1
|
Mugge W, Elstgeest LEM, van Ginkel M, Pol L, de Lange IJ, Pambakian N, Assis de Souza A, Helmich RC, Kamphuis DJ. Essential Tremor Suppression with a Novel Anti-Tremor Orthosis: A Randomized Crossover Trial. Mov Disord 2025; 40:445-455. [PMID: 39838596 PMCID: PMC11926495 DOI: 10.1002/mds.30082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Essential tremor (ET) is characterized by action tremor of the arms, which can interfere substantially with daily activities. Pharmacotherapy may be ineffective or associated with side effects, and stereotactic surgery is invasive. Hence, new accessible treatment options are urgently needed. An easy-to-use and lightweight orthotic device that exerts joint damping may provide an alternative solution for reducing tremor in daily activities. OBJECTIVE Our goal was to assess the efficacy of a novel anti-tremor orthosis (STIL) in reducing clinical and accelerometry measures of distal arm tremor in ET. METHODS In a randomized crossover single-blinded trial in 24 ET patients in a hospital setting, we compared three conditions: no orthosis (baseline), a sham device, and the anti-tremor orthosis (order randomized). The orthosis, but not the sham device, passively damped joints in the forearm. Participants performed seven tasks from the Tremor Research Group Essential Tremor Rating Scale (TETRAS). The two co-primary outcome measures were: clinical tremor severity (video-scored TETRAS) and tremor power (accelerometry). Patient satisfaction was self-assessed using the Dutch Quebec User Evaluation of Satisfaction with assistive Technology. Conditions were compared using Wilcoxon signed-rank tests. RESULTS The anti-tremor orthosis significantly reduced TETRAS scores compared to sham and baseline (baseline: 19.0 ± 3.2, sham: 13.7 ± 3.9, orthosis: 9.9 ± 3.6; mean ± standard deviation). Similar effects were observed for tremor power, which was reduced by 87.4% (orthosis vs. baseline) and 59.5% (orthosis vs. sham) across all tasks. A total of 71% of participants were (very) satisfied and 12.5% reported minor adverse events (discomfort/redness of skin). CONCLUSION The anti-tremor orthosis had a clinically relevant tremor-reducing effect in ET in a controlled setting, offering potential for a new treatment to manage ET in daily activities. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Winfred Mugge
- Faculty of Mechanical Engineering, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Milan van Ginkel
- Department of Neurology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Lucas Pol
- Department of Neurology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - IJsbrand de Lange
- Department of Research and Development, STIL B.V, Delft, The Netherlands
| | - Nicola Pambakian
- Department of Research and Development, STIL B.V, Delft, The Netherlands
| | | | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson and Movement Disorders, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daan J Kamphuis
- Department of Neurology, Reinier de Graaf Hospital, Delft, The Netherlands
| |
Collapse
|
2
|
Pan MK. Targeting the fundamentals for tremors: the frequency and amplitude coding in essential tremor. J Biomed Sci 2025; 32:18. [PMID: 39924504 PMCID: PMC11809078 DOI: 10.1186/s12929-024-01112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Essential tremor (ET) is one of the most common movement disorders with heterogeneous pathogenesis involving both genetic and environmental factors, which often results in variable therapeutic outcomes. Despite the diverse etiology, ET is defined by a core symptom of action tremor, an involuntary rhythmic movement that can be mathematically characterized by two parameters: tremor frequency and tremor amplitude. Recent advances in neural dynamics and clinical electrophysiology have provided valuable insights to explain how tremor frequency and amplitude are generated within the central nervous system. This review summarizes both animal and clinical evidence, encompassing the kinematic features of tremors, circuitry dynamics, and the neuronal coding mechanisms for the two parameters. Neural population coding within the olivocerebellum is implicated in determining tremor frequency, while the cerebellar circuitry synchrony and cerebellar-thalamo-cortical interactions play key roles in regulating tremor amplitude. Novel therapeutic strategies aimed at tuning tremor frequency and amplitude are also discussed. These neural dynamic approaches target the conserved mechanisms across ET patients with varying etiologies, offering the potential to develop universally effective therapies for ET.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Road, Taipei, 100, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
4
|
Guehl D, Guillaud E, Langbour N, Doat E, Auzou N, Courtin E, Branchard O, Engelhardt J, Benazzouz A, Eusebio A, Cuny E, Burbaud P. Usefulness of thalamic beta activity for closed-loop therapy in essential tremor. Sci Rep 2023; 13:22332. [PMID: 38102180 PMCID: PMC10724233 DOI: 10.1038/s41598-023-49511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.
Collapse
Affiliation(s)
- Dominique Guehl
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France.
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| | - Etienne Guillaud
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Emilie Doat
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Auzou
- Institut des Maladies Neurodégénératives Clinique (IMNc), Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Edouard Courtin
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | | | | | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpitaux Universitaire de Marseille, Marseille, France
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Univ, CNRS, Marseille, France
| | - Emmanuel Cuny
- Service de Neurochirurgie, CHU de Bordeaux, Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| |
Collapse
|
5
|
Olivier C, Lamy JC, Kosutzka Z, Van Hamme A, Cherif S, Lau B, Vidailhet M, Karachi C, Welter ML. Cerebellar Transcranial Alternating Current Stimulation in Essential Tremor Patients with Thalamic Stimulation: A Proof-of-Concept Study. Neurotherapeutics 2023; 20:1109-1119. [PMID: 37097344 PMCID: PMC10457262 DOI: 10.1007/s13311-023-01372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 04/26/2023] Open
Abstract
Essential tremor (ET) is a disabling condition resulting from a dysfunction of cerebello-thalamo-cortical circuitry. Deep brain stimulation (DBS) or lesion of the ventral-intermediate thalamic nucleus (VIM) is an effective treatment for severe ET. Transcranial cerebellar brain stimulation has recently emerged as a non-invasive potential therapeutic option. Here, we aim to investigate the effects of high-frequency non-invasive cerebellar transcranial alternating current stimulation (tACS) in severe ET patients already operated for VIM-DBS. Eleven ET patients with VIM-DBS, and 10 ET patients without VIM-DBS and matched for tremor severity, were included in this double-blind proof-of-concept controlled study. All patients received unilateral cerebellar sham-tACS and active-tACS for 10 min. Tremor severity was blindly assessed at baseline, without VIM-DBS, during sham-tACS, during and at 0, 20, 40 min after active-tACS, using kinetic recordings during holding posture and action ('nose-to-target') task and videorecorded Fahn-Tolosa-Marin (FTM) clinical scales. In the VIM-DBS group, active-tACS significantly improved both postural and action tremor amplitude and clinical (FTM scales) severity, relative to baseline, whereas sham-tACS did not, with a predominant effect for the ipsilateral arm. Tremor amplitude and clinical severity were also not significantly different between ON VIM-DBS and active-tACS conditions. In the non-VIM-DBS group, we also observed significant improvements in ipsilateral action tremor amplitude, and clinical severity after cerebellar active-tACS, with a trend for improved postural tremor amplitude. In non-VIM-DBS group, sham- active-tACS also decreased clinical scores. These data support the safety and potential efficacy of high-frequency cerebellar-tACS to reduce ET amplitude and severity.
