1
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2025; 36:1-25. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
2
|
Ukraintseva YV, Saltykov KA, Tkachenko ON. Neither fifty percent slow-wave sleep suppression nor fifty percent rapid eye movement sleep suppression does impair memory consolidation. Sleep Med 2024; 124:223-235. [PMID: 39326217 DOI: 10.1016/j.sleep.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Establishing well-defined relationships between sleep features and memory consolidation is essential in comprehending the pathophysiology of cognitive decline commonly seen in patients with insomnia, depression, and other sleep-disrupting conditions. Twenty-eight volunteers participated in two experimental sessions: a session with selective SWS suppression during one night and a session with undisturbed night sleep (as a control condition). Fifteen of them also participated in a third session with REM suppression. Suppression was achieved by presenting an acoustic tone. In the evening and the morning, the participants completed procedural and declarative memory tasks and the Psychomotor vigilance task (PVT). Heart rate variability analysis and salivary cortisol were used to control possible stress reactions to sleep interference. SWS and REM suppression led to more than 50 percent reduction in the amount of these stages. Neither vigilance nor memory consolidation was impaired after SWS or REM suppression. Unexpectedly, a beneficial effect of selective SWS suppression on PVT performance was found. Similarly, after a night with SWS suppression, the overnight improvement in procedural skills was higher than after a night with REM suppression and after a night with undisturbed sleep. Our data brings into question the extent to which SWS and REM are truly necessary for effective memory consolidation to proceed. Moreover, SWS suppression may even improve the performance of some tasks, possibly by reducing sleep inertia associated with undisturbed sleep.
Collapse
Affiliation(s)
- Yulia V Ukraintseva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485, Moscow, Russia.
| | - Konstantin A Saltykov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485, Moscow, Russia
| | - Olga N Tkachenko
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485, Moscow, Russia
| |
Collapse
|
3
|
Runnova AE, Zhuravlev MO, Kiselev AR, Parsamyan RR, Simonyan MA, Drapkina OM. Wavelet-Detected Changes in Nocturnal Brain Electrical Activity in Patients with Non-Motor Disorders Indicative of Parkinson's Disease. Neurol Int 2024; 16:1481-1491. [PMID: 39585069 PMCID: PMC11587428 DOI: 10.3390/neurolint16060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Background/Objectives-Parkinson's disease (PD) is the second most common neurodegenerative disorder caused by the destruction of neurons in the substantia nigra of the brain. Clinical diagnosis of this disease, based on monitoring motor symptoms, often leads to a delayed start of PD therapy and control, where over 60% of dopaminergic nerve cells are damaged in the brain substantia nigra. The search for simple and stable characteristics of EEG recordings is a promising direction in the development of methods for diagnosing PD and methods for diagnosing the preclinical stage of PD development. Methods-42 subjects participated in work, of which 4 female/10 male patients were included in the group of patients with non-motor disorders, belonging to the risk group for developing PD (median age: 62 years, height: 164 cm, weight: 70 kg, pulse: 70, BPsys and BPdia: 143 and 80)/(median age: 68 years, height: 170 cm, weight: 73.9 kg, pulse: 75, BPsys and BPdia: 143 and 82). The first control group of healthy participants included 6 women (median age: 33 years, height: 161 cm, weight: 66 kg, pulse: 80, BPsys and BPdia: 110 and 80)/8 men (median age: 36.3 years, height: 175 cm, weight: 69 kg, pulse: 78, BPsys and BPdia: 120 and 85). The second control group of healthy participants included 8 women (median age: 74 years, height: 164 cm, weight: 70 kg, pulse: 70, BPsys and BPdia: 145 and 82)/6 men (median age: 51 years, height: 172 cm, weight: 72.5 kg, pulse: 74, BPsys and BPdia: 142 and 80). Wavelet oscillatory pattern estimation is performed on patients' nocturnal sleep recordings without separating them into sleep stages. Results-Amplitude characteristics of oscillatory activity in patients without motor disorders and the prodromal PD stage are significantly reduced both in terms of changes in the number of patterns and in terms of their duration. This pattern is especially pronounced for high-frequency activity, in frequency ranges close to 40 Hz. Conclusions-The success of the analysis of the electrical activity of the brain, performed over the entire duration of the night recording, makes it promising to further use during daytime monitoring the concept of oscillatory wavelet patterns in patients with non-motor disorders, belonging to the risk group for developing PD. The daytime monitoring system can become the basis for developing screening tests to detect neurodegenerative diseases as part of routine medical examinations.
Collapse
Affiliation(s)
- Anastasiya E. Runnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.E.R.)
- Department of Biophysics and Digital Technologies, Saratov State Medical University, Saratov 410012, Russia
| | - Maksim O. Zhuravlev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.E.R.)
- Institute of Physics, Saratov State University, Saratov 410012, Russia
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.E.R.)
| | - Ruzanna R. Parsamyan
- Department of Biophysics and Digital Technologies, Saratov State Medical University, Saratov 410012, Russia
| | - Margarita A. Simonyan
- Department of Biophysics and Digital Technologies, Saratov State Medical University, Saratov 410012, Russia
- Institute of Physics, Saratov State University, Saratov 410012, Russia
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia; (A.E.R.)
| |
Collapse
|
4
|
Ng T, Noh E, Spencer RMC. Does slow oscillation-spindle coupling contribute to sleep-dependent memory consolidation? A Bayesian meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610060. [PMID: 39257832 PMCID: PMC11383665 DOI: 10.1101/2024.08.28.610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The active system consolidation theory suggests that information transfer between the hippocampus and cortex during sleep underlies memory consolidation. Neural oscillations during sleep, including the temporal coupling between slow oscillations (SO) and sleep spindles (SP), may play a mechanistic role in memory consolidation. However, differences in analytical approaches and the presence of physiological and behavioral moderators have led to inconsistent conclusions. This meta-analysis, comprising 23 studies and 297 effect sizes, focused on four standard phase-amplitude coupling measures including coupling phase, strength, percentage, and SP amplitude, and their relationship with memory retention. We developed a standardized approach to incorporate non-normal circular-linear correlations. We found strong evidence supporting that precise and strong SO-fast SP coupling in the frontal lobe predicts memory consolidation. The strength of this association is mediated by memory type, aging, and dynamic spatio-temporal features, including SP frequency and cortical topography. In conclusion, SO-SP coupling should be considered as a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Thea Ng
- Neuroscience & Behavior Program, Mount Holyoke College
- Department of Mathematics & Statistics, Mount Holyoke College
| | - Eunsol Noh
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst
- Institute of Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
5
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
6
|
Boscher F, Jumel K, Dvořáková T, Gentet LJ, Urbain N. Thalamocortical Dynamics during Rapid Eye Movement Sleep in the Mouse Somatosensory Pathway. J Neurosci 2024; 44:e0158242024. [PMID: 38769008 PMCID: PMC11209666 DOI: 10.1523/jneurosci.0158-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Rapid eye movement (REM) sleep, also referred to as paradoxical sleep for the striking resemblance of its electroencephalogram (EEG) to the one observed in wakefulness, is characterized by the occurrence of transient events such as limb twitches or facial and rapid eye movements. Here, we investigated the local activity of the primary somatosensory or barrel cortex (S1) in naturally sleeping head-fixed male mice during REM. Through local field potential recordings, we uncovered local appearances of spindle waves in the barrel cortex during REM concomitant with strong delta power, challenging the view of a wakefulness-like activity in REM. We further performed extra- and intracellular recordings of thalamic cells in head-fixed mice. Our data show high-frequency thalamic bursts of spikes and subthreshold spindle oscillations in approximately half of the neurons of the ventral posterior medial nucleus which further confirmed the thalamic origin of local cortical spindles in S1 in REM. Cortical spindle oscillations were suppressed, while thalamus spike firing increased, associated with rapid mouse whisker movements and S1 cortical activity transitioned to an activated state. During REM, the sensory thalamus and barrel cortex therefore alternate between high (wake-like) and low (non-REM sleep-like) activation states, potentially providing a neuronal substrate for mnemonic processes occurring during this paradoxical sleep stage.
