1
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
2
|
Škandík M, Friess L, Vázquez-Cabrera G, Keane L, Grabert K, Cruz De Los Santos M, Posada-Pérez M, Baleviciute A, Cheray M, Joseph B. Age-associated microglial transcriptome leads to diminished immunogenicity and dysregulation of MCT4 and P2RY12/P2RY13 related functions. Cell Death Discov 2025; 11:16. [PMID: 39828750 PMCID: PMC11743796 DOI: 10.1038/s41420-025-02295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The aging process is marked by a time-dependent deterioration in cellular functions, particularly the immune and neural systems. Understanding the phenotype acquisition of microglia, the sentinel immune cells of the brain, is crucial for understanding the nature of age-related neurological diseases. However, the specific phenotype adopted by microglia during aging remains a subject of debate and is contingent on the chosen experimental model. To address these unresolved questions, we employed a novel and highly controlled approach utilizing long-term cultivated BV-2 microglia, exempted from additional external stimuli. Our findings revealed that aged microglial cells, in comparison to their younger counterparts, acquire a distinct gene expression profile, primarily characterized by alterations in microglial immune response. Indeed, pro-inflammatory stimulated aged and young BV-2 microglia exhibited similar transcriptomic profiles, yet the response intensity to the stimulus was markedly muted in the aged microglia. Functional neurotoxic assays confirmed diminished neuronal death in coculture with aged, activated microglia, underscoring a compromised immune response. Furthermore, a subsequent comparative analysis of aged BV-2 microglia with established transcriptomic microglial datasets from aged mice and humans identified 13 overlapping genes, laying the foundation for identifying core microglial aging signature. Particularly noteworthy were SLC16A3 and P2RY13, which consistently exhibited upregulation and downregulation, respectively, across all datasets. Additionally, four other genes-CAPG, LGALS3BP, NRIP1, and P2RY12-were found to share regulatory patterns in response to both aging and extrinsic activation. An in-depth investigation focused on SLC16A3, encoding the high-affinity lactate transporter MCT4, revealed disruptions in extracellular acidification rate and lactate concentration with age. Microglial purine sensing and motility capacities, regulated by P2RY12/P2RY13, displayed age-related alterations. Remarkably, protein analysis in human brain tissue validated the observed upregulation of MCT4 and downregulation of P2RY12 in aged microglia. In conclusion, our study unveils a distinct phenotype in aged microglia characterized by compromised immune responsiveness. Through the integration of in vitro cultured BV-2 microglia with primary microglia datasets, we identify critical molecular determinants of microglial cellular aging confirmed in human-aged brain tissue. This comprehensive approach offers potential insights for understanding and potentially reprogramming aged microglia, with implications for combating age-related neurological disorders.
Collapse
Affiliation(s)
- Martin Škandík
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Friess
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Lily Keane
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kathleen Grabert
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Cruz De Los Santos
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mercedes Posada-Pérez
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong-Kong, China
| | - Austeja Baleviciute
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Center for Neuromusculoskeletal Restorative Medicine, Hong-Kong, China.
| |
Collapse
|
3
|
Feichtenbiner AB, Sytsma K, O'Boyle RP, Mittenzwei R, Maioli H, Scherpelz KP, Child DD, Li N, Ariza Torres J, Keene L, Kirkland A, Howard K, Latimer C, Keene CD, Ransom C, Nolan AL. Satellite microglia: marker of traumatic brain injury and regulator of neuronal excitability. J Neuroinflammation 2025; 22:9. [PMID: 39819341 PMCID: PMC11740464 DOI: 10.1186/s12974-024-03328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
Traumatic brain injury is a leading cause of chronic neurologic disability and a risk factor for development of neurodegenerative disease. However, little is known regarding the pathophysiology of human traumatic brain injury, especially in the window after acute injury and the later life development of progressive neurodegenerative disease. Given the proposed mechanisms of toxic protein production and neuroinflammation as possible initiators or contributors to progressive pathology, we examined phosphorylated tau accumulation, microgliosis and astrogliosis using immunostaining in the orbitofrontal cortex, a region often vulnerable across traumatic brain injury exposures, in an age and sex-matched cohort of community traumatic brain injury including both mild and severe cases in midlife. We found that microglial response is most prominent after chronic traumatic brain injury, and interactions with neurons in the form of satellite microglia are increased, even after mild traumatic brain injury. Taking our investigation into a mouse model, we identified that these satellite microglia suppress neuronal excitability in control conditions but lose this ability with chronic traumatic brain injury. At the same time, network hyperexcitability is present in both mouse and human orbitofrontal cortex. Our findings support a role for loss of homeostatic control by satellite microglia in the maladaptive circuit changes that occur after traumatic brain injury.