Collapse
Affiliation(s)
- Claire Olivier
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
| | - Jean-Charles Lamy
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Zuzana Kosutzka
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Angèle Van Hamme
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
| | - Saoussen Cherif
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
| | - Brian Lau
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
| | - Marie Vidailhet
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Carine Karachi
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurosurgery, AP-HP, Hôpital Salpetriere, Paris, France
| | - Marie-Laure Welter
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France.
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France.
- Clinical Investigation Center, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
- Department of Neurophysiology, Rouen University Hospital, University of Rouen, Rouen, France.
| |
Collapse
|
6
|
Zhou J, Van der Heijden ME, Salazar Leon LE, Lin T, Miterko LN, Kizek DJ, Perez RM, Pavešković M, Brown AM, Sillitoe RV. Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells 2022; 11:cells11233889. [PMID: 36497147 PMCID: PMC9740691 DOI: 10.3390/cells11233889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a β-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through β1 and β2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in β1 and β2 null mice or Car8wdl/wdl mice lacking β1 and β2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through β-adrenergic receptors and may contribute to tremor therapeutics.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike E. Van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Luis E. Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N. Miterko
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominic J. Kizek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Ross M. Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matea Pavešković
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8913
| |
Collapse
|
7
|
Lee J, Kim J, Cortez J, Chang SY. Thalamo-cortical network is associated with harmaline-induced tremor in rodent model. Exp Neurol 2022; 358:114210. [PMID: 36007599 DOI: 10.1016/j.expneurol.2022.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Essential tremor (ET) is the most frequent form of pathologic tremor and one of the most common adult-onset neurologic impairments. However, underlying mechanisms by which structural alterations within the tremor circuit generate the pathological state and how rhythmic neuronal activities propagate and drive tremor remains unclear. Harmaline (HA)-induced tremor model has been most frequently utilized animal model for ET studies, however, there is still a dearth of knowledge over the degree to whether HA-induced tremor mimics the actual underlying pathophysiology of ET, particularly the involvement of thalamo-cortical region. In this study, we investigated the electrophysiological response of the motor circuit including the ventrolateral thalamus (vlTh) and the primary motor cortex (M1), and the modulatory effect of thalamic deep brain stimulation (DBS) using a rat HA-induced tremor model. We found that the theta and high-frequency oscillation (HFO) band power significantly increased after HA administration in both vlTh and M1, and the activity was modulated by the tremor suppression drug (propranolol) and the thalamic DBS. The theta band phase synchronization between the vlTh and M1 was significantly enhanced during the HA-induced tremor, and the transition of cross-frequency coupling in vlTh was found to be associated with the state of HA-induced tremor. Our findings support that the HA tremor could be useful as a valid preclinical model of ET in the context of thalamo-cortical neural network interaction.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jiwon Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Joshua Cortez
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Sahin G, Halje P, Uzun S, Jakobsson A, Petersson P. Tremor evaluation using smartphone accelerometry in standardized settings. Front Neurosci 2022; 16:861668. [PMID: 35979340 PMCID: PMC9376601 DOI: 10.3389/fnins.2022.861668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Tremor can be highly incapacitating in everyday life and typically fluctuates depending on motor state, medication status as well as external factors. For tremor patients being treated with deep-brain stimulation (DBS), adapting the intensity and pattern of stimulation according the current needs therefore has the potential to generate better symptomatic relief. We here describe a procedure for how patients independently could perform self-tests in their home to generate sensor data for on-line adjustments of DBS parameters. Importantly, the inertia sensor technology needed exists in any standard smartphone, making the procedure widely accessible. Applying this procedure, we have characterized detailed features of tremor patterns displayed by both Parkinson’s disease and essential tremor patients and directly compared measured data against both clinical ratings (Fahn-Tolosa-Marin) and finger-attached inertia sensors. Our results suggest that smartphone accelerometry, when used in a standardized testing procedure, can provide tremor descriptors that are sufficiently detailed and reliable to be used for closed-loop control of DBS.
Collapse
Affiliation(s)
- Gürdal Sahin
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Hässleholm Hospital, Region Skåne, Hässleholm, Sweden
- Skåneuro Neurology Clinic, Lund, Sweden
| | - Pär Halje
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sena Uzun
- Skåneuro Neurology Clinic, Lund, Sweden
- Department of Clinical Sciences of Malmö and Lund, Lund University, Lund, Sweden
| | - Andreas Jakobsson
- Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Lund, Sweden
| | - Per Petersson
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- *Correspondence: Per Petersson,
| |
Collapse
|
9
|
Connecting tremors - a circuits perspective. Curr Opin Neurol 2022; 35:518-524. [PMID: 35788547 DOI: 10.1097/wco.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Tremor is one of the most prevalent movement disorders in clinical practice. Here, we review new insights in the pathophysiology of tremor. We focus on the three most common tremor disorders: essential tremor (ET), dystonic tremor syndrome (DTS), and Parkinson's disease (PD) tremor. RECENT FINDINGS Converging evidence suggests that ET, DTS, and PD tremor are all associated with (partly) overlapping cerebral networks involving the basal ganglia and cerebello-thalamo-cortical circuit. Recent studies have assessed the role of these networks in tremor by measuring tremor-related activity and connectivity with electrophysiology and neuroimaging, and by perturbing network components using invasive and noninvasive brain stimulation. The cerebellum plays a more dominant and causal role in action tremors than in rest tremor, as exemplified by recent findings in ET, DTS, and re-emergent tremor in PD. Furthermore, the role of the cerebellum in DTS is related to clinical differences between patients, for example, whether or not the tremor occurs in a dystonic limb, and whether the tremor is jerky or sinusoidal. SUMMARY Insight into the pathophysiological mechanisms of tremor may provide a more direct window into mechanism-based treatment options than either the etiology or the clinical phenotype of a tremor syndrome.