Collapse
Affiliation(s)
- Flore Boscher
- Physiopathology of Sleep Networks, Université Claude Bernard-Lyon 1, Lyon 69500, France
| | - Katlyn Jumel
- Physiopathology of Sleep Networks, Université Claude Bernard-Lyon 1, Lyon 69500, France
| | - Tereza Dvořáková
- Physiopathology of Sleep Networks, Université Claude Bernard-Lyon 1, Lyon 69500, France
| | - Luc J Gentet
- Forgetting Processes and Cortical Dynamics, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude Bernard-Lyon 1, Lyon 69500, France
| | - Nadia Urbain
- Physiopathology of Sleep Networks, Université Claude Bernard-Lyon 1, Lyon 69500, France
| |
Collapse
|
7
|
Choucry A, Nomoto M, Inokuchi K. Engram mechanisms of memory linking and identity. Nat Rev Neurosci 2024; 25:375-392. [PMID: 38664582 DOI: 10.1038/s41583-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Memories are thought to be stored in neuronal ensembles referred to as engrams. Studies have suggested that when two memories occur in quick succession, a proportion of their engrams overlap and the memories become linked (in a process known as prospective linking) while maintaining their individual identities. In this Review, we summarize the key principles of memory linking through engram overlap, as revealed by experimental and modelling studies. We describe evidence of the involvement of synaptic memory substrates, spine clustering and non-linear neuronal capacities in prospective linking, and suggest a dynamic somato-synaptic model, in which memories are shared between neurons yet remain separable through distinct dendritic and synaptic allocation patterns. We also bring into focus retrospective linking, in which memories become associated after encoding via offline reactivation, and discuss key temporal and mechanistic differences between prospective and retrospective linking, as well as the potential differences in their cognitive outcomes.
Collapse
Affiliation(s)
- Ali Choucry
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Masanori Nomoto
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Kaoru Inokuchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan.
| |
Collapse
|
8
|
Zhang Q, Chen F. Impact of single-trial avoidance learning on subsequent sleep. Eur J Neurosci 2024; 59:739-751. [PMID: 38342099 DOI: 10.1111/ejn.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Both non-rapid eye movement (NonREM) sleep and rapid eye movement (REM) sleep, as well as sleep spindle and ripple oscillations, are important for memory formation. Through cortical EEG recordings of prefrontal cortex and hippocampus during and after an inhibitory avoidance task, we analysed the dynamic changes in the amounts of sleep, spindle and ripple oscillations related to memory formation. The total amount of NonREM sleep was reduced during the first hour after learning. Moreover, significant decrease of the total spindle and ripple counts was observed at the first hour after learning as well. In addition, foot shock alone, with no associated learning, produced little effect on the dynamics of sleep oscillations, indicating that the learning experience is necessary for these changes to occur.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Tsunematsu T, Matsumoto S, Merkler M, Sakata S. Pontine Waves Accompanied by Short Hippocampal Sharp Wave-Ripples During Non-rapid Eye Movement Sleep. Sleep 2023; 46:zsad193. [PMID: 37478470 PMCID: PMC10485565 DOI: 10.1093/sleep/zsad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Ponto-geniculo-occipital or pontine (P) waves have long been recognized as an electrophysiological signature of rapid eye movement (REM) sleep. However, P-waves can be observed not just during REM sleep, but also during non-REM (NREM) sleep. Recent studies have uncovered that P-waves are functionally coupled with hippocampal sharp wave ripples (SWRs) during NREM sleep. However, it remains unclear to what extent P-waves during NREM sleep share their characteristics with P-waves during REM sleep and how the functional coupling to P-waves modulates SWRs. Here, we address these issues by performing multiple types of electrophysiological recordings and fiber photometry in both sexes of mice. P-waves during NREM sleep share their waveform shapes and local neural ensemble dynamics at a short (~100 milliseconds) timescale with their REM sleep counterparts. However, the dynamics of mesopontine cholinergic neurons are distinct at a longer (~10 seconds) timescale: although P-waves are accompanied by cholinergic transients, the cholinergic tone gradually reduces before P-wave genesis during NREM sleep. While P-waves are coupled to hippocampal theta rhythms during REM sleep, P-waves during NREM sleep are accompanied by a rapid reduction in hippocampal ripple power. SWRs coupled with P-waves are short-lived and hippocampal neural firing is also reduced after P-waves. These results demonstrate that P-waves are part of coordinated sleep-related activity by functionally coupling with hippocampal ensembles in a state-dependent manner.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Sumire Matsumoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Mirna Merkler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
10
|
Simon L, Admon R. From childhood adversity to latent stress vulnerability in adulthood: the mediating roles of sleep disturbances and HPA axis dysfunction. Neuropsychopharmacology 2023; 48:1425-1435. [PMID: 37391592 PMCID: PMC10425434 DOI: 10.1038/s41386-023-01638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Childhood adversity is a prominent predisposing risk factor for latent stress vulnerability, expressed as an elevated likelihood of developing stress-related psychopathology upon subsequent exposure to trauma in adulthood. Sleep disturbances have emerged as one of the most pronounced maladaptive behavioral outcomes of childhood adversity and are also a highly prevalent core feature of stress-related psychopathology, including post-traumatic stress disorder (PTSD). After reviewing the extensive literature supporting these claims, the current review addresses the notion that childhood adversity-induced sleep disturbances may play a causal role in elevating individuals' stress vulnerability in adulthood. Corroborating this, sleep disturbances that predate adult trauma exposure have been associated with an increased likelihood of developing stress-related psychopathology post-exposure. Furthermore, novel empirical evidence suggests that sleep disturbances, including irregularity of the sleep-wake cycle, mediate the link between childhood adversity and stress vulnerability in adulthood. We also discuss cognitive and behavioral mechanisms through which such a cascade may evolve, highlighting the putative role of impaired memory consolidation and fear extinction. Next, we present evidence to support the contribution of the hypothalamic-pituitary-adrenal (HPA) axis to these associations, stemming from its critical role in stress and sleep regulatory pathways. Childhood adversity may yield bi-directional effects within the HPA stress and sleep axes in which sleep disturbances and HPA axis dysfunction reinforce each other, leading to elevated stress vulnerability. To conclude, we postulate a conceptual path model from childhood adversity to latent stress vulnerability in adulthood and discuss the potential clinical implications of these notions, while highlighting directions for future research.