Collapse
Affiliation(s)
- Alicia B Feichtenbiner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Karinn Sytsma
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Ryan P O'Boyle
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Rhonda Mittenzwei
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
- King County Office of the Medical Examiner, Seattle, WA, 98104, USA
| | - Heather Maioli
- Office of Chief Medical Examiner of the City of New York, New York, NY, 10016, USA
| | - Kathryn P Scherpelz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Ning Li
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Puget Sound Veterans Affairs Seattle Medical Center, Seattle, WA, 98108, USA
| | | | - Lisa Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Kimberly Howard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Christopher Ransom
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Puget Sound Veterans Affairs Seattle Medical Center, Seattle, WA, 98108, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
- Puget Sound Veterans Affairs Seattle Medical Center, Seattle, WA, 98108, USA.
| |
Collapse
|
4
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith IF. ER and SOCE Ca 2+ signals are not required for directed cell migration in human iPSC-derived microglia. Cell Calcium 2024; 123:102923. [PMID: 38970922 DOI: 10.1016/j.ceca.2024.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or - following major injuries - by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Immunology, University of California, Irvine, CA, United States
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| |
Collapse
|
5
|
Di Chiano M, Rocchetti MT, Spano G, Russo P, Allegretta C, Milior G, Gadaleta RM, Sallustio F, Pontrelli P, Gesualdo L, Avolio C, Fiocco D, Gallone A. Lactobacilli Cell-Free Supernatants Modulate Inflammation and Oxidative Stress in Human Microglia via NRF2-SOD1 Signaling. Cell Mol Neurobiol 2024; 44:60. [PMID: 39287687 PMCID: PMC11408562 DOI: 10.1007/s10571-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Microglia are macrophage cells residing in the brain, where they exert a key role in neuronal protection. Through the gut-brain axis, metabolites produced by gut commensal microbes can influence brain functions, including microglial activity. The nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the oxidative stress response in microglia, controlling the expression of cytoprotective genes. Lactobacilli-derived cell-free supernatants (CFSs) are postbiotics that have shown antioxidant and immunomodulatory effects in several in vitro and in vivo studies. This study aimed to explore the effects of lactobacilli CFSs on modulating microglial responses against oxidative stress and inflammation. HMC3 microglia were exposed to lipopolysaccaride (LPS), as an inflammatory trigger, before and after administration of CFSs from three human gut probiotic species. The NRF2 nuclear protein activation and the expression of NRF2-controlled antioxidant genes were investigated by immunoassay and quantitative RT-PCR, respectively. Furthermore, the level of pro- and anti-inflammatory cytokines was evaluated by immunoassay. All CFSs induced a significant increase of NRF2 nuclear activity in basal conditions and upon inflammation. The transcription of antioxidant genes, namely heme oxygenase 1, superoxide dismutase (SOD), glutathione-S transferase, glutathione peroxidase, and catalase also increased, especially after inflammatory stimulus. Besides, higher SOD1 activity was detected relative to inflamed microglia. In addition, CFSs pre-treatment of microglia attenuated pro-inflammatory TNF-α levels while increasing anti-inflammatory IL-10 levels. These findings confirmed that gut microorganisms' metabolites can play a relevant role in adjuvating the microglia cellular response against neuroinflammation and oxidative stress, which are known to cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | | | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giampaolo Milior
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005, Paris, France
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale Biostrutture e Biosistemi INBB, Viale delle Medaglie d'Oro, Roma, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Mattei D, Ivanov A, Hammer J, Ugursu B, Schalbetter S, Richetto J, Weber-Stadlbauer U, Mueller F, Scarborough J, Wolf SA, Kettenmann H, Wollscheid B, Beule D, Meyer U. Microglia undergo molecular and functional adaptations to dark and light phases in male laboratory mice. Brain Behav Immun 2024; 120:571-583. [PMID: 38986723 DOI: 10.1016/j.bbi.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Microglia are increasingly recognized to contribute to brain health and disease. Preclinical studies using laboratory rodents are essential to advance our understanding of the physiological and pathophysiological roles of these cells in the central nervous system. Rodents are nocturnal animals, and they are mostly maintained in a defined light-dark cycle within animal facilities, with many laboratories investigating the molecular and functional profiles of microglia exclusively during the animals' light (sleep) phase. However, only a few studies have considered possible differences in microglial functions between the active and sleep phases. Based on initial evidence suggesting that microglial intrinsic clock genes can affect their phenotypes, we sought to investigate differences in transcriptional, proteotype and functional profiles of microglia between light (sleep) and dark (active) phases, and how these changes are affected in pathological models. We found marked transcriptional and proteotype differences between microglia harvested from male mice during the light or dark phase. Amongst others, these differences related to genes and proteins associated with immune responses, motility, and phagocytosis, which were reflected by functional alterations in microglial synaptic pruning and response to bacterial stimuli. Possibly accounting for such changes, we found RNA and protein regulation in SWI/SNF and NuRD chromatin remodeling complexes between light and dark phases. Importantly, we also show that the time of microglial sample collection influences the nature of microglial transcriptomic changes in a model of immune-mediated neurodevelopmental disorders. Our findings emphasize the importance of considering diurnal factors in studying microglial cells and indicate that implementing a circadian perspective is pivotal for advancing our understanding of their physiological and pathophysiological roles in brain health and disease.
