1
|
Ignatova II, Frolov RV. Distinct mechanisms of light adaptation of elementary responses in photoreceptors of Dipteran flies and American cockroach. J Neurophysiol 2022; 128:263-277. [PMID: 35730751 DOI: 10.1152/jn.00519.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Of many light adaptation mechanisms optimizing photoreceptor functioning in the compound eyes of insects, those modifying the single photon response, the quantum bump (QB), remain least studied. Here, by recording from photoreceptors of the blow fly Protophormia terraenovae, the hover fly Volucella pellucens and the cockroach Periplaneta americana, we investigated mechanisms of rapid light adaptation by examining how properties of QBs change after light stimulation and multiquantal impulse responses during repetitive stimulation. In P. terraenovae, light stimulation reduced latencies, characteristic durations and amplitudes of QBs in the intensity- and duration-dependent manner. In P. americana, only QB amplitudes decreased consistently. In both species, time constants of QB parameters' recovery increased with the strength and duration of stimulation, reaching about 30 s after bright prolonged 10 s pulses. In the blow fly, changes in QB amplitudes during recovery correlated with changes in half-widths but not latencies, suggesting at least two separate mechanisms of light adaptation: acceleration of QB onset by sensitizing transduction channels, and acceleration of transduction channel inactivation causing QB shortening and diminishment. In the cockroach, light adaptation reduced QB amplitude by apparently lowering the transduction channel availability. Impulse response data in the blow fly and cockroach were consistent with the mechanistic inferences from the QB recovery experiments. However, in the hover fly V. pellucens, impulse response latencies and durations decreased simultaneously whereas amplitudes decreased little, even when bright flashes were applied at high frequencies. These findings indicate existence of dissimilar mechanisms of light adaptation in the microvilli of different species.
Collapse
Affiliation(s)
- Irina I Ignatova
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Ca2+ Signaling in Drosophila Photoreceptor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:857-879. [DOI: 10.1007/978-3-030-12457-1_34] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Katz B, Minke B. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade. Prog Retin Eye Res 2018; 66:200-219. [DOI: 10.1016/j.preteyeres.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/28/2023]
|
4
|
A Single Residue Mutation in the Gα q Subunit of the G Protein Complex Causes Blindness in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:363-371. [PMID: 29158337 PMCID: PMC5765363 DOI: 10.1534/g3.117.300340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heterotrimeric G proteins play central roles in many signaling pathways, including the phototransduction cascade in animals. However, the degree of involvement of the G protein subunit Gαq is not clear since animals with previously reported strong loss-of-function mutations remain responsive to light stimuli. We recovered a new allele of Gαq in Drosophila that abolishes light response in a conventional electroretinogram assay, and reduces sensitivity in whole-cell recordings of dissociated cells by at least five orders of magnitude. In addition, mutant eyes demonstrate a rapid rate of degeneration in the presence of light. Our new allele is likely the strongest hypomorph described to date. Interestingly, the mutant protein is produced in the eyes but carries a single amino acid change of a conserved hydrophobic residue that has been assigned to the interface of interaction between Gαq and its downstream effector, PLC. Our study has thus uncovered possibly the first point mutation that specifically affects this interaction in vivo.