Collapse
Affiliation(s)
- Lisa Simon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
11
|
Parajuli M, Amara AW, Shaban M. Deep-learning detection of mild cognitive impairment from sleep electroencephalography for patients with Parkinson's disease. PLoS One 2023; 18:e0286506. [PMID: 37535549 PMCID: PMC10399849 DOI: 10.1371/journal.pone.0286506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 08/05/2023] Open
Abstract
Parkinson's disease which is the second most prevalent neurodegenerative disorder in the United States is a serious and complex disease that may progress to mild cognitive impairment and dementia. The early detection of the mild cognitive impairment and the identification of its biomarkers is crucial to support neurologists in monitoring the progression of the disease and allow an early initiation of effective therapeutic treatments that will improve the quality of life for the patients. In this paper, we propose the first deep-learning based approaches to detect mild cognitive impairment in the sleep Electroencephalography for patients with Parkinson's disease and further identify the discriminative features of the disease. The proposed frameworks start by segmenting the sleep Electroencephalography time series into three sleep stages (i.e., two non-rapid eye movement sleep-stages and one rapid eye movement sleep stage), further transforming the segmented signals in the time-frequency domain using the continuous wavelet transform and the variational mode decomposition and finally applying novel convolutional neural networks on the time-frequency representations. The gradient-weighted class activation mapping was also used to visualize the features based on which the proposed deep-learning approaches reached an accurate prediction of mild cognitive impairment in Parkinson's disease. The proposed variational mode decomposition-based model offered a superior accuracy, sensitivity, specificity, area under curve, and quadratic weighted Kappa score, all above 99% as compared with the continuous wavelet transform-based model (that achieved a performance that is almost above 92%) in differentiating mild cognitive impairment from normal cognition in sleep Electroencephalography for patients with Parkinson's disease. In addition, the features attributed to the mild cognitive impairment in Parkinson's disease were demonstrated by changes in the middle and high frequency variational mode decomposition components across the three sleep-stages. The use of the proposed model on the time-frequency representation of the sleep Electroencephalography signals will provide a promising and precise computer-aided diagnostic tool for detecting mild cognitive impairment and hence, monitoring the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Madan Parajuli
- Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama, United States of America
| | - Amy W. Amara
- Movement Disorders Center, University of Colorado, Aurora, Colorado, United States of America
| | - Mohamed Shaban
- Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
12
|
Conte F, Malloggi S, De Rosa O, Di Iorio I, Romano F, Giganti F, Ficca G. Sleep Continuity, Stability and Cyclic Organization Are Impaired in Insomniacs: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1240. [PMID: 36673991 PMCID: PMC9859102 DOI: 10.3390/ijerph20021240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The possibility of distinguishing insomniacs from good sleepers based on polysomnography (PSG) remains an open question. While these groups show modest differences in traditional PSG parameters, some studies suggest that finer measures may be more useful. Here we assess differences between good sleepers (GS), poor sleepers (PS) and insomniacs (IN) in classical PSG measures as well as in sleep continuity, stability and cyclic organization. PSG-monitored sleep (two nights) of 17 IN (diagnosed through a standard clinical interview; Pittsburgh Sleep Quality Index (PSQI) ≥ 5, Insomnia Severity Index (ISI) > 14) was compared to that of 33 GS (PSQI < 5) and 20 PS (PSQI ≥ 5, ISI ≤ 14). Compared to GS, IN were impaired in sleep macrostructure (sleep latency, sleep efficiency, WASO%) and in continuity, stability and organization, whereas PS only showed disrupted continuity and stability. Spindle parameters were comparable between IN and GS, but the former displayed enhanced power in fast frequency bands. Our findings support the hypothesis of a continuum between individuals with self-reported poor sleep and insomniacs. Further, they add to extant data on impaired sleep continuity, stability and organization in poor sleepers and elderly individuals, underlining the utility of including these measures in standard sleep assessments.
Collapse
Affiliation(s)
- Francesca Conte
- Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico 31, 81100 Caserta, Italy
| | - Serena Malloggi
- Department NEUROFARBA, University of Firenze, Via di San Salvi 12, 50135 Firenze, Italy
| | - Oreste De Rosa
- Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico 31, 81100 Caserta, Italy
| | - Ilaria Di Iorio
- Department NEUROFARBA, University of Firenze, Via di San Salvi 12, 50135 Firenze, Italy
| | - Federica Romano
- Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico 31, 81100 Caserta, Italy
| | - Fiorenza Giganti
- Department NEUROFARBA, University of Firenze, Via di San Salvi 12, 50135 Firenze, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico 31, 81100 Caserta, Italy
| |
Collapse
|
13
|
Mutlu-Burnaz O, Yulug B, Oncul M, Celik E, Atasoy NS, Cankaya S, Hanoglu L, Velioglu HA. Chemogenetic inhibition of MCH neurons does not alter memory performance in mice. Biomed Pharmacother 2022; 155:113771. [DOI: 10.1016/j.biopha.2022.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
|
14
|
Zhu F, Liu L, Li J, Liu B, Wang Q, Jiao R, Xu Y, Wang L, Sun S, Sun X, Younus M, Wang C, Hokfelt T, Zhang B, Gu H, Xu ZQD, Zhou Z. Cocaine increases quantal norepinephrine secretion through NET-dependent PKC activation in locus coeruleus neurons. Cell Rep 2022; 40:111199. [PMID: 35977516 DOI: 10.1016/j.celrep.2022.111199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
The norepinephrine neurons in locus coeruleus (LC-NE neurons) are essential for sleep arousal, pain sensation, and cocaine addiction. According to previous studies, cocaine increases NE overflow (the profile of extracellular NE level in response to stimulation) by blocking the NE reuptake. NE overflow is determined by NE release via exocytosis and reuptake through NE transporter (NET). However, whether cocaine directly affects vesicular NE release has not been directly tested. By recording quantal NE release from LC-NE neurons, we report that cocaine directly increases the frequency of quantal NE release through regulation of NET and downstream protein kinase C (PKC) signaling, and this facilitation of NE release modulates the activity of LC-NE neurons and cocaine-induced stimulant behavior. Thus, these findings expand the repertoire of mechanisms underlying the effects of cocaine on NE (pro-release and anti-reuptake), demonstrate NET as a release enhancer in LC-NE neurons, and provide potential sites for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lina Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Core Facilities Center, Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ruiying Jiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yongxin Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lun Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoxuan Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tomas Hokfelt
- Department of Neuroscience, Karolinska Institute, 171 71 Stockholm, Sweden
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Howard Gu
- Department of Biological Chemistry and Pharmacology, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Zhi-Qing David Xu
- Core Facilities Center, Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Jensen-Willett S, Cunha A, Lobo MA, Harbourne R, Dusing SC, McCoy SW, Koziol NA, Hsu LY, Marcinowski EC, Babik I, An M, Bovaird JA. The Effect of Early-Life Seizures on Cognitive and Motor Development: A Case Series. Pediatr Phys Ther 2022; 34:425-431. [PMID: 35703307 DOI: 10.1097/pep.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This case series documents developmental changes over time and in response to a novel intervention, Sitting Together and Reaching to Play (START-Play), in children with early-life seizures. METHODS Thirteen children with early-life seizures were included from a subset of participants in the START-Play multisite, randomized controlled trial. Seven received 3 months of twice weekly START-Play intervention; 6 continued with usual care early intervention. Bayley Scales of Infant Development-III (Cognitive Composite), Gross Motor Function Measure-66 Item Set, Assessment of Problem-Solving in Play, and reaching assessments were administered at baseline, 3, 6, and 12 months postbaseline. Change scores are reported at 3 and 12 months postbaseline. RESULTS Over time, plateau or decline was noted in standardized cognition measures; motor development improved or was stable. Children receiving START-Play showed positive trends in problem-solving (71.4%) and reaching behaviors (57.2%). CONCLUSIONS Interventions such as START-Play that combine motor and cognitive constructs may benefit children with early-life seizures.
Collapse
Affiliation(s)
- Sandra Jensen-Willett
- Department of Physical Therapy (Dr Willett), Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Physical Therapy (Drs Cunha and Lobo), Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware; Department of Physical Therapy (Dr Harbourne), Duquesne University, Pittsburgh, Pennsylvania; Division of Biokinesiology and Physical Therapy (Dr Dusing), University of Southern California, Los Angeles CA; Department of Rehabilitation Medicine (Drs Westcott-McCoy and Hsu), University of Washington, Seattle, Washington; Nebraska Center for Research on Children, Youth, Families and Schools (Drs Koziol and Bovaird), University of Nebraska-Lincoln, Lincoln, Nebraska; College of Human Science and Education (Dr Marcinowski), Louisiana State University, Baton Rouge, Louisiana; Department of Psychological Science (Dr Babik), Boise State University, Boise, Idaho; Department of Physical Therapy (Dr An), Kaya University, Gimhae-si, Gyeongsangnam-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cohn-Sheehy BI, Delarazan AI, Crivelli-Decker JE, Reagh ZM, Mundada NS, Yonelinas AP, Zacks JM, Ranganath C. Narratives bridge the divide between distant events in episodic memory. Mem Cognit 2022; 50:478-494. [PMID: 33904017 PMCID: PMC8546012 DOI: 10.3758/s13421-021-01178-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Many studies suggest that information about past experience, or episodic memory, is divided into discrete units called "events." Yet we can often remember experiences that span multiple events. Events that occur in close succession might simply be linked because of their proximity to one another, but we can also build links between events that occur farther apart in time. Intuitively, some kind of organizing principle should enable temporally distant events to become bridged in memory. We tested the hypothesis that episodic memory exhibits a narrative-level organization, enabling temporally distant events to be better remembered if they form a coherent narrative. Furthermore, we tested whether post-encoding memory consolidation is necessary to integrate temporally distant events. In three experiments, participants learned and subsequently recalled events from fictional stories, in which pairs of temporally distant events involving side characters ("sideplots") either formed one coherent narrative or two unrelated narratives. Across participants, we varied whether recall was assessed immediately after learning, or after a delay: 24 hours, 12 hours between morning and evening ("wake"), or 12 hours between evening and morning ("sleep"). Participants recalled more information about coherent than unrelated narrative events, in most delay conditions, including immediate recall and wake conditions, suggesting that post-encoding consolidation was not necessary to integrate temporally distant events into a larger narrative. Furthermore, post hoc modeling across experiments suggested that narrative coherence facilitated recall over and above any effects of sentence-level semantic similarity. This reliable memory benefit for coherent narrative events supports theoretical accounts which propose that narratives provide a high-level architecture for episodic memory.