Collapse
|
10
|
Wagle Shukla A. Reduction of neuronal hyperexcitability with modulation of T-type calcium channel or SK channel in essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:335-355. [PMID: 35750369 DOI: 10.1016/bs.irn.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor is one of the most prevalent movement disorders. Propranolol and primidone are the first-line pharmacological therapies. They provide symptomatic control in less than 50% of patients. Topiramate, alprazolam, clonazepam, gabapentin, and botulinum toxin injections are the next line of treatments. These medications lead to modest improvements and are therefore commonly used as add-on agents. Surgical therapies, including deep brain stimulation (DBS) surgery and focused ultrasound beam targeted to the thalamus, are considered for treating tremor refractory to medications and lead to greater than 75% improvements in tremor symptoms. However, DBS is a costly and an invasive procedure; some patients report tolerance to benefits. Focused ultrasound therapy leading to brain lesions is associated with a possibility for permanent clinical deficits. Therefore, research efforts to develop the next generation of oral medications with greater benefits and lesser adverse effects are warranted. There is considerable evidence that the increased functions of calcium channels (P/Q-type and T-type channels) and reduced functions of calcium-activated potassium channels (SK channels) located in the neuronal membranes lead to tremor oscillations. Consequently, many new pharmacological studies have targeted these channels to leverage better clinical outcomes. The current review will discuss the pathophysiology, the specific importance of these channels, and the early clinical experience of using compounds targeting these channels to treat essential tremor.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
11
|
Bellows S, Jimenez-Shahed J. Is essential tremor a disorder of GABA dysfunction? No. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:285-310. [PMID: 35750366 DOI: 10.1016/bs.irn.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although essential tremor is common, its underlying pathophysiology remains uncertain, and several hypotheses seek to explain the tremor mechanism. The GABA hypothesis states that disinhibition of deep cerebellar neurons due to reduced GABAergic input from Purkinje cells results in increased pacemaker activity, leading to rhythmic output to the thalamo-cortical circuit and resulting in tremor. However, some neuroimaging, spectroscopy, and pathology studies have not shown a clear or consistent GABA deficiency in essential tremor, and animal models have indicated that large reductions of Purkinje cell inhibition may improve tremor. Instead, tremor is increasingly attributable to dysfunction in oscillating networks, where altered (but not necessarily reduced) inhibitory signaling can result in tremor. Hypersynchrony of Purkinje cell activity may account for excessive oscillatory cerebellar output, with potential contributions along multiple sites of the olivocerebellar loop. Although older animal tremor models, such as harmaline tremor, have explored contributions from the inferior olivary body, increasing evidence has pointed to the role of aberrant climbing fiber synaptic organization in oscillatory cerebellar activity and tremor generation. New animal models such as hotfoot17j mice, which exhibit abnormal climbing fiber organization due to mutations in Grid2, have recapitulated many features of ET. Similar abnormal climbing fiber architecture and excessive cerebellar oscillations as measured by EEG have been found in humans with essential tremor. Further understanding of hypersynchrony and excessive oscillatory activity in ET phenotypes may lead to more targeted and effective treatment options.
Collapse
|
12
|
Thalamic local field potentials recorded using the deep brain stimulation pulse generator. Clin Neurophysiol Pract 2022; 7:103-106. [PMID: 35345863 PMCID: PMC8956842 DOI: 10.1016/j.cnp.2022.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 01/25/2023] Open
Abstract
Novel DBS pulse generators can longitudinally record local field potentials. We report tremor-related thalamic activity recorded using an implanted DBS system. This opens up possibilities to implement adaptive DBS into clinical practice.
Background Essential tremor (ET) is one of the most common movement disorders, and continuous deep brain stimulation (DBS) is an established treatment for medication-refractory cases. However, the need for increasing stimulation intensities, with unpleasant side effects, and DBS tolerance over time can be problematic. The advent of novel DBS devices now provides the opportunity to longitudinally record LFPs using the implanted pulse generator, which opens up possibilities to implement adaptive DBS algorithms in a real-life setting. Methods Here we report a case of thalamic LFP activity recorded using a commercially available sensing-enabled DBS pulse generator (Medtronic Percept PC). Results In the OFF-stimulation condition, a peak tremor frequency of 3.8 Hz was identified during tremor evoking movements as assessed by video and accelerometers. Activity at the same and supraharmonic frequency was seen in the frequency spectrum of the LFP data from the left vim nucleus during motor tasks. Coherence analysis showed that peripherally recorded tremor was coherent with the LFP signal at the tremor frequency and supraharmonic frequency. Conclusion This is the first report of recorded tremor-related thalamic activity using the electrodes and pulse generator of an implanted DBS system. Larger studies are needed to evaluate the clinical potential of these fully implantable systems, and ultimately pulse generators with sensing-coupled algorithms driving stimulation, to really close the loop.
Collapse
|
13
|
Patel RR, Zauber SE, Yadav AP, Witt TC, Halum S, Gupta K. Globus Pallidus Interna and Ventral Intermediate Nucleus of the Thalamus Deep Brain Stimulation for Adductor Laryngeal Dystonia: a Case Report of Blinded Analyses of Objective Voice Outcomes in 2 Patients. Neurosurgery 2022; 90:457-463. [PMID: 35138294 DOI: 10.1227/neu.0000000000001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adductor laryngeal dystonia (ADLD) is a substantially debilitating focal progressive neurological voice disorder. Current standard of care is symptomatic treatment with repeated injections of botulinum toxin into specific intrinsic laryngeal muscles with extremely variable and temporary benefits. We report the use of bilateral deep brain stimulation (DBS) of globus pallidus (GPi) for long-term improvement of ADLD voice symptoms. OBJECTIVE To investigate the effects of bilateral DBS of the GPi and ventral intermediate nucleus (VIM) of the thalamus on vocal function in 2 patients with ADLD associated with voice and hand tremor. METHODS Blinded objective and quantitative analyses of voice were conducted before and after treatment in 2 female patients (70 and 69 years). Paired t-tests were conducted to compare voice measurements pre-GPi and post-GPi and VIM-DBS. A 2-way analysis of variance was conducted to determine the interaction between target (GPi/VIM) and time (pre/post) for each voice measure. RESULTS Although the follow-up period differed between patients, the GPi-DBS implanted patient had notable improvement in vowel voicing (%), extent of tremor intensity (%), and overall speech intelligibility (%), compared with preoperative status. GPi-DBS also resulted in significant improvement in cepstral peak prominence (dB). VIM-DBS resulted in a significantly greater change in the tremor rate (Hz). CONCLUSION Changes in phonatory function provide preliminary support for the use of bilateral GPi-DBS for treatment of ADLD and bilateral VIM-DBS for vocal tremor predominant ADLD. Future studies with larger sample sizes and standardized follow-up periods are needed to better assess the role of DBS for ADLD.
Collapse
Affiliation(s)
- Rita R Patel
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine/Indiana University Bloomington, Indianapolis, Indiana, USA
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amol P Yadav
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas C Witt
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stacey Halum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine/Indiana University Bloomington, Indianapolis, Indiana, USA
| | - Kunal Gupta
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Delcamp C, Cormier C, Chalard A, Amarantini D, Gasq D. Botulinum toxin injections combined with rehabilitation decrease corticomuscular coherence in stroke patients. Clin Neurophysiol 2022; 136:49-57. [DOI: 10.1016/j.clinph.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
|
15
|
Woodward K, Apps R, Goodfellow M, Cerminara NL. Cerebello-Thalamo-Cortical Network Dynamics in the Harmaline Rodent Model of Essential Tremor. Front Syst Neurosci 2022; 16:899446. [PMID: 35965995 PMCID: PMC9365993 DOI: 10.3389/fnsys.2022.899446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Essential Tremor (ET) is a common movement disorder, characterised by a posture or movement-related tremor of the upper limbs. Abnormalities within cerebellar circuits are thought to underlie the pathogenesis of ET, resulting in aberrant synchronous oscillatory activity within the thalamo-cortical network leading to tremors. Harmaline produces pathological oscillations within the cerebellum, and a tremor that phenotypically resembles ET. However, the neural network dynamics in cerebellar-thalamo-cortical circuits in harmaline-induced tremor remains unclear, including the way circuit interactions may be influenced by behavioural state. Here, we examined the effect of harmaline on cerebello-thalamo-cortical oscillations during rest and movement. EEG recordings from the sensorimotor cortex and local field potentials (LFP) from thalamic and medial cerebellar nuclei were simultaneously recorded in awake behaving rats, alongside measures of tremor using EMG and accelerometery. Analyses compared neural oscillations before and after systemic administration of harmaline (10 mg/kg, I.P), and coherence across periods when rats were resting vs. moving. During movement, harmaline increased the 9-15 Hz behavioural tremor amplitude and increased thalamic LFP coherence with tremor. Medial cerebellar nuclei and cerebellar vermis LFP coherence with tremor however remained unchanged from rest. These findings suggest harmaline-induced cerebellar oscillations are independent of behavioural state and associated changes in tremor amplitude. By contrast, thalamic oscillations are dependent on behavioural state and related changes in tremor amplitude. This study provides new insights into the role of cerebello-thalamo-cortical network interactions in tremor, whereby neural oscillations in thalamocortical, but not cerebellar circuits can be influenced by movement and/or behavioural tremor amplitude in the harmaline model.