Collapse
Affiliation(s)
- Daniele Mattei
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin, Berlin, Germany
| | - Jacqueline Hammer
- Institute of Molecular Systems Biology and Department for Health Sciences and Technology, ETH Zürich, Switzerland
| | - Bilge Ugursu
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Germany; Psychoneuroimmunology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sina Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Flavia Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Susanne A Wolf
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Germany; Psychoneuroimmunology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernd Wollscheid
- Institute of Molecular Systems Biology and Department for Health Sciences and Technology, ETH Zürich, Switzerland
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin, Berlin, Germany
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Wallis GJ, Bell LA, Wagner JN, Buxton L, Balachandar L, Wilcox KS. Reactive microglia fail to respond to environmental damage signals in a viral-induced mouse model of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583768. [PMID: 38558969 PMCID: PMC10979929 DOI: 10.1101/2024.03.06.583768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Microglia are highly adaptable innate immune cells that rapidly respond to damage signals in the brain through adoption of a reactive phenotype and production of defensive inflammatory cytokines. Microglia express a distinct transcriptome, encoding receptors that allow them to dynamically respond to pathogens, damage signals, and cellular debris. Expression of one such receptor, the microglia-specific purinergic receptor P2ry12, is known to be downregulated in reactive microglia. Here, we explore the microglial response to purinergic damage signals in reactive microglia in the TMEV mouse model of viral brain infection and temporal lobe epilepsy. Using two-photon calcium imaging in acute hippocampal brain slices, we found that the ability of microglia to detect damage signals, engage calcium signaling pathways, and chemoattract towards laser-induced tissue damage was dramatically reduced during the peak period of seizures, cytokine production, and infection. Using combined RNAscope in situ hybridization and immunohistochemistry, we found that during this same stage of heightened infection and seizures, microglial P2ry12 expression was reduced, while the pro-inflammatory cytokine TNF-a expression was upregulated in microglia, suggesting that the depressed ability of microglia to respond to new damage signals via P2ry12 occurs during the time when local elevated cytokine production contributes to seizure generation following infection. Therefore, changes in microglial purinergic receptors during infection likely limit the ability of reactive microglia to respond to new threats in the CNS and locally contain the scale of the innate immune response in the brain.
Collapse
Affiliation(s)
- Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| | - John N. Wagner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lauren Buxton
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lakshmini Balachandar
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| |
Collapse
|
8
|
Salas-Gallardo GA, Lorea-Hernández JJ, Robles-Gómez ÁA, Del Campo CCM, Peña-Ortega F. Morphological differentiation of peritumoral brain zone microglia. PLoS One 2024; 19:e0297576. [PMID: 38451958 PMCID: PMC10919594 DOI: 10.1371/journal.pone.0297576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The Peritumoral Brain Zone (PBZ) contributes to Glioblastoma (GBM) relapse months after the resection of the original tumor, which is influenced by a variety of pathological factors. Among those, microglia are recognized as one of the main regulators of GBM progression and probably relapse. Although microglial morphology has been analyzed inside GBM and its immediate surroundings, it has not been objectively characterized throughout the PBZ. Thus, we aimed to perform a thorough characterization of microglial morphology in the PBZ and its likely differentiation not just from the tumor-associated microglia but from control tissue microglia. For this purpose, Sprague Dawley rats were intrastriatally implanted with C6 cells to induce a GBM formation. Gadolinium-based magnetic resonance imaging (MRI) was performed to locate the tumor and to define the PBZ (2 mm beyond the tumor border), thus delimitating the different regions of interest (ROIs: core tumoral zone and immediate interface; contralateral striatum as control). Brain slices were obtained and immunolabeled with the microglia marker Iba-1. Sixteen morphological parameters were measured for each cell, significative differences were found in all parameters when comparing the four ROIs. To determine if PBZ microglia could be morphologically differentiated from microglia in other ROIs, hierarchical clustering analysis was performed, revealing that microglia can be separated into four morphologically differentiated clusters, each of them mostly integrated by cells sampled in each ROI. Furthermore, a classifier based on linear discriminant analysis, including only three morphological parameters, categorized microglial cells across the studied ROIs and showed a gradual transition between them. The robustness of this classification was assessed through principal component analysis with the remaining 13 morphological parameters, corroborating the obtained results. Thus, in this study we provided objective and quantitative evidence that PBZ microglia represent a differentiable microglial morphotype that could contribute to the recurrence of GBM in this area.
Collapse
Affiliation(s)
- G. Anahí Salas-Gallardo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Ángel Abdiel Robles-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudia Castillo-Martin Del Campo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
9
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
Affiliation(s)
- Ali Rifat
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Pawel Fidzinski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Onken
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank L Heppner
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
11
|
Ma C, Li B, Silverman D, Ding X, Li A, Xiao C, Huang G, Worden K, Muroy S, Chen W, Xu Z, Tso CF, Huang Y, Zhang Y, Luo Q, Saijo K, Dan Y. Microglia regulate sleep through calcium-dependent modulation of norepinephrine transmission. Nat Neurosci 2024; 27:249-258. [PMID: 38238430 PMCID: PMC10849959 DOI: 10.1038/s41593-023-01548-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024]
Abstract
Sleep interacts reciprocally with immune system activity, but its specific relationship with microglia-the resident immune cells in the brain-remains poorly understood. Here, we show in mice that microglia can regulate sleep through a mechanism involving Gi-coupled GPCRs, intracellular Ca2+ signaling and suppression of norepinephrine transmission. Chemogenetic activation of microglia Gi signaling strongly promoted sleep, whereas pharmacological blockade of Gi-coupled P2Y12 receptors decreased sleep. Two-photon imaging in the cortex showed that P2Y12-Gi activation elevated microglia intracellular Ca2+, and blockade of this Ca2+ elevation largely abolished the Gi-induced sleep increase. Microglia Ca2+ level also increased at natural wake-to-sleep transitions, caused partly by reduced norepinephrine levels. Furthermore, imaging of norepinephrine with its biosensor in the cortex showed that microglia P2Y12-Gi activation significantly reduced norepinephrine levels, partly by increasing the adenosine concentration. These findings indicate that microglia can regulate sleep through reciprocal interactions with norepinephrine transmission.