Collapse
Affiliation(s)
- Brendan I Cohn-Sheehy
- M.D./Ph.D. Program, University of California, Davis, Sacramento, CA, USA.
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA.
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.
| | - Angelique I Delarazan
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychological and Brain Sciences, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | - Jordan E Crivelli-Decker
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Zachariah M Reagh
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychological and Brain Sciences, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | - Nidhi S Mundada
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew P Yonelinas
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Jeffrey M Zacks
- Department of Psychological and Brain Sciences, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | - Charan Ranganath
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
17
|
Tao R, Huang S, Zhou J, Ye L, Shen X, Wu J, Qian L. Neonatal Supplementation of Oleamide During Suckling Promotes Learning Ability and Memory in Adolescent Mice. J Nutr 2022; 152:889-898. [PMID: 34967906 DOI: 10.1093/jn/nxab442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fatty acid amides (FAMs) are present in breast milk. Oleamide (ODA), a member of the FAM family, has been reported to affect learning and memory-related abilities in animal experiments. OBJECTIVES This study aimed to characterize the temporal changes of FAMs in human milk and sought to examine the effect of ODA supplementation during suckling on postweaning cognitive performance in mice. METHODS FAMs were measured in human milk (postpartum 1-24 wk) by ultra-performance liquid chromatography-triple quadruple mass spectrometry (UPLC-TQ-MS) analysis. We supplemented neonatal C57BL/6J mice of both sexes with vehicle (control), 5 mg/(kg · day) ODA (L-ODA), or 25 mg/(kg · day) ODA (H-ODA) throughout suckling by oral gavage. After weaning, the Morris water maze test and novel object recognition test were performed. Neurogenesis, spinal morphogenesis in the dentate gyrus (DG) region, and hippocampal expression of synaptic markers were analyzed. Data were analyzed by ANOVA and repeated-measures ANOVA. RESULTS ODA (0.566-1.31 mg/L) was the most abundant FAM in breast milk, followed by palmitamide (0.135-0.269 mg/L) and linoleamide (0.046-0.242 mg/L). Compared with the control group, the H-ODA group demonstrated shorter escape latency, shorter travel distance, 113% more platform crossing, and 48% greater discrimination index in behavioral tests (P < 0.05). Additionally, the H-ODA group showed a higher density of 5-ethynyl-2'-deoxyuridine (EdU)+ and EdU+& doublecortin (DCX)+ cells (62% and 53%, respectively), and 52% greater spine density in the DG region than the control group (P < 0.05). The synaptic markers, postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), were upregulated in the H-ODA group compared with the control group (P < 0.05). The L-ODA group also showed shorter escape latency in behavioral tests and 27% greater spine density in the DG region than the control group (P < 0.05). CONCLUSIONS ODA is the most common FAM in human milk. ODA supplementation during suckling promotes learning and memory-related abilities in adolescent mice by augmenting hippocampal neuronal proliferation and boosting synaptic plasticity.
Collapse
Affiliation(s)
- Ranran Tao
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shanshan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xiuhua Shen
- Department of Nutrition, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Wu
- Department of Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
18
|
Staykov H, Lazarova M, Hassanova Y, Stefanova M, Tancheva L, Nikolov R. Neuromodulatory Mechanisms of a Memory Loss-Preventive Effect of Alpha-Lipoic Acid in an Experimental Rat Model of Dementia. J Mol Neurosci 2022; 72:1018-1025. [PMID: 35174445 DOI: 10.1007/s12031-022-01979-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
This study evaluates some of the neuromodulatory mechanisms of the memory loss preventive effect of alpha-lipoic acid (ALA) in a scopolamine (Sco)-induced rat model of Alzheimer's disease (AD) type dementia. Our results confirmed that Sco administration induces significant memory impairment, worsens exploratory behaviour and habituation, increases acetylcholinesterase (AChE) activity, and induces pathological monoamine content changes in the prefrontal cortex and hippocampus. ALA administration largely prevented Sco-induced memory impairment. It also improved exploratory behaviour and preserved habituation, and it decreased AChE activity, reversing it to control group levels, and corrected aberrant monoamine levels in the prefrontal cortex and hippocampus. According to the data available, this is the first time that ALA-induced changes in AChE and monoamine levels in the prefrontal cortex and hippocampus (brain structures related to learning and memory) have been demonstrated in a Sco-induced rat model of AD type dementia.
Collapse
Affiliation(s)
- Hristian Staykov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria.
| | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Rumen Nikolov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| |
Collapse
|
19
|
Tripathi S, Jha SK. REM Sleep Deprivation Alters Learning-Induced Cell Proliferation and Generation of Newborn Young Neurons in the Dentate Gyrus of the Dorsal Hippocampus. ACS Chem Neurosci 2022; 13:194-206. [PMID: 34990120 DOI: 10.1021/acschemneuro.1c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The hippocampus-dependent "trace-appetitive conditioning task" increases cell proliferation and the generation of newborn young neurons. Evidence suggests that adult hippocampal neurogenesis and rapid eye movement (REM) sleep play an essential role in memory consolidation. On the other hand, REM sleep deprivation (REM-SD) induces detrimental effects on training-induced cell proliferation in the hippocampus's dentate gyrus (DG). Nonetheless, the role of REM sleep in the trace-appetitive memory and fate determination of the newly proliferated cells is not known. Here, we have studied the following: (I) the effects of 24 h of REM-SD (soon after training) on trace- and delay-appetitive memory and cell proliferation in the adult DG and (II) the effects of chronic (96 h) REM-SD (3 days after the training, the period in which newly generated cells progressed toward the neuronal lineage) on trace-appetitive memory and the generation of newborn young neurons. We used a modified multiple platform method for the selective REM-SD without altering non-REM (NREM) sleep. We found that 24 h of REM-SD, soon after trace-conditioning, impaired the trace-appetitive memory and the training-induced cell proliferation. Nevertheless, 96 h of REM-SD (3 days after the training) did not impair trace memory. Interestingly, 96 h of REM-SD altered the generation of newborn young neurons. These results suggest that REM sleep plays an essential role in training-induced cell proliferation and the fate determination of the newly generated cells toward the neuronal lineage.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K. Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
20
|
Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HI. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: implications for aging and Alzheimer’s disease. Sleep Med Rev 2022; 62:101592. [PMID: 35124476 PMCID: PMC9064973 DOI: 10.1016/j.smrv.2022.101592] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
Five decades ago, seminal studies positioned the brainstem locus coeruleus (LC) norepinephrine (NE) system as a key substrate for the regulation of wakefulness and sleep, and this picture has recently been elaborated thanks to methodological advances in the precise investigation and experimental modulation of LC structure and functions. This review presents and discusses findings that support the major role of the LC-NE system at different levels of sleep-wake organization, ranging from its involvement in the overall architecture of the sleep-wake cycle to its associations with sleep microstructure, while accounting for the intricate neuroanatomy surrounding the LC. Given the particular position held by the LC-NE system by being at the intersection of sleep-wake dysregulation and initial pathophysiological processes of Alzheimer's disease (AD), we conclude by examining emerging opportunities to investigate LC-NE mediated relationships between sleep-wake alteration and AD in human aging. We further propose several research perspectives that could support the LC-NE system as a promising target for the identification of at-risk individuals in the preclinical stages of AD, and for the development of novel preventive interventions.