Collapse
Affiliation(s)
- Kathryn Woodward
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Marc Goodfellow
- Department of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nadia L. Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- *Correspondence: Nadia L. Cerminara
| |
Collapse
|
16
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
17
|
Essential tremor amplitude modulation by median nerve stimulation. Sci Rep 2021; 11:17720. [PMID: 34489503 PMCID: PMC8421420 DOI: 10.1038/s41598-021-96660-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Essential tremor is a common neurological disorder, characterised by involuntary shaking of a limb. Patients are usually treated using medications which have limited effects on tremor and may cause side-effects. Surgical therapies are effective in reducing essential tremor, however, the invasive nature of these therapies together with the high cost, greatly limit the number of patients benefiting from them. Non-invasive therapies have gained increasing traction to meet this clinical need. Here, we test a non-invasive and closed-loop electrical stimulation paradigm which tracks peripheral tremor and targets thalamic afferents to modulate the central oscillators underlying tremor. To this end, 9 patients had electrical stimulation delivered to the median nerve locked to different phases of tremor. Peripheral stimulation induced a subtle but significant modulation in five out of nine patients-this modulation consisted mainly of amplification rather than suppression of tremor amplitude. Modulatory effects of stimulation were more pronounced when patient's tremor was spontaneously weaker at stimulation onset, when significant modulation became more frequent amongst subjects. This data suggests that for selected individuals, a more sophisticated control policy entailing an online estimate of both tremor phase and amplitude, should be considered in further explorations of the treatment potential of tremor phase-locked peripheral stimulation.
Collapse
|
18
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson's disease, local field potentials (LFPs) excessively synchronized in the beta band (13-35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13-20 Hz) and high frequency gamma facilitation (35-250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4-13 Hz), beta and gamma (60-90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Duchet B, Weerasinghe G, Bick C, Bogacz R. Optimizing deep brain stimulation based on isostable amplitude in essential tremor patient models. J Neural Eng 2021; 18:046023. [PMID: 33821809 PMCID: PMC7610712 DOI: 10.1088/1741-2552/abd90d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Deep brain stimulation is a treatment for medically refractory essential tremor. To improve the therapy, closed-loop approaches are designed to deliver stimulation according to the system's state, which is constantly monitored by recording a pathological signal associated with symptoms (e.g. brain signal or limb tremor). Since the space of possible closed-loop stimulation strategies is vast and cannot be fully explored experimentally, how to stimulate according to the state should be informed by modeling. A typical modeling goal is to design a stimulation strategy that aims to maximally reduce the Hilbert amplitude of the pathological signal in order to minimize symptoms. Isostables provide a notion of amplitude related to convergence time to the attractor, which can be beneficial in model-based control problems. However, how isostable and Hilbert amplitudes compare when optimizing the amplitude response to stimulation in models constrained by data is unknown. APPROACH We formulate a simple closed-loop stimulation strategy based on models previously fitted to phase-locked deep brain stimulation data from essential tremor patients. We compare the performance of this strategy in suppressing oscillatory power when based on Hilbert amplitude and when based on isostable amplitude. We also compare performance to phase-locked stimulation and open-loop high-frequency stimulation. MAIN RESULTS For our closed-loop phase space stimulation strategy, stimulation based on isostable amplitude is significantly more effective than stimulation based on Hilbert amplitude when amplitude field computation time is limited to minutes. Performance is similar when there are no constraints, however constraints on computation time are expected in clinical applications. Even when computation time is limited to minutes, closed-loop phase space stimulation based on isostable amplitude is advantageous compared to phase-locked stimulation, and is more efficient than high-frequency stimulation. SIGNIFICANCE Our results suggest a potential benefit to using isostable amplitude more broadly for model-based optimization of stimulation in neurological disorders.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
20
|
Elble RJ. Do We Belittle Essential Tremor by Calling It a Syndrome Rather Than a Disease? No. Front Neurol 2020; 11:586606. [PMID: 33101188 PMCID: PMC7554602 DOI: 10.3389/fneur.2020.586606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
A task force of the International Parkinson and Movement Disorder Society (MDS) recently published a tremor classification scheme that is based on the nosologic principle of two primary axes for classifying an illness: clinical manifestations (Axis 1) and etiology (Axis 2). An Axis 1 clinical syndrome is a recurring group of clinical symptoms, signs (physical findings), and possibly laboratory results that suggests the presence of at least one underlying Axis 2 etiology. Syndromes must be defined and used consistently to be of value in finding specific etiologies and effective treatments. The MDS task force concluded that essential tremor is a common neurological syndrome that has never been defined consistently by clinicians and researchers. The MDS task force defined essential tremor as a syndrome of bilateral upper limb action tremor of at least 3 years duration, with or without tremor in other locations (e.g., head, voice, or lower limbs), in the absence of other neurological signs (e.g., dystonia, parkinsonism, myoclonus, ataxia, peripheral neuropathy, and cognitive impairment). Deviations from this definition should not be labeled as essential tremor. Patients with additional questionably-abnormal signs or with signs of uncertain relevance to tremor are classified as essential tremor plus. The MDS classification scheme encourages a thorough unbiased phenotyping of patients with tremor, with no assumptions of etiology, pathology, pathophysiology, or relationship to other neurological disorders. The etiologies, pathology, and clinical course of essential tremor are too heterogeneous for this syndrome to be viewed as a disease or a family of diseases.