Collapse
|
5
|
Yasin B, Kohn E, Peters M, Zaguri R, Weiss S, Schopf K, Katz B, Huber A, Minke B. Ectopic Expression of Mouse Melanopsin in Drosophila Photoreceptors Reveals Fast Response Kinetics and Persistent Dark Excitation. J Biol Chem 2017; 292:3624-3636. [PMID: 28119450 PMCID: PMC5339748 DOI: 10.1074/jbc.m116.754770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
The intrinsically photosensitive M1 retinal ganglion cells (ipRGC) initiate non-image-forming light-dependent activities and express the melanopsin (OPN4) photopigment. Several features of ipRGC photosensitivity are characteristic of fly photoreceptors. However, the light response kinetics of ipRGC is much slower due to unknown reasons. Here we used transgenic Drosophila, in which the mouse OPN4 replaced the native Rh1 photopigment of Drosophila R1-6 photoreceptors, resulting in deformed rhabdomeric structure. Immunocytochemistry revealed OPN4 expression at the base of the rhabdomeres, mainly at the rhabdomeral stalk. Measurements of the early receptor current, a linear manifestation of photopigment activation, indicated large expression of OPN4 in the plasma membrane. Comparing the early receptor current amplitude and action spectra between WT and the Opn4-expressing Drosophila further indicated that large quantities of a blue absorbing photopigment were expressed, having a dark stable blue intermediate state. Strikingly, the light-induced current of the Opn4-expressing fly photoreceptors was ∼40-fold faster than that of ipRGC. Furthermore, an intense white flash induced a small amplitude prolonged dark current composed of discrete unitary currents similar to the Drosophila single photon responses. The induction of prolonged dark currents by intense blue light could be suppressed by a following intense green light, suggesting induction and suppression of prolonged depolarizing afterpotential. This is the first demonstration of heterologous functional expression of mammalian OPN4 in the genetically emendable Drosophila photoreceptors. Moreover, the fast OPN4-activated ionic current of Drosophila photoreceptors relative to that of mouse ipRGC, indicates that the slow light response of ipRGC does not arise from an intrinsic property of melanopsin.
Collapse
Affiliation(s)
- Bushra Yasin
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| | - Elkana Kohn
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| | - Maximilian Peters
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| | - Rachel Zaguri
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| | - Shirley Weiss
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| | - Krystina Schopf
- the Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ben Katz
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| | - Armin Huber
- the Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Baruch Minke
- From the Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel and
| |
Collapse
|
6
|
|
7
|
Torres M. Chapter Two - Heterotrimeric G Protein Ubiquitination as a Regulator of G Protein Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:57-83. [PMID: 27378755 DOI: 10.1016/bs.pmbts.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ubiquitin-mediated regulation of G proteins has been known for over 20 years as a result of discoveries made independently in yeast and vertebrate model systems for pheromone and photoreception, respectively. Since that time, several details underlying the cause and effect of G protein ubiquitination have been determined-including the initiating signals, responsible enzymes, trafficking pathways, and their effects on protein structure, function, interactions, and cell signaling. The collective body of evidence suggests that Gα subunits are the primary targets of ubiquitination. However, longstanding and recent results suggest that Gβ and Gγ subunits are also ubiquitinated, in some cases impacting cell polarization-a process essential for chemotaxis and polarized cell growth. More recently, evidence from mass spectrometry (MS)-based proteomics coupled with advances in PTM bioinformatics have revealed that protein families representing G protein subunits contain several structural hotspots for ubiquitination-most of which have not been investigated for a functional role in signal transduction. Taken together, our knowledge and understanding of heterotrimeric G protein ubiquitination as a regulator of G protein signaling-despite 20 years of research-is still emerging.
Collapse
Affiliation(s)
- M Torres
- Georgia Institute of Technology, School of Biology, Atlanta, GA, United States.
| |
Collapse
|
8
|
Dixit G, Baker R, Sacks CM, Torres MP, Dohlman HG. Guanine nucleotide-binding protein (Gα) endocytosis by a cascade of ubiquitin binding domain proteins is required for sustained morphogenesis and proper mating in yeast. J Biol Chem 2014; 289:15052-63. [PMID: 24722989 PMCID: PMC4031556 DOI: 10.1074/jbc.m114.566117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/07/2014] [Indexed: 01/10/2023] Open
Abstract
Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization.