Collapse
Affiliation(s)
- Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bing Li
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xinlu Ding
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Anan Li
- Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou, China
| | - Chi Xiao
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Ganghua Huang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Kurtresha Worden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sandra Muroy
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Wei Chen
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Zhengchao Xu
- Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Chak Foon Tso
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- , Sunnyvale, CA, USA
| | - Yixuan Huang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Yufan Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Qingming Luo
- Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Kaoru Saijo
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith I. ER and SOCE Ca 2+ signals are not required for directed cell migration in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576126. [PMID: 38293075 PMCID: PMC10827168 DOI: 10.1101/2024.01.18.576126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Stefano L. Sensi
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Immunology, University of California, Irvine, Irvine, United States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| |
Collapse
|
13
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
14
|
Milior G, Di Chiano M, Morin-Brureau M. Specificities of Living Human Microglial Cells. ADVANCES IN NEUROBIOLOGY 2024; 37:569-578. [PMID: 39207713 DOI: 10.1007/978-3-031-55529-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are macrophages residing in the central nervous system, where they perform immune surveillance, synaptic remodeling, neurogenesis, and monitor signals arising from brain injuries or potential pathogens.Commonly, rodent models are used for studying microglia because of the available transgenic mouse lines in which specific genetic manipulations are successfully accomplished. However, human and rodents microglia showed significant differences, which are reflected in different morphological and functional properties. These differences are in genetic and transcriptomic, but also in the expression of signaling molecules and age-associated changes.Several strategies are available to study human microglia, as using surgical brain resections from epileptic and tumoral tissues and from post mortem brain samples. In addition, the generation of human-induced pluripotent stem cells (hPSCs) and the possibility to differentiate them in microglia-like cells provide unique opportunities to compare microglia functions between rodents' and human brain.The use of human ex vivo and in vitro brain models allows the study of human microglia, mimicking in vivo conditions. This will be useful for a better understanding of the real live behavior and functions of microglia in the human brain. This chapter aims to highlight significant similarities and differences between human and rodent microglia in order to re-evaluate mouse models of different human brain disorders, proposing the use of in vitro and ex vivo human brain models.Studies on living human microglia in the brain may help to define divergences from animal models and to improve clinical interventions to treat brain pathologies, using alternatives targets.
Collapse
Affiliation(s)
- Giampaolo Milior
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Melanie Morin-Brureau
- INSERM, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
15
|
Garaschuk O, Verkhratsky A. Calcium Signalling in Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:123-133. [PMID: 39207689 DOI: 10.1007/978-3-031-55529-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracellular Ca2+ signalling represents the substrate of microglial excitability. Spatially and temporally organised changes in the free cytoplasmic Ca2+ concentration ([Ca2+]i) are generated in response to physiological and pathological stimuli. Parameters of these intracellular Ca2+ signals are defined by Ca2+ signalling toolkits that may change with age or context therefore increasing adaptive capabilities of microglia. Main Ca2+ signalling pathways in microglial cells are associated with dynamic endoplasmic reticulum Ca2+ stores and with plasmalemmal Ca2+ entry mediated by several sets of Ca2+-permeable channels including transient receptor potential (TRP) channels, ORAI channels and P2X4/7 purinoceptors. Microglial Ca2+ dynamics is also linked to TREM2 signalling cascade, contributing to neuroprotection in neurodegenerative diseases. Microglial Ca2+ signals act as reliable and precise sensors of brain dyshomeostasis and pathological insults.
Collapse
Affiliation(s)
- Olga Garaschuk
- Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
16
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
17
|
Pan K, Garaschuk O. The role of intracellular calcium-store-mediated calcium signals in in vivo sensor and effector functions of microglia. J Physiol 2023; 601:4203-4215. [PMID: 35315518 DOI: 10.1113/jp279521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
Under physiological conditions microglia, the immune sentinels of the brain, constantly monitor their microenvironment. In the case of danger, damage or cell/tissue dyshomeostasis, they react with changes in process motility, polarization, directed process movement, morphology and gene expression profile; release pro- and anti-inflammatory mediators; proliferate; and clean brain parenchyma by means of phagocytosis. Based on recent transcriptomic and in vivo Ca2+ imaging data, we argue that the local cell/tissue dyshomeostasis is sensed by microglia via intracellular Ca2+ signals, many of which are mediated by Ca2+ release from the intracellular Ca2+ stores. These signals encode the strength, duration and spatiotemporal pattern of the stimulus and, at the same time, relay this information further to trigger the respective Ca2+ -dependent effector pathways. We also point to the fact that microglial Ca2+ signalling is sexually dimorphic and undergoes profound changes across the organism's lifespan. Interestingly, the first changes in microglial Ca2+ signalling are visible already in 9- to 11-month-old mice, roughly corresponding to 40-year-old humans.