Collapse
Affiliation(s)
- Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
21
|
Duchet B, Weerasinghe G, Cagnan H, Brown P, Bick C, Bogacz R. Phase-dependence of response curves to deep brain stimulation and their relationship: from essential tremor patient data to a Wilson-Cowan model. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2020; 10:4. [PMID: 32232686 PMCID: PMC7105566 DOI: 10.1186/s13408-020-00081-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/12/2020] [Indexed: 05/15/2023]
Abstract
Essential tremor manifests predominantly as a tremor of the upper limbs. One therapy option is high-frequency deep brain stimulation, which continuously delivers electrical stimulation to the ventral intermediate nucleus of the thalamus at about 130 Hz. Constant stimulation can lead to side effects, it is therefore desirable to find ways to stimulate less while maintaining clinical efficacy. One strategy, phase-locked deep brain stimulation, consists of stimulating according to the phase of the tremor. To advance methods to optimise deep brain stimulation while providing insights into tremor circuits, we ask the question: can the effects of phase-locked stimulation be accounted for by a canonical Wilson-Cowan model? We first analyse patient data, and identify in half of the datasets significant dependence of the effects of stimulation on the phase at which stimulation is provided. The full nonlinear Wilson-Cowan model is fitted to datasets identified as statistically significant, and we show that in each case the model can fit to the dynamics of patient tremor as well as to the phase response curve. The vast majority of top fits are stable foci. The model provides satisfactory prediction of how patient tremor will react to phase-locked stimulation by predicting patient amplitude response curves although they were not explicitly fitted. We also approximate response curves of the significant datasets by providing analytical results for the linearisation of a stable focus model, a simplification of the Wilson-Cowan model in the stable focus regime. We report that the nonlinear Wilson-Cowan model is able to describe response to stimulation more precisely than the linearisation.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Gihan Weerasinghe
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Hayriye Cagnan
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Christian Bick
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK
- Centre for Systems, Dynamics, and Control and Department of Mathematics, University of Exeter, Exeter, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Rafal Bogacz
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:525-557. [PMID: 32247374 DOI: 10.1016/bs.pbr.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oscillations are a naturally occurring phenomenon in highly interconnected dynamical systems. However, it is thought that excessive synchronized oscillations in brain circuits can be detrimental for many brain functions by disrupting neuronal information processing. Because synchronized basal ganglia oscillations are a hallmark of Parkinson's disease (PD), it has been suggested that aberrant rhythmic activity associated with symptoms of the disease could be used as a physiological biomarker to guide pharmacological and electrical neuromodulatory interventions. We here briefly review the various manifestations of basal ganglia oscillations observed in human subjects and in animal models of PD. In this context, we also review the evidence supporting a pathophysiological role of different oscillations for the suppression of voluntary movements as well as for the induction of excessive motor activity. In light of these findings, it is discussed how oscillations could be used to guide a more precise targeting of dysfunctional circuits to obtain improved symptomatic treatment of PD.
Collapse
|
23
|
Brown AM, White JJ, van der Heijden ME, Zhou J, Lin T, Sillitoe RV. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. eLife 2020; 9:e51928. [PMID: 32180549 PMCID: PMC7077982 DOI: 10.7554/elife.51928] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tremor is currently ranked as the most common movement disorder. The brain regions and neural signals that initiate the debilitating shakiness of different body parts remain unclear. Here, we found that genetically silencing cerebellar Purkinje cell output blocked tremor in mice that were given the tremorgenic drug harmaline. We show in awake behaving mice that the onset of tremor is coincident with rhythmic Purkinje cell firing, which alters the activity of their target cerebellar nuclei cells. We mimic the tremorgenic action of the drug with optogenetics and present evidence that highly patterned Purkinje cell activity drives a powerful tremor in otherwise normal mice. Modulating the altered activity with deep brain stimulation directed to the Purkinje cell output in the cerebellar nuclei reduced tremor in freely moving mice. Together, the data implicate Purkinje cell connectivity as a neural substrate for tremor and a gateway for signals that mediate the disease.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Meike E van der Heijden
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
24
|
Lorentzen J, Willerslev-Olsen M, Hüche Larsen H, Farmer SF, Nielsen JB. Maturation of feedforward toe walking motor program is impaired in children with cerebral palsy. Brain 2020; 142:526-541. [PMID: 30726881 DOI: 10.1093/brain/awz002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Voluntary toe walking in adults is characterized by feedforward control of ankle muscles in order to ensure optimal stability of the ankle joint at ground impact. Toe walking is frequently observed in children with cerebral palsy, but the mechanisms involved have not been clarified. Here, we investigated maturation of voluntary toe walking in typically-developing children and typically-developed adults and compared it to involuntary toe walking in children with cerebral palsy. Twenty-eight children with cerebral palsy (age 3-14 years), 24 typically-developing children (age 2-14 years) and 15 adults (mean age 30.7 years) participated in the study. EMG activity was measured from the tibialis anterior and soleus muscles together with knee and ankle joint position during treadmill walking. In typically-developed adults, low step-to-step variability of the drop of the heel after ground impact was correlated with low tibialis anterior and high soleus EMG with no significant coupling between the antagonist muscle EMGs. Typically-developing children showed a significant age-related decline in EMG amplitude reaching an adult level at 10-12 years of age. The youngest typically-developing children showed a broad peak EMG-EMG synchronization (>100 ms) associated with large 5-15 Hz coherence between antagonist muscle activities. EMG coherence declined with age and at the age of 10-12 years no correlation was observed similar to adults. This reduction in coherence was closely related to improved step-to-step stability of the ankle joint position. Children with cerebral palsy generally showed lower EMG levels than typically-developing children and larger step-to-step variability in ankle joint position. In contrast to typically-developing children, children with cerebral palsy showed no age-related decline in tibialis anterior EMG amplitude. Motor unit synchronization and 5-15 Hz coherence between antagonist EMGs was observed more frequently in children with cerebral palsy when compared to typically-developing children and in contrast to typically-developing participants there was no age-related decline. We conclude that typically-developing children develop mature feedforward control of ankle muscle activity as they age, such that at age 10-12 years there is little agonist-antagonist muscle co-contraction around the time of foot-ground contact during toe walking. Children with cerebral palsy, in contrast, continue to co-contract agonist and antagonist ankle muscles when toe walking. We speculate that children with cerebral palsy maintain a co-contraction activation pattern when toe walking due to weak muscles and insufficient motor and sensory signalling necessary for optimization of feedforward motor programs. These findings are important for understanding of the pathophysiology and treatment of toe walking.
Collapse
Affiliation(s)
- Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Maria Willerslev-Olsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | | | - Simon Francis Farmer
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Clinical Neurology, National Hospital for Neurology and Neurosurgery, UK
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
25
|
Pedrosa DJ, Brown P, Cagnan H, Visser-Vandewalle V, Wirths J, Timmermann L, Brittain JS. A functional micro-electrode mapping of ventral thalamus in essential tremor. Brain 2019; 141:2644-2654. [PMID: 30052807 PMCID: PMC6113647 DOI: 10.1093/brain/awy192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022] Open
Abstract
Deep brain stimulation enables the delivery of therapeutic interventions to otherwise inaccessible areas of the brain while, at the same time, offering the unique opportunity to record from these same regions in awake patients. The posterior ventrolateral thalamus has become a reliable deep brain stimulation target for medically-refractory patients suffering from essential tremor. However, the contribution of the thalamus in essential tremor, and even whether posterior ventrolateral thalamus is the optimal target, remains a matter of ongoing debate. There are several lines of evidence supporting clusters of activity within the posterior ventrolateral thalamus that are important for tremor emergence. In this study we sought to map the functional properties of these clusters through microelectrode recordings during deep brain stimulation surgery. Data were obtained from 10 severely affected patients with essential tremor (12 hemispheres) undergoing deep brain stimulation surgery. Our results demonstrate power and coherence maxima located in the inferior posterior ventrolateral thalamus and immediate ventral region. Moreover, we identified distinct yet overlapping clusters of predominantly efferent (driving) and afferent (feedback) activity, with a preference for more efferent contributors, consistent with a net role in the driving of tremor output. Finally, we demonstrate that resolvable thalamic spiking activity directly relates to background activity and that the strength of tremor may be dictated by phase relationships between efferent and afferent pockets in the posterior ventrolateral thalamus. Taken together, these results provide important evidence for the role of the inferior posterior ventrolateral thalamus and its border region in essential tremor pathophysiology. Such results progress our mechanistic understanding and promote the adoption of next-generation therapies such as high resolution segregated deep brain stimulation electrodes.