Collapse
Affiliation(s)
- Gauri Dixit
- From the Department of Biochemistry and Biophysics
| | | | | | - Matthew P Torres
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Henrik G Dohlman
- From the Department of Biochemistry and Biophysics, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
9
|
Battelle BA. What the clock tells the eye: lessons from an ancient arthropod. Integr Comp Biol 2013; 53:144-53. [PMID: 23639718 DOI: 10.1093/icb/ict020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circadian changes in visual sensitivity have been observed in a wide range of species, vertebrates, and invertebrates, but the processes impacted and the underlying mechanisms largely are unexplored. Among arthropods, effects of circadian signals on vision have been examined in most detail in the lateral compound eye (LE) of the American horseshoe crab, Limulus polyphemus, a chelicerate arthropod. As a consequence of processes influenced by a central circadian clock, Limulus can see at night nearly as well as they do during the day. The effects of the clock on horseshoe crab LE retinas are diverse and include changes in structure, gene expression, and rhabdom biochemistry. An examination of the known effects of circadian rhythms on LEs shows that the effects have three important outcomes: an increase in visual sensitivity at night, a rapid decrease in visual sensitivity at dawn, and maintenance of eyes in a relatively low state of sensitivity during the day, even in the dark. All three outcomes may be critically important for species' survival. Specific effects of circadian rhythms on vision will certainly vary with species and according to life styles. Studies of the circadian regulation of Limulus vision have revealed that these effects can be extremely diverse and profound and suggest that circadian clocks can play a critical role in the ability of animals to adapt to the dramatic daily changes in ambient illumination.
Collapse
Affiliation(s)
- B-A Battelle
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, University of Florida, St Augustine, FL 32080, USA.
| |
Collapse
|
10
|
Battelle BA, Kempler KE, Parker AK, Gaddie CD. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock. ACTA ACUST UNITED AC 2013; 216:1837-49. [PMID: 23393287 DOI: 10.1242/jeb.083519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd, St Augustine, FL 32080-8610, USA.
| | | | | | | |
Collapse
|
11
|
Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 2012; 22:1371-80. [PMID: 22704990 PMCID: PMC3420010 DOI: 10.1016/j.cub.2012.05.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 05/25/2012] [Indexed: 01/02/2023]
Abstract
Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing.
Collapse
|
12
|
Vang LL, Medvedev AV, Adler J. Simple ways to measure behavioral responses of Drosophila to stimuli and use of these methods to characterize a novel mutant. PLoS One 2012; 7:e37495. [PMID: 22649531 PMCID: PMC3359294 DOI: 10.1371/journal.pone.0037495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/19/2012] [Indexed: 11/26/2022] Open
Abstract
The behavioral responses of adult Drosophila fruit flies to a variety of sensory stimuli – light, volatile and non-volatile chemicals, temperature, humidity, gravity, and sound - have been measured by others previously. Some of those assays are rather complex; a review of them is presented in the Discussion. Our objective here has been to find out how to measure the behavior of adult Drosophila fruit flies by methods that are inexpensive and easy to carry out. These new assays have now been used here to characterize a novel mutant that fails to be attracted or repelled by a variety of sensory stimuli even though it is motile.
Collapse
Affiliation(s)
- Lar L. Vang
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexei V. Medvedev
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Microbiology and Immunology, Georgetown University, Georgetown, Washington, D.C., United States of America
| | - Julius Adler
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
13
|
Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. J Neurosci 2012; 32:2722-33. [PMID: 22357856 DOI: 10.1523/jneurosci.5221-11.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single-photon sensitivity. This is manifested in the single-photon responses (quantum bumps). In photoreceptor cells, dark activation of G(q)α molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous G(q)α activation and dark bump production potentially hampers single-photon detection. We found that in wild-type flies the in vivo rate of spontaneous G(q)α activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production arising from spontaneous G(q)α activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca(2+) modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity selectively suppressed random production of single G(q)α-activated dark bumps despite a high rate of spontaneous G(q)α activation. This minimal PLC activity level is reliably obtained by photon-induced synchronized activation of several neighboring G(q)α molecules activating several PLC molecules, but not by random activation of single G(q)α molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling.