Collapse
Affiliation(s)
- Kuang Pan
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
19
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
20
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
22
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
23
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Hanin A, Cespedes J, Huttner A, Strelnikov D, Gopaul M, DiStasio M, Vezzani A, Hirsch LJ, Aronica E. Neuropathology of New-Onset Refractory Status Epilepticus (NORSE). J Neurol 2023:10.1007/s00415-023-11726-x. [PMID: 37079033 DOI: 10.1007/s00415-023-11726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., "cryptogenic NORSE"). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE.
Collapse
Affiliation(s)
- Aurélie Hanin
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, DMU Neurosciences 6, Paris, France.
- Epilepsy Unit and Department of Clinical Neurophysiology, AP-HP, Hôpital de La Pitié-Salpêtrière, DMU Neurosciences 6, Paris, France.
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- School of Medicine, Universidad Autonoma de Centro America, San Jose, Costa Rica
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Strelnikov
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Gopaul
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcello DiStasio
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Recerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
25
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Wang Q, Shi NR, Lv P, Liu J, Zhang JZ, Deng BL, Zuo YQ, Yang J, Wang X, Chen X, Hu XM, Liu TT, Liu J. P2Y12 receptor gene polymorphisms are associated with epilepsy. Purinergic Signal 2023; 19:155-162. [PMID: 35175489 PMCID: PMC9984642 DOI: 10.1007/s11302-022-09848-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022] Open
Abstract
The basic research indicated that microglial P2Y12 receptors (P2Y12Rs) are involved in the pathophysiology of epilepsy through regulated microglial-neuronal interactions, aberrant neurogenesis, or immature neuronal projections. However, whether the clinic case of epilepsy would be associated with P2Y12 receptor gene polymorphisms is presented with few data. In our study, a total of 176 patients with epilepsy and 50 healthy controls were enrolled. Two single-nucleotide polymorphisms, namely rs1491974 and rs6798347, were selected for analysis. The results revealed that carriers of the G allele of rs1491974 G>A or rs6798347 G>A may be associated with an increased risk of epilepsy (OR = 0.576, 95% CI = 0.368-0.901, p = 0.015; OR = 0.603, 95% CI = 0.367-0.988, p = 0.043). Interestingly, we found that the rs1491974 G>A genotype and allele frequencies have only a significant difference in female instead of male case (p = 0.004 for genotype; p = 0.001 for allele). The subgroup analysis demonstrated that individuals with the rs1491974 G>A genotype might have more frequent seizure (OR = 0.476, 95% CI = 0.255-0.890; p = 0.019). These data implied that both rs1491974 and rs6798347 polymorphisms of P2Y12R would be able to play import roles in epilepsy susceptibility, whereas the rs1491974 polymorphism may be specifically related to seizure frequency.
Collapse
Affiliation(s)
- Qi Wang
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Peng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Juan Liu
- School of Sports Medicine and Health, Sports Medicine Key Laboratory of Sichuan Province, Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Bin-Lu Deng
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xiang Chen
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Xiu-Min Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Ting-Ting Liu
- Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jie Liu
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China. .,Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
27
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
28
|
Microglia and Brain Macrophages as Drivers of Glioma Progression. Int J Mol Sci 2022; 23:ijms232415612. [PMID: 36555253 PMCID: PMC9779147 DOI: 10.3390/ijms232415612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.
Collapse
|
29
|
Rodrigues RJ, Figueira AS, Marques JM. P2Y1 Receptor as a Catalyst of Brain Neurodegeneration. NEUROSCI 2022; 3:604-615. [PMID: 39483765 PMCID: PMC11523754 DOI: 10.3390/neurosci3040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2024] Open
Abstract
Different brain disorders display distinctive etiologies and pathogenic mechanisms. However, they also share pathogenic events. One event systematically occurring in different brain disorders, both acute and chronic, is the increase of the extracellular ATP levels. Accordingly, several P2 (ATP/ADP) and P1 (adenosine) receptors, as well as the ectoenzymes involved in the extracellular catabolism of ATP, have been associated to different brain pathologies, either with a neuroprotective or neurodegenerative action. The P2Y1 receptor (P2Y1R) is one of the purinergic receptors associated to different brain diseases. It has a widespread regional, cellular, and subcellular distribution in the brain, it is capable of modulating synaptic function and neuronal activity, and it is particularly important in the control of astrocytic activity and in astrocyte-neuron communication. In diverse brain pathologies, there is growing evidence of a noxious gain-of-function of P2Y1R favoring neurodegeneration by promoting astrocyte hyperactivity, entraining Ca2+-waves, and inducing the release of glutamate by directly or indirectly recruiting microglia and/or by increasing the susceptibility of neurons to damage. Here, we review the current evidence on the involvement of P2Y1R in different acute and chronic neurodegenerative brain disorders and the underlying mechanisms.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana S. Figueira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Joana M. Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
30
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Jairaman A, McQuade A, Granzotto A, Kang YJ, Chadarevian JP, Gandhi S, Parker I, Smith I, Cho H, Sensi SL, Othy S, Blurton-Jones M, Cahalan MD. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. eLife 2022; 11:e73021. [PMID: 35191835 PMCID: PMC8906810 DOI: 10.7554/elife.73021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023] Open
Abstract
The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoUnited States
| | - Alberto Granzotto
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - You Jung Kang
- Department of Mechanical Engineering and Engineering Science, University of North CarolinaCharlotteUnited States
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Sunil Gandhi
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Dept of Intelligent Precision Healthcare Convergence, Sungkyunkwan UniversityGyeonggi-doRepublic of Korea