Collapse
|
21
|
Wang L, Peng D. Altered intrinsic brain activity in mild Alzheimer's disease patients with sleep disturbances. Neuroreport 2021; 32:942-948. [PMID: 34132706 DOI: 10.1097/wnr.0000000000001689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sleep disturbances are one of the preventive factors to delay the onset and progression of Alzheimer's disease. Early identification of Alzheimer's disease patients prone to develop sleep disturbances to offer early medical intervention is important. Resting-state functional MRI is a widely used method to investigate the neural mechanisms and find neuroimaging biomarkers in neuropsychiatric diseases. In this study, we applied percent amplitude of fluctuation (PerAF) and mPerAF (divided by global mean PerAF) to test the strength of intrinsic brain activity in 38 mild Alzheimer's disease patients with sleep disturbances (ADSD) and 21 mild Alzheimer's disease patients without sleep disturbances (ADNSD). Compared with ADNSD, we found decreased intrinsic brain activity in the calcarine gyrus, the lingual gyrus, the fusiform gyrus extending to the parahippocampal gyrus, the precentral gyrus, the postcentral gyrus (all in the left hemisphere) and the left brainstem. Conclusively, ADSD exhibited reduced neural activity in specific brain regions related to the sensorimotor network and the visual network, which indicated the contribution of sleep disturbances to the progression of Alzheimer's disease. Especially, the ventral visual pathway to the hippocampus might serve for the memory impaired by sleep disturbances in Alzheimer's disease, and the brainstem might be critical in the initiation of sleep disturbances in Alzheimer's disease. These findings further elucidate the interactions between Alzheimer's disease and sleep disturbances and could help with the early recognition of Alzheimer's disease patients who tend to develop sleep disturbances.
Collapse
Affiliation(s)
- Lei Wang
- Peking University China-Japan Friendship School of Clinical Medicine
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Dantao Peng
- Peking University China-Japan Friendship School of Clinical Medicine
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Guinjoan SM, Bär KJ, Camprodon JA. Cognitive effects of rapid-acting treatments for resistant depression: Just adverse, or contributing to clinical efficacy? J Psychiatr Res 2021; 140:512-521. [PMID: 34157590 PMCID: PMC8319118 DOI: 10.1016/j.jpsychires.2021.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/28/2022]
Abstract
Major Depressive Disorder is a major public health problem and has a high rate of treatment resistance. Fear conditioning has been proposed as a potential mechanism sustaining negative affect in mood disorders. With the aim of exploring cognitive effects of rapid-acting antidepressant treatments as a potential mechanism of action that can be targeted by neuromodulation, we performed a narrative review of the extant literature on effects of electroconvulsive therapy, ketamine or esketamine, and sleep deprivation on emotional/fear memory retrieval-reconsolidation. We explore interference with reconsolidation as a potential common pathway that explains in part the efficacy of rapid-acting antidepressant treatments with disparate mechanisms of action. We propose the testable hypothesis that fear learning circuits can be specifically targeted by neuromodulation to attempt rapid amelioration of depressive symptoms (especially repetitive negative thinking) while limiting unspecific, untoward cognitive side effects.
Collapse
Affiliation(s)
- Salvador M. Guinjoan
- Principal Investigator, Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America,Schools of Medicine and Psychology, University of Buenos Aires, CONICET, Argentina,Mailing Address: Salvador M. Guinjoan, Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, Oklahoma 74136-3326, United States of America,
| | - Karl-Jürgen Bär
- Chief, Departments of Psychosomatic Medicine and Gerontopsychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Joan A. Camprodon
- Director, Division of Neuropsychiatry, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
23
|
Torres FA, Orio P, Escobar MJ. Selection of stimulus parameters for enhancing slow wave sleep events with a neural-field theory thalamocortical model. PLoS Comput Biol 2021; 17:e1008758. [PMID: 34329289 PMCID: PMC8357165 DOI: 10.1371/journal.pcbi.1008758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/11/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Slow-wave sleep cortical brain activity, conformed by slow-oscillations and sleep spindles, plays a key role in memory consolidation. The increase of the power of the slow-wave events, obtained by auditory sensory stimulation, positively correlates with memory consolidation performance. However, little is known about the experimental protocol maximizing this effect, which could be induced by the power of slow-oscillation, the number of sleep spindles, or the timing of both events' co-occurrence. Using a mean-field model of thalamocortical activity, we studied the effect of several stimulation protocols, varying the pulse shape, duration, amplitude, and frequency, as well as a target-phase using a closed-loop approach. We evaluated the effect of these parameters on slow-oscillations (SO) and sleep-spindles (SP), considering: (i) the power at the frequency bands of interest, (ii) the number of SO and SP, (iii) co-occurrences between SO and SP, and (iv) synchronization of SP with the up-peak of the SO. The first three targets are maximized using a decreasing ramp pulse with a pulse duration of 50 ms. Also, we observed a reduction in the number of SO when increasing the stimulus energy by rising its amplitude. To assess the target-phase parameter, we applied closed-loop stimulation at 0°, 45°, and 90° of the phase of the narrow-band filtered ongoing activity, at 0.85 Hz as central frequency. The 0° stimulation produces better results in the power and number of SO and SP than the rhythmic or random stimulation. On the other hand, stimulating at 45° or 90° change the timing distribution of spindles centers but with fewer co-occurrences than rhythmic and 0° phase. Finally, we propose the application of closed-loop stimulation at the rising zero-cross point using pulses with a decreasing ramp shape and 50 ms of duration for future experimental work.
Collapse
Affiliation(s)
- Felipe A. Torres
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Advanced Center for Electrical and Electronic Engineering (AC3E), Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Advanced Center for Electrical and Electronic Engineering (AC3E), Valparaíso, Chile
| | - María-José Escobar
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
24
|
Robayo Avendaño O, Alvira Botero X, Garzón M. Ultrastructural evidence for mu and delta opioid receptors at noradrenergic dendrites and glial profiles in the cat locus coeruleus. Brain Res 2021; 1762:147443. [PMID: 33745926 DOI: 10.1016/j.brainres.2021.147443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
The Locus Coeruleus (LC) is a pontine nucleus involved in many physiological processes, including the control of the sleep/wake cycle (SWC). At cellular level, the LC displays a high density of opioid receptors whose activation decreases the activity of LC noradrenergic neurons. Also, microinjections of morphine administered locally in the LC of the cat produce sleep associated with synchronized brain activity in the electroencephalogram (EEG). Even though much of the research on sleep has been done in the cat, the subcellular location of opioid receptors in the LC and their relationship with LC noradrenergic neurons is not known yet in this species. Therefore, we conducted a study to describe the ultrastructural localization of mu-opioid receptors (MOR), delta-opioid receptors (DOR) and tyrosine hydroxylase (TH) in the cat LC using high resolution electron microscopy double-immunocytochemical detection. MOR and DOR were localized mainly in dendrites (45% and 46% of the total number of profiles respectively), many of which were noradrenergic (35% and 53% for MOR and DOR, respectively). TH immunoreactivity was more frequent in dendrites (65% of the total number of profiles), which mostly also expressed opioid receptors (58% and 73% for MOR and DOR, respectively). Because the distribution of MORs and DORs are similar, it is possible that a substantial sub-population of neurons co-express both receptors, which may facilitate the formation of MOR-DOR heterodimers. Moreover, we found differences in the cat subcellular DOR distribution compared with the rat. This opens the possibility to the existence of diverse mechanisms for opioid modulation of LC activity.
