehabilitation of pediatric CI recipients using visual speech. We studied this cross-modal activity in the temporal cortex, along with responses to auditory speech and non-speech stimuli, in experienced CI users and normally-hearing controls of school-age, using functional near-infrared spectroscopy. Strikingly, CI users displayed significantly greater cortical responses to visual speech, compared with controls. Importantly, in the same regions, the processing of auditory speech, compared with non-speech stimuli, did not significantly differ between the groups. This suggests that visual and auditory speech are processed synergistically in the temporal cortex of children with CIs, and they should be encouraged, rather than discouraged, to use visual speech.
Collapse
Affiliation(s)
- Faizah Mushtaq
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ian M. Wiggins
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Pádraig T. Kitterick
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Carly A. Anderson
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Douglas E. H. Hartley
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
44
|
Crossmodal reorganisation in deafness: Mechanisms for functional preservation and functional change. Neurosci Biobehav Rev 2020; 113:227-237. [DOI: 10.1016/j.neubiorev.2020.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/29/2020] [Accepted: 03/16/2020] [Indexed: 11/23/2022]
|
45
|
Mowad TG, Willett AE, Mahmoudian M, Lipin M, Heinecke A, Maguire AM, Bennett J, Ashtari M. Compensatory Cross-Modal Plasticity Persists After Sight Restoration. Front Neurosci 2020; 14:291. [PMID: 32477041 PMCID: PMC7235304 DOI: 10.3389/fnins.2020.00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Sensory deprivation prompts extensive structural and functional reorganizations of the cortex resulting in the occupation of space for the lost sense by the intact sensory systems. This process, known as cross-modal plasticity, has been widely studied in individuals with vision or hearing loss. However, little is known on the neuroplastic changes in restoring the deprived sense. Some reports consider the cross-modal functionality maladaptive to the return of the original sense, and others view this as a critical process in maintaining the neurons of the deprived sense active and operational. These controversial views have been challenged in both auditory and vision restoration reports for decades. Recently with the approval of Luxturna as the first retinal gene therapy (GT) drug to reverse blindness, there is a renewed interest for the crucial role of cross-modal plasticity on sight restoration. Employing a battery of task and resting state functional magnetic resonance imaging (rsfMRI), in comparison to a group of sighted controls, we tracked the functional changes in response to auditory and visual stimuli and at rest, in a group of patients with biallelic mutations in the RPE65 gene (“RPE65 patients”) before and 3 years after GT. While the sighted controls did not present any evidence for auditory cross-modal plasticity, robust responses to the auditory stimuli were found in occipital cortex of the RPE65 patients overlapping visual responses and significantly elevated 3 years after GT. The rsfMRI results showed significant connectivity between the auditory and visual areas for both groups albeit attenuated in patients at baseline but enhanced 3 years after GT. Taken together, these findings demonstrate that (1) RPE65 patients present with an auditory cross-modal component; (2) visual and non-visual responses of the visual cortex are considerably enhanced after vision restoration; and (3) auditory cross-modal functions did not adversely affect the success of vision restitution. We hypothesize that following GT, to meet the demand for the newly established retinal signals, remaining or dormant visual neurons are revived or unmasked for greater participation. These neurons or a subset of these neurons respond to both the visual and non-visual demands and further strengthen connectivity between the auditory and visual cortices.
Collapse
Affiliation(s)
- Theresa G Mowad
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Aimee E Willett
- The Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | | | - Mikhail Lipin
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Armin Heinecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Albert M Maguire
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jean Bennett
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Manzar Ashtari
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
Glennon E, Svirsky MA, Froemke RC. Auditory cortical plasticity in cochlear implant users. Curr Opin Neurobiol 2019; 60:108-114. [PMID: 31864104 DOI: 10.1016/j.conb.2019.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/26/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Cochlear implants are one of the most successful neuroprosthetic devices that have been developed to date. Profoundly deaf patients can achieve speech perception after complete loss of sensory input. Despite the improvements many patients experience, there is still a large degree of outcome variability. It has been proposed that central plasticity may be a major factor in the different levels of benefit that patients experience. However, the neural mechanisms of how plasticity impacts cochlear implant learning and the degree of plasticity's influence remain unknown. Here, we review the human and animal research on three of the main ways that central plasticity affects cochlear implant outcomes.