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| |
Collapse
|
32
|
Gervais É, Iloun P, Martianova E, Gonçalves Bessa AC, Rivest S, Topolnik L. Structural analysis of the microglia-interneuron interactions in the CA1 hippocampal area of the APP/PS1 mouse model of Alzheimer's disease. J Comp Neurol 2021; 530:1423-1437. [PMID: 34919273 DOI: 10.1002/cne.25289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Microglia can interact with glutamatergic neurons and, through control of synaptic elements, regulate their physiological function. Much less is known about the partnership between microglia and GABAergic inhibitory interneurons. Here, we compared the interactions between microglia and parvalbumin (PV+) and somatostatin (SOM+) expressing interneurons in the CA1 hippocampal area of APP/PS1 transgenic mice that mimic certain aspects of the Alzheimer's disease (AD). We first uncovered a high level of interactions between microglia and two types of interneurons, with 98% of SOM+ and 90% of PV+ cells receiving different types of putative microglial contacts. The latter included the microglia soma to the interneuron soma (SomaMG -to-SomaIN ), the microglia process to the interneuron soma (ProcessMG -to-SomaIN ) and the microglia process to the interneuron dendrite (ProcessMG -to-DendIN ) interactions. Moreover, we found significantly larger areas of interaction for the SomaMG -to-SomaIN and the ProcessMG -to-DendIN type of contacts between microglia and SOM+ cells. In contrast, PV+ cells exhibited larger areas for the ProcessMG -to-SomaIN interactions. Second, in APP/PS1 mice, although the overall microglia interactions with interneurons remained preserved, the fraction of interneurons receiving putative microglia contacts on their dendrites was reduced, and larger areas of interactions were observed for somatic contacts, suggesting a stronger modulation of the interneuron output by microglia in AD. In summary, these results reveal microglia as important partners of hippocampal PV+ and SOM+ GABAergic cells, with interneuron type-specific pattern of interactions. Thus, microglia may play an essential role in the operation of interneurons under normal conditions and their dysfunction in disease.
Collapse
Affiliation(s)
- Étienne Gervais
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Parisa Iloun
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Ekaterina Martianova
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Ana Claudia Gonçalves Bessa
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Serge Rivest
- Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| |
Collapse
|
33
|
Monfared RV, Alhassen W, Truong TM, Gonzales MAM, Vachirakorntong V, Chen S, Baldi P, Civelli O, Alachkar A. Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions. Cells 2021; 10:2967. [PMID: 34831190 PMCID: PMC8616384 DOI: 10.3390/cells10112967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play an integral role in the neurobiology of psychiatric disorders. Almost all neurotransmitters involved in psychiatric disorders act through GPCRs, and GPCRs are the most common targets of therapeutic drugs currently used in the treatment of psychiatric disorders. However, the roles of GPCRs in the etiology and pathophysiology of psychiatric disorders are not fully understood. Using publically available datasets, we performed a comprehensive analysis of the transcriptomic signatures of G-protein-linked signaling across the major psychiatric disorders: autism spectrum disorder (ASD), schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD). We also used the BrainSpan transcriptomic dataset of the developing human brain to examine whether GPCRs that exhibit chronological age-associated expressions have a higher tendency to be dysregulated in psychiatric disorders than age-independent GPCRs. We found that most GPCR genes were differentially expressed in the four disorders and that the GPCR superfamily as a gene cluster was overrepresented in the four disorders. We also identified a greater amplitude of gene expression changes in GPCRs than other gene families in the four psychiatric disorders. Further, dysregulated GPCRs overlapped across the four psychiatric disorders, with SCZ exhibiting the highest overlap with the three other disorders. Finally, the results revealed a greater tendency of age-associated GPCRs to be dysregulated in ASD than random GPCRs. Our results substantiate the central role of GPCR signaling pathways in the etiology and pathophysiology of psychiatric disorders. Furthermore, our study suggests that common GPCRs' signaling may mediate distinct phenotypic presentations across psychiatric disorders. Consequently, targeting these GPCRs could serve as a common therapeutic strategy to treat specific clinical symptoms across psychiatric disorders.
Collapse
Affiliation(s)
- Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Tri Minh Truong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Michael Angelo Maglalang Gonzales
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Vincent Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Ding Z, Guo S, Luo L, Zheng Y, Gan S, Kang X, Wu X, Zhu S. Emerging Roles of Microglia in Neuro-vascular Unit: Implications of Microglia-Neurons Interactions. Front Cell Neurosci 2021; 15:706025. [PMID: 34712121 PMCID: PMC8546170 DOI: 10.3389/fncel.2021.706025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, which serve as the defensive interface of the nervous system, are activated in many neurological diseases. Their role as immune responding cells has been extensively studied in the past few years. Recent studies have demonstrated that neuronal feedback can be shaped by the molecular signals received and sent by microglia. Altered neuronal activity or synaptic plasticity leads to the release of various communication messages from neurons, which in turn exert effects on microglia. Research on microglia-neuron communication has thus expanded from focusing only on neurons to the neurovascular unit (NVU). This approach can be used to explore the potential mechanism of neurovascular coupling across sophisticated receptor systems and signaling cascades in health and disease. However, it remains unclear how microglia-neuron communication happens in the brain. Here, we discuss the functional contribution of microglia to synapses, neuroimmune communication, and neuronal activity. Moreover, the current state of knowledge of bidirectional control mechanisms regarding interactions between neurons and microglia are reviewed, with a focus on purinergic regulatory systems including ATP-P2RY12R signaling, ATP-adenosine-A1Rs/A2ARs, and the ATP-pannexin 1 hemichannel. This review aims to organize recent studies to highlight the multifunctional roles of microglia within the neural communication network in health and disease.