Collapse
Affiliation(s)
- David J Pedrosa
- Department of Neurology, University Hospital of Marburg and Gießen, Marburg, Germany.,Nuffield Department of Clinical Neurosciences and MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,Department of Psychiatry, University Hospital of Marburg and Gießen, Marburg, Germany
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences and MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Hayriye Cagnan
- Nuffield Department of Clinical Neurosciences and MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg and Gießen, Marburg, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences and MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
26
|
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R, Petersson P. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 2019; 122:203-231. [DOI: 10.1152/jn.00590.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.
Collapse
Affiliation(s)
- Pär Halje
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Juan J. Mariman
- Research and Development Direction, Universidad Tecnológica de Chile, Inacap, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Programas de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Romulo Fuentes
- Department of Neurocience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Per Petersson
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Tan H, Debarros J, He S, Pogosyan A, Aziz TZ, Huang Y, Wang S, Timmermann L, Visser-Vandewalle V, Pedrosa DJ, Green AL, Brown P. Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul 2019; 12:858-867. [PMID: 30827864 PMCID: PMC6600875 DOI: 10.1016/j.brs.2019.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND High frequency Deep brain stimulation (DBS) targeting motor thalamus is an effective therapy for essential tremor (ET). However, conventional continuous stimulation may deliver unnecessary current to the brain since tremor mainly affects voluntary movements and sustained postures in ET. OBJECTIVE We aim to decode both voluntary movements and the presence of postural tremor from the Local field potentials (LFPs) recorded from the electrode implanted in motor thalamus for stimulation, in order to close the loop for DBS so that stimulation could be delivered on demand, without the need for peripheral sensors or additional invasive electrodes. METHODS LFPs from the motor thalamus, surface electromyographic (EMG) signals and/or behavioural measurements were simultaneously recorded in seven ET patients during temporary lead externalisation 3-5 days after the first surgery for DBS when they performed different voluntary upper limb movements. Nine different patients were recorded during the surgery, when they were asked to lift their arms to trigger postural tremor. A machine learning based binary classifier was used to detect voluntary movements and postural tremor based on features extracted from thalamic LFPs. RESULTS Cross-validation demonstrated that both voluntary movements and postural tremor can be decoded with an average sensitivity of 0.8 and false detection rate of 0.2. Oscillatory activities in the beta frequency bands (13-23 Hz) and the theta frequency bands (4-7 Hz) contributed most to the decoding of movements and postural tremor, respectively, though incorporating features in different frequency bands using a machine learning approach increased the accuracy of decoding.
Collapse
Affiliation(s)
- Huiling Tan
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, United Kingdom.
| | - Jean Debarros
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Yongzhi Huang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shouyan Wang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Lars Timmermann
- Department of Neurology, University Hospital of Gießen and Marburg, Marburg, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, 50924, Cologne, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital of Gießen and Marburg, Marburg, Germany
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, United Kingdom.
| |
Collapse
|
28
|
Naros G, Grimm F, Weiss D, Gharabaghi A. Directional communication during movement execution interferes with tremor in Parkinson's disease. Mov Disord 2019; 33:251-261. [PMID: 29427344 DOI: 10.1002/mds.27221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/15/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Both the cerebello-thalamo-cortical circuit and the basal ganglia/cortical motor loop have been postulated to be generators of tremor in PD. The recent suggestion that the basal ganglia trigger tremor episodes and the cerebello-thalamo-cortical circuitry modulates tremor amplitude combines both competing hypotheses. However, the role of the STN in tremor generation and the impact of proprioceptive feedback on tremor suppression during voluntary movements have not been considered in this model yet. OBJECTIVES The objective of this study was to evaluate the role of the STN and proprioceptive feedback in PD tremor generation during movement execution. METHODS Local-field potentials of the STN as well as electromyographical and electroencephalographical rhythms were recorded in tremor-dominant and nontremor PD patients while performing voluntary movements of the contralateral hand during DBS surgery. Effective connectivity between these electrophysiological signals were analyzed and compared to electromyographical tremor activity. RESULTS There was an intensified information flow between the STN and the muscle in the tremor frequencies (5-8 Hz) for tremor-dominant, in comparison to nontremor, patients. In both subtypes, active movement was associated with an increase of afferent interaction between the muscle and the cortex in the β- and γ-frequencies. The γ-frequency (30-40 Hz) of this communication between muscle and cortex correlated inversely with electromyographical tremor activity. CONCLUSIONS Our results indicate an involvement of the STN in propagation of tremor-related activity to the muscle. Furthermore, we provide evidence that increased proprioceptive information flow during voluntary movement interferes with central tremor generation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Georgios Naros
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Florian Grimm
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
Corie TH, Charles S. Simulated Tremor Propagation in the Upper Limb: From Muscle Activity to Joint Displacement. J Biomech Eng 2019; 141:2730753. [PMID: 30964940 DOI: 10.1115/1.4043442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/19/2022]
Abstract
Although tremor is the most common movement disorder, there are few non-invasive treatment options. Creating effective tremor suppression devices requires a knowledge of where tremor originates mechanically (which muscles) and how it propagates through the limb (to which degrees of freedom, DOF). To simulate tremor propagation, we created a simple model of the upper limb, with tremorogenic activity in the 15 major superficial muscles as inputs and tremulous joint displacement in the 7 major DOF as outputs. The model approximated the muscle excitation-contraction dynamics, musculoskeletal geometry, and mechanical impedance of the limb. From our simulations, we determined fundamental principles for tremor propagation: 1) The distribution of tremor depends strongly on musculoskeletal dynamics. 2) The spreading of tremor is due to inertial coupling (primarily) and musculoskeletal geometry (secondarily). 3) Tremorogenic activity in a given muscle causes significant tremor in only a small subset of DOF, though these affected DOF may be distant from the muscle. 4) Assuming uniform distribution of tremorogenic activity among muscles, tremor increases proximal-distally, and the contribution from muscles increases proximal-distally. 5) Although adding inertia (e.g. with weighted utensils) is often used to suppress tremor, it is possible to increase tremor by adding inertia to the wrong DOF. 6) Similarly, adding viscoelasticity to the wrong DOF can increase tremor. Based solely on the musculoskeletal system, these principles indicate that tremor treatments targeting muscles should focus first on the distal muscles, and devices targeting DOF should focus first on the distal DOF.