Collapse
Affiliation(s)
- Omar Robayo Avendaño
- Universidad Pedagógica y Tecnológica de Colombia. Antiguo Hospital San Rafael, 150001 Tunja, Colombia.
| | - Ximena Alvira Botero
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Miguel Garzón
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
25
|
Mondino A, Cavelli M, González J, Osorio L, Castro-Zaballa S, Costa A, Vanini G, Torterolo P. Power and Coherence in the EEG of the Rat: Impact of Behavioral States, Cortical Area, Lateralization and Light/Dark Phases. Clocks Sleep 2020; 2:536-556. [PMID: 33317018 PMCID: PMC7768537 DOI: 10.3390/clockssleep2040039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The sleep-wake cycle is constituted by three behavioral states: wakefulness (W), non-REM (NREM) and REM sleep. These states are associated with drastic changes in cognitive capacities, mostly determined by the function of the thalamo-cortical system, whose activity can be examined by means of intra-cranial electroencephalogram (iEEG). With the purpose to study in depth the basal activity of the iEEG in adult rats, we analyzed the spectral power and coherence of the iEEG during W and sleep in the paleocortex (olfactory bulb), and in neocortical areas. We also analyzed the laterality of the signals, as well as the influence of the light and dark phases. We found that the iEEG power and coherence of the whole spectrum were largely affected by behavioral states and highly dependent on the cortical areas recorded. We also determined that there are night/day differences in power and coherence during sleep, but not in W. Finally, we observed that, during REM sleep, intra-hemispheric coherence differs between right and left hemispheres. We conclude that the iEEG dynamics are highly dependent on the cortical area and behavioral states. Moreover, there are light/dark phases disparities in the iEEG during sleep, and intra-hemispheric connectivity differs between both hemispheres during REM sleep.
Collapse
Affiliation(s)
- Alejandra Mondino
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5615, USA;
| | - Matías Cavelli
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Joaquín González
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Lucía Osorio
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Santiago Castro-Zaballa
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Alicia Costa
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5615, USA;
| | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| |
Collapse
|
26
|
|
27
|
Cao J, Herman AB, West GB, Poe G, Savage VM. Unraveling why we sleep: Quantitative analysis reveals abrupt transition from neural reorganization to repair in early development. SCIENCE ADVANCES 2020; 6:6/38/eaba0398. [PMID: 32948580 PMCID: PMC7500925 DOI: 10.1126/sciadv.aba0398] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Sleep serves disparate functions, most notably neural repair, metabolite clearance and circuit reorganization. Yet the relative importance remains hotly debated. Here, we create a novel mechanistic framework for understanding and predicting how sleep changes during ontogeny and across phylogeny. We use this theory to quantitatively distinguish between sleep used for neural reorganization versus repair. Our findings reveal an abrupt transition, between 2 and 3 years of age in humans. Specifically, our results show that differences in sleep across phylogeny and during late ontogeny (after 2 or 3 years in humans) are primarily due to sleep functioning for repair or clearance, while changes in sleep during early ontogeny (before 2 or 3 years) primarily support neural reorganization and learning. Moreover, our analysis shows that neuroplastic reorganization occurs primarily in REM sleep but not in NREM. This developmental transition suggests a complex interplay between developmental and evolutionary constraints on sleep.
Collapse
Affiliation(s)
- Junyu Cao
- Department of Information, Risk and Operations Management, McCombs School of Business, The University of Texas at Austin, TX, USA
| | | | - Geoffrey B West
- Santa Fe Institute, Santa Fe, NM, USA
- Department of Mathematics, Imperial College, London, UK
| | - Gina Poe
- Department of Integrative Biology and Physiology University of California, Los Angeles, CA, USA
| | - Van M Savage
- Santa Fe Institute, Santa Fe, NM, USA.
- Departments of Computational Medicine and Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Vertes RP, Linley SB. No cognitive processing in the unconscious,
anesthetic‐like
, state of sleep. J Comp Neurol 2020; 529:524-538. [DOI: 10.1002/cne.24963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
29
|
Moreno A. Molecular mechanisms of forgetting. Eur J Neurosci 2020; 54:6912-6932. [DOI: 10.1111/ejn.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Moreno
- Danish Institute of Translational Neuroscience (DANDRITE) Aarhus University Aarhus C Denmark
| |
Collapse
|
30
|
|
31
|
Bari BA, Chokshi V, Schmidt K. Locus coeruleus-norepinephrine: basic functions and insights into Parkinson's disease. Neural Regen Res 2020; 15:1006-1013. [PMID: 31823870 PMCID: PMC7034292 DOI: 10.4103/1673-5374.270297] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/17/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023] Open
Abstract
The locus coeruleus is a pontine nucleus that produces much of the brain's norepinephrine. Despite its small size, the locus coeruleus is critical for a myriad of functions and is involved in many neurodegenerative and neuropsychiatric disorders. In this review, we discuss the physiology and anatomy of the locus coeruleus system and focus on norepinephrine's role in synaptic plasticity. We highlight Parkinson's disease as a disorder with motor and neuropsychiatric symptoms that may be understood as aberrations in the normal functions of locus coeruleus.
Collapse
Affiliation(s)
- Bilal Abdul Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Varun Chokshi
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katharina Schmidt
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Prevention of age-associated neuronal hyperexcitability with improved learning and attention upon knockout or antagonism of LPAR2. Cell Mol Life Sci 2020; 78:1029-1050. [PMID: 32468095 PMCID: PMC7897625 DOI: 10.1007/s00018-020-03553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2−/− mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2−/− mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2−/− mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2−/− mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2−/− were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2−/− phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.
Collapse
|
33
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
34
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
35
|
Chinn GA, Pearn ML, Vutskits L, Mintz CD, Loepke AW, Lee JJ, Chen J, Bosnjak ZJ, Brambrink AM, Jevtovic-Todorovic V, Sun LS, Sall JW. Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. Br J Anaesth 2020; 124:585-593. [PMID: 32145876 PMCID: PMC7424895 DOI: 10.1016/j.bja.2020.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
In March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories. This expert opinion report is a summary of these discussions, and includes a focused review of current animal models and reporting standards for the field of perinatal anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental work.
Collapse
Affiliation(s)
- Gregory A Chinn
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Matthew L Pearn
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Laszlo Vutskits
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Cyrus D Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas W Loepke
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer J Lee
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jerri Chen
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Lena S Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jeffrey W Sall
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
36
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
37
|
Sharma R, Sahota P, Thakkar MM. Sleep Loss Immediately After Fear Memory Reactivation Attenuates Fear Memory Reconsolidation. Neuroscience 2020; 428:70-75. [PMID: 31917354 DOI: 10.1016/j.neuroscience.2019.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
Permanently stored memories become labile through a process called reactivation. Once reactivated, these memories need reconsolidation to become permanent. Sleep is critical for memory consolidation. Is sleep necessary for memory reconsolidation? We hypothesized that sleep loss immediately after fear reactivation (FR) will prevent memory reconsolidation. To test our hypothesis, two experiments were performed in adult male C57BL/6J mice exposed to contextual fear conditioning paradigm with inescapable foot shock as unconditional stimulus (US) and contextual cage as conditional stimulus (CS). Sleep loss was achieved either by 5 h of sleep deprivation (SD; Experiment 1) or by systemic infusion of modafinil (200 mg/Kg, ip), an FDA approved wake-promoting agent (Experiment 2). One hour after light-onset, fear memory acquisition (FMA) was performed on Day 1. Mice were allowed to explore CS for 5 min followed by presentation of US (7 foot-shocks; 0.5 mA, 2.0 s duration) at pseudorandom intervals. Controls were exposed to similar CS but no shocks were delivered. On Day 2, mice were exposed to CS for 2 min (without US; for FR) followed by either sleep loss or no sleep loss. On Day 3, fear memory recall (FMR) was performed by exposing mice to CS (without US) for 12 min. Percent time spent in freezing was monitored during FC, FR and FMR. Our results suggested that as compared to sleeping controls, mice with sleep loss immediately after FR displayed a significant reduction in percent time freezing during FMR. These results suggest that sleep loss may prevent memory reconsolidation.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO 65201, United States
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO 65201, United States
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO 65201, United States.