Collapse
Affiliation(s)
- Erin Glennon
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Mario A Svirsky
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|
47
|
Anderson CA, Wiggins IM, Kitterick PT, Hartley DEH. Pre-operative Brain Imaging Using Functional Near-Infrared Spectroscopy Helps Predict Cochlear Implant Outcome in Deaf Adults. J Assoc Res Otolaryngol 2019; 20:511-528. [PMID: 31286300 PMCID: PMC6797684 DOI: 10.1007/s10162-019-00729-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 06/13/2019] [Indexed: 11/26/2022] Open
Abstract
Currently, it is not possible to accurately predict how well a deaf individual will be able to understand speech when hearing is (re)introduced via a cochlear implant. Differences in brain organisation following deafness are thought to contribute to variability in speech understanding with a cochlear implant and may offer unique insights that could help to more reliably predict outcomes. An emerging optical neuroimaging technique, functional near-infrared spectroscopy (fNIRS), was used to determine whether a pre-operative measure of brain activation could explain variability in cochlear implant (CI) outcomes and offer additional prognostic value above that provided by known clinical characteristics. Cross-modal activation to visual speech was measured in bilateral superior temporal cortex of pre- and post-lingually deaf adults before cochlear implantation. Behavioural measures of auditory speech understanding were obtained in the same individuals following 6 months of cochlear implant use. The results showed that stronger pre-operative cross-modal activation of auditory brain regions by visual speech was predictive of poorer auditory speech understanding after implantation. Further investigation suggested that this relationship may have been driven primarily by the inclusion of, and group differences between, pre- and post-lingually deaf individuals. Nonetheless, pre-operative cortical imaging provided additional prognostic value above that of influential clinical characteristics, including the age-at-onset and duration of auditory deprivation, suggesting that objectively assessing the physiological status of the brain using fNIRS imaging pre-operatively may support more accurate prediction of individual CI outcomes. Whilst activation of auditory brain regions by visual speech prior to implantation was related to the CI user's clinical history of deafness, activation to visual speech did not relate to the future ability of these brain regions to respond to auditory speech stimulation with a CI. Greater pre-operative activation of left superior temporal cortex by visual speech was associated with enhanced speechreading abilities, suggesting that visual speech processing may help to maintain left temporal lobe specialisation for language processing during periods of profound deafness.
Collapse
Affiliation(s)
- Carly A Anderson
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK.
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Ian M Wiggins
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Pádraig T Kitterick
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Douglas E H Hartley
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Nottingham University Hospitals NHS Trust, Derby Road, Nottingham, NG7 2UH, UK
| |
Collapse
|
48
|
Qiao Y, Li X, Shen H, Zhang X, Sun Y, Hao W, Guo B, Ni D, Gao Z, Guo H, Shang Y. Downward cross-modal plasticity in single-sided deafness. Neuroimage 2019; 197:608-617. [DOI: 10.1016/j.neuroimage.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
|
49
|
Abstract
Over the past decade, there has been an unprecedented level of interest and progress into understanding visual processing in the brain of the deaf. Specifically, when the brain is deprived of input from one sensory modality (such as hearing), it often compensates with supranormal performance in one or more of the intact sensory systems (such as vision). Recent psychophysical, functional imaging, and reversible deactivation studies have converged to define the specific visual abilities that are enhanced in the deaf, as well as the cortical loci that undergo crossmodal plasticity in the deaf and are responsible for mediating these superior visual functions. Examination of these investigations reveals that central visual functions, such as object and facial discrimination, and peripheral visual functions, such as motion detection, visual localization, visuomotor synchronization, and Vernier acuity (measured in the periphery), are specifically enhanced in the deaf, compared with hearing participants. Furthermore, the cortical loci identified to mediate these functions reside in deaf auditory cortex: BA 41, BA 42, and BA 22, in addition to the rostral area, planum temporale, Te3, and temporal voice area in humans; primary auditory cortex, anterior auditory field, dorsal zone of auditory cortex, auditory field of the anterior ectosylvian sulcus, and posterior auditory field in cats; and primary auditory cortex and anterior auditory field in both ferrets and mice. Overall, the findings from these studies show that crossmodal reorganization in auditory cortex of the deaf is responsible for the superior visual abilities of the deaf.
Collapse
|
50
|
Kral A, Dorman MF, Wilson BS. Neuronal Development of Hearing and Language: Cochlear Implants and Critical Periods. Annu Rev Neurosci 2019; 42:47-65. [DOI: 10.1146/annurev-neuro-080317-061513] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The modern cochlear implant (CI) is the most successful neural prosthesis developed to date. CIs provide hearing to the profoundly hearing impaired and allow the acquisition of spoken language in children born deaf. Results from studies enabled by the CI have provided new insights into ( a) minimal representations at the periphery for speech reception, ( b) brain mechanisms for decoding speech presented in quiet and in acoustically adverse conditions, ( c) the developmental neuroscience of language and hearing, and ( d) the mechanisms and time courses of intramodal and cross-modal plasticity. Additionally, the results have underscored the interconnectedness of brain functions and the importance of top-down processes in perception and learning. The findings are described in this review with emphasis on the developing brain and the acquisition of hearing and spoken language.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical University, 30625 Hannover, Germany
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
- School of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael F. Dorman
- Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287, USA
| | - Blake S. Wilson
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
- School of Medicine and Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|