Collapse
Affiliation(s)
- Zhe Ding
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohui Guo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihui Luo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyuan Gan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Cordella F, Sanchini C, Rosito M, Ferrucci L, Pediconi N, Cortese B, Guerrieri F, Pascucci GR, Antonangeli F, Peruzzi G, Giubettini M, Basilico B, Pagani F, Grimaldi A, D’Alessandro G, Limatola C, Ragozzino D, Di Angelantonio S. Antibiotics Treatment Modulates Microglia-Synapses Interaction. Cells 2021; 10:cells10102648. [PMID: 34685628 PMCID: PMC8534187 DOI: 10.3390/cells10102648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
‘Dysbiosis’ of the adult gut microbiota, in response to challenges such as infection, altered diet, stress, and antibiotics treatment has been recently linked to pathological alteration of brain function and behavior. Moreover, gut microbiota composition constantly controls microglia maturation, as revealed by morphological observations and gene expression analysis. However, it is unclear whether microglia functional properties and crosstalk with neurons, known to shape and modulate synaptic development and function, are influenced by the gut microbiota. Here, we investigated how antibiotic-mediated alteration of the gut microbiota influences microglial and neuronal functions in adult mice hippocampus. Hippocampal microglia from adult mice treated with oral antibiotics exhibited increased microglia density, altered basal patrolling activity, and impaired process rearrangement in response to damage. Patch clamp recordings at CA3-CA1 synapses revealed that antibiotics treatment alters neuronal functions, reducing spontaneous postsynaptic glutamatergic currents and decreasing synaptic connectivity, without reducing dendritic spines density. Antibiotics treatment was unable to modulate synaptic function in CX3CR1-deficient mice, pointing to an involvement of microglia–neuron crosstalk through the CX3CL1/CX3CR1 axis in the effect of dysbiosis on neuronal functions. Together, our findings show that antibiotic alteration of gut microbiota impairs synaptic efficacy, suggesting that CX3CL1/CX3CR1 signaling supporting microglia is a major player in in the gut–brain axis, and in particular in the gut microbiota-to-neuron communication pathway.
Collapse
Affiliation(s)
- Federica Cordella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Caterina Sanchini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Maria Rosito
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- Correspondence: (M.R.); (S.D.A.)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
| | - Natalia Pediconi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy;
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69373 Lyon, France; (F.G.); (G.R.P.)
| | - Giuseppe Rubens Pascucci
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69373 Lyon, France; (F.G.); (G.R.P.)
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | | | - Bernadette Basilico
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
| | - Francesca Pagani
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy;
| | - Alfonso Grimaldi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
- IRCCS Neuromed, Via Atinese 18, 86077 Pozzilli, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- Correspondence: (M.R.); (S.D.A.)
| |
Collapse
|
36
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
37
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
38
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
40
|
Valiente M, M de la Prida L. Breaking Down the Wall: The Strategic Plan of Cancer to Conquer the Brain. Epilepsy Curr 2021; 20:384-386. [PMID: 34025261 PMCID: PMC7818208 DOI: 10.1177/1535759720949241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pathogenesis of Peritumoral Hyperexcitability in an
Immunocompetent CRISPR-Based Glioblastoma
Model Hatcher A, Yu K, Meyer J, Aiba I, Deneen B, Noeb JL.
J Clin Invest.
2020;130(5):2286-2300. doi:10.1172/JCI133316 Seizures often herald the clinical appearance of gliomas or
appear at later stages. Dissecting their precise evolution
and cellular pathogenesis in brain malignancies could
inform the development of staged therapies for these
highly pharmacoresistant epilepsies. Studies in
immunodeficient xenograft models have identified local
interneuron loss and excess glial glutamate release as
chief contributors to network disinhibition, but how
hyperexcitability in the peritumoral microenvironment
evolves in an immunocompetent brain is unclear. We
generated gliomas in WT mice via in utero deletion of key
tumor suppressor genes and serially monitored cortical
epileptogenesis during tumor infiltration with in vivo
electrophysiology and GCAMP7 calcium imaging, revealing a
reproducible progression from hyperexcitability to
convulsive seizures. Long before seizures, coincident with
loss of inhibitory cells and their protective scaffolding,
gain of glial glutamate antiporter xCT expression, and
reactive astrocytosis, we detected local Iba1+ microglial
inflammation that intensified and later extended far
beyond tumor boundaries. Hitherto unrecognized episodes of
cortical spreading depolarization that arose frequently
from the peritumoral region may provide a mechanism for
transient neurological deficits. Early blockade of glial
xCT activity inhibited later seizures, and genomic
reduction of host brain excitability by deleting
microtubule-associated protein Tau suppressed molecular
markers of epileptogenesis and seizures. Our studies
confirmed xenograft tumor–driven pathobiology and revealed
early and late components of tumor-related epileptogenesis
in a genetically tractable, immunocompetent mouse model of
glioma, allowing the complex dissection of tumor versus
host pathogenic seizure mechanisms.