| |
Collapse
|
38
|
Ranjbar-Slamloo Y, Fazlali Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front Mol Neurosci 2020; 12:334. [PMID: 32038164 PMCID: PMC6986277 DOI: 10.3389/fnmol.2019.00334] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine and noradrenaline are crucial neuromodulators controlling brain states, vigilance, action, reward, learning, and memory processes. Ventral tegmental area (VTA) and Locus Coeruleus (LC) are canonically described as the main sources of dopamine (DA) and noradrenaline (NA) with dissociate functions. A comparison of diverse studies shows that these neuromodulators largely overlap in multiple domains such as shared biosynthetic pathway and co-release from the LC terminals, convergent innervations, non-specificity of receptors and transporters, and shared intracellular signaling pathways. DA–NA interactions are mainly studied in prefrontal cortex and hippocampus, yet it can be extended to the whole brain given the diversity of catecholamine innervations. LC can simultaneously broadcast both dopamine and noradrenaline across the brain. Here, we briefly review the molecular, cellular, and physiological overlaps between DA and NA systems and point to their functional implications. We suggest that DA and NA may function in parallel to facilitate learning and maintain the states required for normal cognitive processes. Various signaling modules of NA and DA have been targeted for developing of therapeutics. Understanding overlaps of the two systems is crucial for more effective interventions in a range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Zeinab Fazlali
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
39
|
Tsunematsu T, Patel AA, Onken A, Sakata S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. eLife 2020; 9:52244. [PMID: 31934862 PMCID: PMC6996931 DOI: 10.7554/elife.52244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem plays a crucial role in sleep-wake regulation. However, the ensemble dynamics underlying sleep regulation remain poorly understood. Here, we show slow, state-predictive brainstem ensemble dynamics and state-dependent interactions between the brainstem and the hippocampus in mice. On a timescale of seconds to minutes, brainstem populations can predict pupil dilation and vigilance states and exhibit longer prediction power than hippocampal CA1 neurons. On a timescale of sub-seconds, pontine waves (P-waves) are accompanied by synchronous firing of brainstem neurons during both rapid eye movement (REM) and non-REM (NREM) sleep. Crucially, P-waves functionally interact with CA1 activity in a state-dependent manner: during NREM sleep, hippocampal sharp wave-ripples (SWRs) precede P-waves. On the other hand, P-waves during REM sleep are phase-locked with ongoing theta oscillations and are followed by burst firing of CA1 neurons. This state-dependent global coordination between the brainstem and hippocampus implicates distinct functional roles of sleep. Though almost all animals sleep, its exact purpose remains an enigma. This is particularly true for the period of sleep where people dream most vividly, which is known as rapid eye movement sleep or REM sleep for short. In addition to the eye movements that give it its name, during this phase of sleep, the pupils of the eyes become smaller, muscles relax and neurons in part of the brain activate in a regular, repeating way known as pontine waves or P-waves. The brainstem is a key brain region that helps the body determine when it is time to sleep and when it is time to be awake. It is found at the back of the brain, and connects the brain to the spinal cord, serving as a conduit for nerve signals to and from the rest of the body. However, it was not clear how the brainstem’s activity during sleep interacts with other brain regions that are important in the sleep process, such as the hippocampus. REM sleep is not unique to humans; in fact, it occurs in all mammals. Tsunematsu et al. studied mice to better understand the role of the brainstem during sleep. In the experiments, the brain waves, muscle tone and pupil sizes of the mice were monitored, while a probe inserted into the brainstem of the mice measured the activity of the neurons. Analysis of the probe data could predict changes in pupil size ten seconds beforehand and transitions between wakefulness, REM sleep and non-REM sleep up to sixty seconds in advance. This long timescale suggests that there are a number of complex interactions following brainstem activity that lead to the changes in sleep state. Tsunematsu et al. were also able to detect P-waves for the first time in mice and found that they are timed with activity from the hippocampus depending on the sleep state. During REM sleep, the P-waves precede the hippocampal activity, while during non-REM sleep, they follow it. These results further imply that the two sleep states serve different purposes. The detection of P-waves in mice shows that they are similar to other mammals that have previously been studied. Further studies in mice could help to provide more insight into the mechanisms of sleep and the purpose of the different stages.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.,Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Arno Onken
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
40
|
Li K, Luo X, Zeng Q, Jiaerken Y, Wang S, Xu X, Xu X, Xu J, Wang C, Zhou J, Huang P, Zhang M. Interactions between sleep disturbances and Alzheimer's disease on brain function: a preliminary study combining the static and dynamic functional MRI. Sci Rep 2019; 9:19064. [PMID: 31836777 PMCID: PMC6911090 DOI: 10.1038/s41598-019-55452-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
Though sleep disturbance constitutes the risk factor for Alzheimer's disease (AD), the underlying mechanism is still unclear. This study aims to explore the interaction between sleep disturbances and AD on brain function. We included 192 normal controls, 111 mild cognitive impairment (MCI), and 30 AD patients, with either poor or normal sleep (PS, NS, respectively). To explore the strength and stability of brain activity, we used static amplitude of low-frequency fluctuation (sALFF) and dynamic ALFF (dALFF) variance. Further, we examined white matter hyperintensities (WMH) and amyloid PET deposition, representing the vascular risk factor and AD-related hallmark, respectively. We observed that sleep disturbance significantly interacted with disease severity, exposing distinct effects on sALFF and dALFF variance. Interestingly, PS groups showed the dALFF variance trajectory of initially increased, then decreased and finally increased along the AD spectrum, while showing the opposite trajectory of sALFF. Further correlation analysis showed that the WMH burden correlates with dALFF variance in PS groups. Conclusively, our study suggested that sleep disturbance interacts with AD severity, expressing as effects of compensatory in MCI and de-compensatory in AD, respectively. Further, vascular impairment might act as important pathogenesis underlying the interaction effect between sleep and AD.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xiao Luo
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Qingze Zeng
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Yerfan Jiaerken
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Shuyue Wang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaopei Xu
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Jingjing Xu
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Chao Wang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Jiong Zhou
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Peiyu Huang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China.
| | - Minming Zhang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
41
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
42
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
43
|
Luchetti A, Chowdhury A, Silva AJ. Getting the full picture. eLife 2019; 8:46279. [PMID: 30912744 PMCID: PMC6435316 DOI: 10.7554/elife.46279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
A combination of old and new techniques has revealed new details about the behavior of individual neurons across the sleep-wake-cycle.