Collapse
Affiliation(s)
| | - Steven Charles
- Mechanical Engineering, Neuroscience, Brigham Young University
| |
Collapse
|
30
|
Avecillas-Chasin JM, Poologaindran A, Morrison MD, Rammage LA, Honey CR. Unilateral Thalamic Deep Brain Stimulation for Voice Tremor. Stereotact Funct Neurosurg 2019; 96:392-399. [PMID: 30625492 DOI: 10.1159/000495413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Voice tremor (VT) is the involuntary and rhythmical phonatory instability of the voice. Recent findings suggest that unilateral deep brain stimulation of the ventral intermediate nucleus (Vim-DBS) can sometimes be effective for VT. In this exploratory analysis, we investigated the effect of Vim-DBS on VT and tested the hypothesis that unilateral thalamic stimulation is effective for patients with VT. METHODS Seven patients with VT and previously implanted bilateral Vim-DBS were enrolled in the study. Each patient was randomized and recorded performing sustained phonation during the following conditions: left thalamic stimulation, right thalamic stimulation, bilateral thalamic stimulation (Bil-ON), and no stimulation (Bil-OFF). Perceptual VT ratings and an acoustic analysis to find the rate of variation of the fundamental frequency measured by the standard deviation of the pitch (f0SD) were performed in a blinded manner. For the purposes of this study, a "dominant" side was defined as one with more than twice as much reduction in VT following Vim-DBS compared to the contralateral side. The Wilcoxon signed-rank test was performed to compare the effect of the dominant side stimulation in the reduction of VT scores and f0SD. The volume of activated tissue (VAT) of the dominant stimulation side was modelled against the degree of improvement in VT to correlate the significant stimulation cluster with thalamic anatomy. Finally, tractography analysis was performed to analyze the connectivity of the significant stimulation cluster. RESULTS Unilateral stimulation was beneficial in all 7 patients. Five patients clearly had a "dominant" side with either benefit only seen following stimulation of one side or more than twice as much benefit from one side compared to the other. Two patients had similar benefit with unilateral stimulation from either side. The Wilcoxon paired test showed significant differences between unilateral dominant and unilateral nondominant stimulation for VT scores (p = 0.04), between unilateral dominant and Bil-OFF (p = 0.04), and between Bil-ON and unilateral nondominant stimulation (p = 0.04). No significant differences were found between Bil-ON and unilateral dominant condition (p = 0.27), or between Bil-OFF and unilateral nondominant (p = 0.23). The dominant VAT showed that the significant voxels associated with the best VT control were located in the most ventral and medial part of the Vim nucleus and the ventralis caudalis anterior internus nucleus. The connectivity analysis showed significant connectivity with the cortical areas of the speech circuit. CONCLUSIONS Unilateral dominant-side thalamic stimulation and bilateral thalamic stimulation were equally effective in reducing VT. Nondominant unilateral stimulation alone did not significantly improve VT.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Department of Surgery, Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anujan Poologaindran
- Department of Surgery, Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray D Morrison
- Department of Surgery, Division of Otolaryngology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda A Rammage
- Department of Surgery, Division of Otolaryngology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada,
| |
Collapse
|
31
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 2019; 16:105-118. [PMID: 30607748 PMCID: PMC6361070 DOI: 10.1007/s13311-018-00705-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Tom Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Hopfner F, Deuschl G. Is essential tremor a single entity? Eur J Neurol 2017; 25:71-82. [DOI: 10.1111/ene.13454] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- F. Hopfner
- Department of Neurology; Universitätsklinikum Schleswig-Holstein; Kiel Campus Germany
- Christian-Albrechts Universität; Kiel Germany
| | - G. Deuschl
- Department of Neurology; Universitätsklinikum Schleswig-Holstein; Kiel Campus Germany
- Christian-Albrechts Universität; Kiel Germany
| |
Collapse
|
34
|
Cremoux S, Tallet J, Dal Maso F, Berton E, Amarantini D. Impaired corticomuscular coherence during isometric elbow flexion contractions in humans with cervical spinal cord injury. Eur J Neurosci 2017; 46:1991-2000. [DOI: 10.1111/ejn.13641] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Sylvain Cremoux
- LAMIH, UMR CNRS 8201; Université de Valenciennes et du Hainaut-Cambrésis; F-59313 Valenciennes France
| | - Jessica Tallet
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
| | - Fabien Dal Maso
- Département de Kinésiologie; Université de Montréal; Montréal QC Canada
- School of Physical and Occupational Therapy; McGill University; Montréal QC Canada
| | - Eric Berton
- Aix-Marseille Université; CNRS, ISM UMR 7287; Marseille Cedex 09 France
| | - David Amarantini
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
| |
Collapse
|
35
|
Pedrosa DJ, Nelles C, Brown P, Volz LJ, Pelzer EA, Tittgemeyer M, Brittain JS, Timmermann L. The differentiated networks related to essential tremor onset and its amplitude modulation after alcohol intake. Exp Neurol 2017; 297:50-61. [PMID: 28754506 DOI: 10.1016/j.expneurol.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 01/26/2023]
Abstract
The dysregulation of endogenous rhythms within brain networks have been implicated in a broad range of motor and non-motor pathologies. Essential tremor (ET), classically the purview of a single aberrant pacemaker, has recently become associated with network-level dysfunction across multiple brain regions. Specifically, it has been suggested that motor cortex constitutes an important node in a tremor-generating network involving the cerebellum. Yet the mechanisms by which these regions relate to tremor remain a matter of considerable debate. We sought to discriminate the contributions of cerebral and cerebellar dysregulation by combining high-density electroencephalography with subject-specific structural MRI. For that, we contrasted ET with voluntary (mimicked) tremor before and after ingestion of alcohol to regulate the tremorgenic networks. Our results demonstrate distinct loci of cortical tremor coherence, most pronounced over the sensorimotor cortices in healthy controls, but more frontal motor areas in ET-patients consistent with a heightened involvement of the supplementary motor area. We further demonstrate that the reduction in tremor amplitude associated with alcohol intake is reflected in altered cerebellar - but not cerebral - coupling with movement. Taken together, these findings implicate tremor emergence as principally associated with increases in activity within frontal motor regions, whereas modulation of the amplitude of established tremor relates to changes in cerebellar activity. These findings progress a mechanistic understanding of ET and implicate network-level vulnerabilities in the rhythmic nature of communication throughout the brain.
Collapse
Affiliation(s)
- David J Pedrosa
- Nuffield Department of Clinical Neurosciences, MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom; Department of Neurology, University Hospital Cologne, Cologne, Germany.
| | - Christian Nelles
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany; SAGE Center for the Study of the Mind, University of California, Santa Barbara, USA
| | - Esther A Pelzer
- Max-Planck Institute for Neurological Research Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck Institute for Neurological Research Cologne, Cologne, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Department of Neurology, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
36
|
Sharifi S, Luft F, Verhagen R, Heida T, Speelman JD, Bour LJ, van Rootselaar AF. Intermittent cortical involvement in the preservation of tremor in essential tremor. J Neurophysiol 2017; 118:2628-2635. [PMID: 28701548 DOI: 10.1152/jn.00848.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/16/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022] Open
Abstract
Cortical involvement in essential tremor, an involuntary action tremor supposedly of subcortical origin, is uncertain. Conflicting results of corticomuscular coherence studies in essential tremor suggest an intermittent corticomuscular coupling. On the basis of the literature, we hypothesized that corticomuscular coupling is influenced by bilateral motor synchronization and "cognitive states" such as awareness of tremor. In the present study, we investigated 1) the existence of intermittent corticomuscular coherence (CMC) in essential tremor and 2) factors that influence CMC strength. In 18 essential tremor patients and 18 healthy controls, who mimicked tremor, we simultaneously recorded 64-channel EEG and 6-channel bipolar surface EMG from right and left wrist extensors and flexors. Right-sided (mimicked) hand tremor was recorded with and without a cognitive arithmetic task and with left-sided (mimicked) hand tremor. CMC values per task were compared within and between groups. Changes in CMC strength during tasks were calculated. Our main findings are 1) significant CMC around the (mimicked) tremor frequency across all tasks in both groups; 2) significant differences in CMC between unilateral tasks, with the highest values during the cognitive task only in the essential tremor group; and 3) significant fluctuations of CMC strength over time, independent of the tremor intensity, only in the essential tremor group. Our results suggest a limited role, and certainly not a continuous steering role, of sensorimotor cortical neurons in the generation of tremor. In clinical practice, these findings might help to standardize tremor registration and the interpretation of the analysis.NEW & NOTEWORTHY The part of the motor cortex involved in essential tremor is uncertain. The current electrophysiological study is the first to assess corticomuscular coherence systematically. The study shows a dynamic nature of corticomuscular coherence and a possible influence of cognitive states. The results elucidate the involvement of the motor cortex in tremor and help interpret the varying results in the literature. In clinical practice, the findings may guide in standardizing tremor registration and its interpretation.