Collapse
|
41
|
Eyal S. Guardians of the Frequency: Neuronal Regulation by Microglia. Epilepsy Curr 2021; 21:15357597211004568. [PMID: 33820468 PMCID: PMC8609585 DOI: 10.1177/15357597211004568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
[Box: see text].
Collapse
|
42
|
Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int J Mol Sci 2021; 22:ijms22073468. [PMID: 33801677 PMCID: PMC8036966 DOI: 10.3390/ijms22073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
P2Y13 is an ADP-stimulated G-protein coupled receptor implicated in many physiological processes, including neurotransmission, metabolism, pain, and bone homeostasis. Quantitative understanding of P2Y13 activation dynamics is important for translational studies. We systematically identified PubMed annotated studies that characterized concentration-dependence of P2Y13 responses to natural and synthetic agonists. Since the comparison of the efficacy (maximum response) is difficult for studies performed in different systems, we normalized the data and conducted a meta-analysis of EC50 (concentration at half-maximum response) and Hill coefficient (slope) of P2Y13-mediated responses to different agonists. For signaling events induced by heterologously expressed P2Y13, EC50 of ADP-like agonists was 17.2 nM (95% CI: 7.7–38.5), with Hills coefficient of 4.4 (95% CI: 3.3–5.4), while ATP-like agonists had EC50 of 0.45 μM (95% CI: 0.06–3.15). For functional responses of endogenously expressed P2Y13, EC50 of ADP-like agonists was 1.76 μM (95% CI: 0.3–10.06). The EC50 of ADP-like agonists was lower for the brain P2Y13 than the blood P2Y13. ADP-like agonists were also more potent for human P2Y13 compared to rodent P2Y13. Thus, P2Y13 appears to be the most ADP-sensitive receptor characterized to date. The detailed understanding of tissue- and species-related differences in the P2Y13 response to ADP will improve the selectivity and specificity of future pharmacological compounds.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Svetlana V Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
43
|
Palomba NP, Martinello K, Cocozza G, Casciato S, Mascia A, Di Gennaro G, Morace R, Esposito V, Wulff H, Limatola C, Fucile S. ATP-evoked intracellular Ca 2+ transients shape the ionic permeability of human microglia from epileptic temporal cortex. J Neuroinflammation 2021; 18:44. [PMID: 33588880 PMCID: PMC7883449 DOI: 10.1186/s12974-021-02096-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Intracellular Ca2+ modulates several microglial activities, such as proliferation, migration, phagocytosis, and inflammatory mediator secretion. Extracellular ATP, the levels of which significantly change during epileptic seizures, activates specific receptors leading to an increase of intracellular free Ca2+ concentration ([Ca2+]i). Here, we aimed to functionally characterize human microglia obtained from cortices of subjects with temporal lobe epilepsy, focusing on the Ca2+-mediated response triggered by purinergic signaling. Methods Fura-2 based fluorescence microscopy was used to measure [Ca2+]i in primary cultures of human microglial cells obtained from surgical specimens. The perforated patch-clamp technique, which preserves the cytoplasmic milieu, was used to measure ATP-evoked Ca2+-dependent whole-cell currents. Results In human microglia extracellular ATP evoked [Ca2+]i increases depend on Ca2+ entry from the extracellular space and on Ca2+ mobilization from intracellular compartments. Extracellular ATP also induced a transient fivefold potentiation of the total transmembrane current, which was completely abolished when [Ca2+]i increases were prevented by removing external Ca2+ and using an intracellular Ca2+ chelator. TRAM-34, a selective KCa3.1 blocker, significantly reduced the ATP-induced current potentiation but did not abolish it. The removal of external Cl− in the presence of TRAM-34 further lowered the ATP-evoked effect. A direct comparison between the ATP-evoked mean current potentiation and mean Ca2+ transient amplitude revealed a linear correlation. Treatment of microglial cells with LPS for 48 h did not prevent the ATP-induced Ca2+ mobilization but completely abolished the ATP-mediated current potentiation. The absence of the Ca2+-evoked K+ current led to a less sustained ATP-evoked Ca2+ entry, as shown by the faster Ca2+ transient kinetics observed in LPS-treated microglia. Conclusions Our study confirms a functional role for KCa3.1 channels in human microglia, linking ATP-evoked Ca2+ transients to changes in membrane conductance, with an inflammation-dependent mechanism, and suggests that during brain inflammation the KCa3.1-mediated microglial response to purinergic signaling may be reduced. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02096-0.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vincenzo Esposito
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neurosciences, Sapienza Rome University, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Physiology and Pharmacology "V. Erspamer", Sapienza Rome University, Rome, Italy
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Physiology and Pharmacology "V. Erspamer", Sapienza Rome University, Rome, Italy
| |
Collapse
|
44
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
45
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|