Collapse
Affiliation(s)
- Alessandro Luchetti
- Department of Neurobiology, University of California Los Angeles, Los Angeles, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, United States.,Department of Psychology, University of California Los Angeles, Los Angeles, United States.,Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, United States.,Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Ananya Chowdhury
- Department of Neurobiology, University of California Los Angeles, Los Angeles, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, United States.,Department of Psychology, University of California Los Angeles, Los Angeles, United States.,Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, United States.,Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Alcino J Silva
- Department of Neurobiology, University of California Los Angeles, Los Angeles, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, United States.,Department of Psychology, University of California Los Angeles, Los Angeles, United States.,Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, United States
| |
Collapse
|
44
|
Quillfeldt JA. Temporal Flexibility of Systems Consolidation and the Synaptic Occupancy/Reset Theory (SORT): Cues About the Nature of the Engram. Front Synaptic Neurosci 2019; 11:1. [PMID: 30814946 PMCID: PMC6381034 DOI: 10.3389/fnsyn.2019.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
The ability to adapt to new situations involves behavioral changes expressed either from an innate repertoire, or by acquiring experience through memory consolidation mechanisms, by far a much richer and flexible source of adaptation. Memory formation consists of two interrelated processes that take place at different spatial and temporal scales, Synaptic Consolidation, local plastic changes in the recruited neurons, and Systems Consolidation, a process of gradual reorganization of the explicit/declarative memory trace between hippocampus and the neocortex. In this review, we summarize some converging experimental results from our lab that support a normal temporal framework of memory systems consolidation as measured both from the anatomical and the psychological points of view, and propose a hypothetical model that explains these findings while predicting other phenomena. Then, the same experimental design was repeated interposing additional tasks between the training and the remote test to verify for any interference: we found that (a) when the animals were subject to a succession of new learnings, systems consolidation was accelerated, with the disengagement of the hippocampus taking place before the natural time point of this functional switch, but (b) when a few reactivation sessions reexposed the animal to the training context without the shock, systems consolidation was delayed, with the hippocampus prolonging its involvement in retrieval. We hypothesize that new learning recruits from a fixed number of plastic synapses in the CA1 area to store the engram index, while reconsolidation lead to a different outcome, in which additional synapses are made available. The first situation implies the need of a reset mechanism in order to free synapses needed for further learning, and explains the acceleration observed under intense learning activity, while the delay might be explained by a different process, able to generate extra free synapses: depending on the cognitive demands, it deals either with a fixed or a variable pool of available synapses. The Synaptic Occupancy/Reset Theory (SORT) emerged as an explanation for the temporal flexibility of systems consolidation, to encompass the two different dynamics of explicit memories, as well as to bridge both synaptic and systems consolidation in one single mechanism.
Collapse
Affiliation(s)
- Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci Biobehav Rev 2019; 97:112-137. [DOI: 10.1016/j.neubiorev.2018.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
|
46
|
Sleep Impact on Perception, Memory, and Emotion in Adults and the Effects of Early-Life Experience. HANDBOOK OF SLEEP RESEARCH 2019. [DOI: 10.1016/b978-0-12-813743-7.00039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
London EB. Neuromodulation and a Reconceptualization of Autism Spectrum Disorders: Using the Locus Coeruleus Functioning as an Exemplar. Front Neurol 2018; 9:1120. [PMID: 30619071 PMCID: PMC6305710 DOI: 10.3389/fneur.2018.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
The Autism Spectrum Disorders (ASD) are a heterogeneous group of developmental disorders. Although, ASD can be reliably diagnosed, the etiology, pathophysiology, and treatment targets remain poorly characterized. While there are many atypical findings in anatomy, genetics, connectivity, and other biologic parameters, there remains no discreet hypothesis to explain the core signs as well as the very frequent comorbidities. Due to this, designing targets for treatments can only be done by assuming each symptom is a result of a discreet abnormality which is likely not the case. Neuronal circuity remains a major focus of research but rarely taking into account the functioning of the brain is highly dependent on various systems, including the neuromodulatory substances originating in the midbrain. A hypothesis is presented which explores the possibility of explaining many of the symptoms found in ASD in terms of inefficient neuromodulation using the functioning of the locus coeruleus and norepinephrine (LC/NE) as exemplars. The basic science of LC/NE is reviewed. Several functions found to be impaired in ASD including learning, attention, sensory processing, emotional regulation, autonomic functioning, adaptive and repetitive behaviors, sleep, language acquisition, initiation, and prompt dependency are examined in terms of the functioning of the LC/NE system. Suggestions about possible treatment directions are explored.
Collapse
Affiliation(s)
- Eric B. London
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
48
|
Amato N, Manconi M, Möller JC, Sarasso S, Stanzione P, Staedler C, Kaelin-Lang A, Galati S. Levodopa-induced dyskinesia in Parkinson disease: Sleep matters. Ann Neurol 2018; 84:905-917. [DOI: 10.1002/ana.25360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ninfa Amato
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland; Lugano Switzerland
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland; Lugano Switzerland
| | - Jens C. Möller
- Parkinson Center; Zihlschlacht-Sitterdorf Switzerland
- Department of Neurology; Philipp University of Marburg; Marburg Germany
| | - Simone Sarasso
- L. Sacco Department of Biomedical and Clinical Sciences; University of Milan; Milan Italy
| | - Paolo Stanzione
- Department of Medical Systems; University of Rome Tor Vergata; Rome Italy
| | - Claudio Staedler
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland; Lugano Switzerland
| | - Alain Kaelin-Lang
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland; Lugano Switzerland
- University of Italian Switzerland; Lugano Switzerland
| | - Salvatore Galati
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland; Lugano Switzerland
- University of Italian Switzerland; Lugano Switzerland
| |
Collapse
|
49
|
Cellini N, Mednick SC. Stimulating the sleeping brain: Current approaches to modulating memory-related sleep physiology. J Neurosci Methods 2018; 316:125-136. [PMID: 30452977 DOI: 10.1016/j.jneumeth.2018.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND One of the most audacious proposals throughout the history of psychology was the potential ability to learn while we sleep. The idea penetrated culture via sci-fi movies and inspired the invention of devices that claimed to teach foreign languages, facts, and even quit smoking by simply listening to audiocassettes or other devices during sleep. However, the promises from this endeavor didn't stand up to experimental scrutiny, and the dream was shunned from the scientific community. Despite the historic evidence that the sleeping brain cannot learn new complex information (i.e., words, images, facts), a new wave of current interventions are demonstrating that sleep can be manipulated to strengthen recent memories. NEW METHOD Several recent approaches have been developed that play with the sleeping brain in order to modify ongoing memory processing. Here, we provide an overview of the available techniques to non-invasively modulate memory-related sleep physiology, including sensory, vestibular and electrical stimulation, as well as pharmacological approaches. RESULTS N/A. COMPARISON WITH EXISTING METHODS N/A. CONCLUSIONS Although the results are encouraging, suggesting that in general the sleeping brain may be optimized for better memory performance, the road to bring these techniques in free-living conditions is paved with unanswered questions and technical challenges that need to be carefully addressed.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, United States
| |
Collapse
|
50
|
Lu Y, Zhu ZG, Ma QQ, Su YT, Han Y, Wang X, Duan S, Yu YQ. A Critical Time-Window for the Selective Induction of Hippocampal Memory Consolidation by a Brief Episode of Slow-Wave Sleep. Neurosci Bull 2018; 34:1091-1099. [PMID: 30413937 PMCID: PMC6246845 DOI: 10.1007/s12264-018-0303-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023] Open
Abstract
Although extensively studied, the exact role of sleep in learning and memory is still not very clear. Sleep deprivation has been most frequently used to explore the effects of sleep on learning and memory, but the results from such studies are inevitably complicated by concurrent stress and distress. Furthermore, it is not clear whether there is a strict time-window between sleep and memory consolidation. In the present study we were able to induce time-locked slow-wave sleep (SWS) in mice by optogenetically stimulating GABAergic neurons in the parafacial zone (PZ), providing a direct approach to analyze the influences of SWS on learning and memory with precise time-windows. We found that SWS induced by light for 30 min immediately or 15 min after the training phase of the object-in-place task significantly prolonged the memory from 30 min to 6 h. However, induction of SWS 30 min after the training phase did not improve memory, suggesting a critical time-window between the induction of a brief episode of SWS and learning for memory consolidation. Application of a gentle touch to the mice during light stimulation to prevent SWS induction also failed to improve memory, indicating the specific role of SWS, but not the activation of PZ GABAergic neurons itself, in memory consolidation. Similar influences of light-induced SWS on memory consolidation also occurred for Y-maze spatial memory and contextual fear memory, but not for cued fear memory. SWS induction immediately before the test phase had no effect on memory performance, indicating that SWS does not affect memory retrieval. Thus, by induction of a brief-episode SWS we have revealed a critical time window for the consolidation of hippocampus-dependent memory.
Collapse
Affiliation(s)
- Yi Lu
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zheng-Gang Zhu
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qing-Qing Ma
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yun-Ting Su
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong Han
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaodong Wang
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shumin Duan
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yan-Qin Yu
- Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|