Collapse
Affiliation(s)
- Sarvi Sharifi
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, Amsterdam, The Netherlands; .,BIC Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Frauke Luft
- BIC Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands.,Department of Biomedical Signals and Systems, University of Twente, Enschede, The Netherlands; and
| | - Rens Verhagen
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Neurosurgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Tjitske Heida
- Department of Biomedical Signals and Systems, University of Twente, Enschede, The Netherlands; and
| | - Johannes D Speelman
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Lo J Bour
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, Amsterdam, The Netherlands.,BIC Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Yousif N, Mace M, Pavese N, Borisyuk R, Nandi D, Bain P. A Network Model of Local Field Potential Activity in Essential Tremor and the Impact of Deep Brain Stimulation. PLoS Comput Biol 2017; 13:e1005326. [PMID: 28068428 PMCID: PMC5261813 DOI: 10.1371/journal.pcbi.1005326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/24/2017] [Accepted: 12/20/2016] [Indexed: 11/27/2022] Open
Abstract
Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of the affected body part, is often professed to be the most common movement disorder, affecting up to one percent of adults over 40 years of age. The precise cause of ET is unknown, however pathological oscillations of a network of a number of brain regions are implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used to alleviate the symptoms of a number of movement disorders. DBS involves the surgical implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating ET, the mechanism through which the therapeutic effect is obtained is not understood. To elucidate the mechanism underlying the pathological network activity and the effect of DBS on such activity, we take a computational modelling approach combined with electrophysiological data. The pathological brain activity was recorded intra-operatively via implanted DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The modelled network exhibited oscillatory behaviour within the tremor frequency range, as did our electrophysiological data. By applying a DBS-like input we suppressed these oscillations. This study shows that the dynamics of the ET network support oscillations at the tremor frequency and the application of a DBS-like input disrupts this activity, which could be one mechanism underlying the therapeutic benefit. Essential tremor (ET) is acknowledged to be the most common movement disorder affecting 1% of the population. Although the underlying mechanisms remain elusive, the thalamus, cortex and cerebellum are implicated in the underlying pathology. More recently, it has been shown that ET can be successfully treated by deep brain stimulation (DBS). This clinical treatment involves the surgical implantation of electrodes into the brain, through which current is applied. However, the mechanisms of how DBS achieves clinical benefit continue to be debated. A key question is whether ET can be modeled as a pathological network behavior as has been suggested previously. If so, we can then ask how DBS would modulate this brain activity. Our study combines: (i) simultaneous electrophysiological recordings from the brain and muscle; (ii) computational modelling; (iii) mathematical analysis. We found that the network supports oscillations in the tremor range, and the application of high frequency DBS switches this to low amplitude, high-frequency activity. We propose that our model can be used to predict DBS parameter settings that suppress pathological network activity and consequently tremor. In summary, we provide the first population level model of essential tremor including the effect of DBS on network behaviour.
Collapse
Affiliation(s)
- Nada Yousif
- Division of Brain Sciences, Imperial College London, London, United Kingdom
- School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom
- * E-mail:
| | - Michael Mace
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Nicola Pavese
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Roman Borisyuk
- School of Computing and Mathematics, University of Plymouth, Plymouth, United Kingdom
- Institute of Mathematical Problems of Biology of RAS, The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
| | - Dipankar Nandi
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Peter Bain
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Currently available therapies for essential tremor (ET) provide sufficient control only for less than a half of patients and many unmet needs exist. This is in part due to the empiric nature of existing treatment options and persisting uncertainties about the pathogenesis of ET. The emerging concept of ET as a possible neurodegenerative disorder, better understanding of associated biochemical changes, including alterations in the γ-aminobutyric acid (GABA)-ergic system and gap junctions, and the identification of the role of the leucine-rich repeat and immunoglobulin-like domain-containing 1 (LINGO-1) gene in ET pathogenesis suggest new avenues for more targeted therapies. Here we review the most promising new approaches to treating ET, including allosteric modulation of GABA receptors and modifications of the LINGO-1 pathway. Medically refractory tremor can be successfully treated by high-frequency deep brain stimulation (DBS) of the ventral intermediate nucleus, but surgical therapies are also fraught with limitations due to adverse effects of stimulation and the loss of therapeutic response. The selection of additional thalamic and extrathalamic targets for electrode placements and the development of a closed-loop DBS system enabling automatic adjustment of stimulation parameters in response to changes in electrophysiologic brain activity are also reviewed. Tremor cancellation methods using exoskeleton and external hand-held devices are also briefly discussed.
Collapse
Affiliation(s)
- Peter Hedera
- Department of Neurology, Vanderbilt University, 465 21st Avenue South, 6140 MRB III, Nashville, TN 37240, USA
| |
Collapse
|
39
|
Pedrosa DJ, Nelles C, Maier F, Eggers C, Burghaus L, Fink GR, Wittmann M, Timmermann L. Time reproduction deficits in essential tremor patients. Mov Disord 2016; 31:1234-40. [PMID: 27091412 DOI: 10.1002/mds.26630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Although motor symptoms predominate in essential tremor, increasing evidence indicates additional cognitive deficits. According to the pivotal role of cognitive functioning for temporal information processing and acknowledging the relevance of temporal information processing for movement coordination, we investigated whether essential tremor patients exhibit time reproduction deficits. METHODS A total of 24 essential tremor patients and 24 healthy controls performed sub- and suprasecond visual duration reproduction tasks of 500 to 900 milliseconds and 1.6 to 2.4 seconds, respectively. To differentiate deficient time processing from motor or other cognitive dysfunctions, the average temporal reproduction errors were correlated with tremor severity, immediate and delayed word-list recall performance, and verbal fluency. RESULTS Essential tremor patients significantly underreproduced sub- and suprasecond time intervals longer than 800 milliseconds. Moreover, time compression correlated significantly with semantic verbal fluency and word-list retrieval performance, but not with tremor severity. CONCLUSION Data suggest impaired temporal processing in essential tremor, corroborating evidence for specific cognitive deficits. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Pedrosa
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christian Nelles
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Franziska Maier
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lothar Burghaus
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
40
|
Charissou C, Vigouroux L, Berton E, Amarantini D. Fatigue- and training-related changes in ‘beta’ intermuscular interactions between agonist muscles. J Electromyogr Kinesiol 2016; 27:52-9. [DOI: 10.1016/j.jelekin.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
|