Collapse
|
14
|
Raghu P, Yadav S, Mallampati NBN. Lipid signaling in Drosophila photoreceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1154-65. [PMID: 22487656 DOI: 10.1016/j.bbalip.2012.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022]
Abstract
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P(2)] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Banglore 560065, India.
| | | | | |
Collapse
|
15
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
16
|
Hardie RC. Phototransduction mechanisms in Drosophila microvillar photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Nikolic K, Loizu J, Degenaar P, Toumazou C. A stochastic model of the single photon response in Drosophila photoreceptors. Integr Biol (Camb) 2010; 2:354-70. [PMID: 20648395 DOI: 10.1039/c0ib00031k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a quantitative model for the phototransduction cascade in Drosophila photoreceptors. The process consists of four stages: (1) light absorption by Rhodopsin, (2) signal amplification phase mediated by a G-protein coupled cascade, (3) closed/open state kinetics of the transient receptor potential (TRP) ion channels which regulate the ionic current in/out of the cell and (4) Ca regulated positive and negative feedbacks. The model successfully reproduces the experimental results for: single photon absorption "quantum bump" (QB), statistical features for QB (average shape, peak current average value and variance, the latency distribution, etc.), arrestin mutant behaviour, low extracellular Ca(2+) cases, etc. The TRP channel activity is modeled by a Monod-Wyman-Changeux (MWC) model for allosteric interaction, instead of using the usual ad hoc Hill equation. This approach allows for a plausible physical explanation of how Ca/calmodulin regulate the protein activity. The cooperative nature of the TRP channel activation leads to "dark current" suppression at the output allowing for reliable detection of a single photon. Stochastic simulations were produced by using the standard rate equations combined with the Poisson distribution for generating random events from the forward and reverse reaction rates. Noise is inherent to the system but appears to be crucial for producing such reliable responses in this complex, highly non-linear system. The approach presented here may serve as a useful example how to treat complex cellular mechanisms underlying sensory processes.
Collapse
Affiliation(s)
- Konstantin Nikolic
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | | | | | | |
Collapse
|
18
|
Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila. J Neurosci 2010; 30:1238-49. [PMID: 20107052 DOI: 10.1523/jneurosci.4464-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP) (CG10233) in Drosophila photoreceptors and establish its involvement in dark-noise suppression. RTP possesses membrane occupation and recognition nexus (MORN) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light-gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking neither inactivation nor afterpotential C (NINAC) myosin III, a motor protein/kinase, also display a similar dark-noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is attributable to lack of RTP and, furthermore, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors.
Collapse
|
19
|
Overexpressing temperature-sensitive dynamin decelerates phototransduction and bundles microtubules in Drosophila photoreceptors. J Neurosci 2009; 29:14199-210. [PMID: 19906968 DOI: 10.1523/jneurosci.2873-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
shibire(ts1), a temperature-sensitive mutation of the Drosophila gene encoding a Dynamin orthologue, blocks vesicle endocytosis and thus synaptic transmission, at elevated, or restrictive temperatures. By targeted Gal4 expression, UAS-shibire(ts1) has been used to dissect neuronal circuits. We investigated the effects of UAS-shibire(ts1) overexpression in Drosophila photoreceptors at permissive (19 degrees C) and restrictive (31 degrees C) temperatures. At 19 degrees C, overexpression of UAS-shi(ts1) causes decelerated phototransduction and reduced neurotransmitter release. This phenotype is exacerbated with dark adaptation, age and in white mutants. Photoreceptors overexpressing UAS-shibire(ts1) contain terminals with widespread vacuolated mitochondria, reduced numbers of vesicles and bundled microtubules. Immuno-electron microscopy reveals that the latter are dynamin coated. Further, the microtubule phenotype is not restricted to photoreceptors, as UAS-shibire(ts1) overexpression in lamina cells also bundles microtubules. We conclude that dynamin has multiple functions that are interrupted by UAS-shibire(ts1) overexpression in Drosophila photoreceptors, destabilizing their neural communication irreversibly at previously reported permissive temperatures.
Collapse
|
20
|
Chisari M, Saini DK, Cho JH, Kalyanaraman V, Gautam N. G protein subunit dissociation and translocation regulate cellular response to receptor stimulation. PLoS One 2009; 4:e7797. [PMID: 19936219 PMCID: PMC2777387 DOI: 10.1371/journal.pone.0007797] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 10/16/2009] [Indexed: 01/23/2023] Open
Abstract
We examined the role of G proteins in modulating the response of living cells to receptor activation. The response of an effector, phospholipase C-β to M3 muscarinic receptor activation was measured using sensors that detect the generation of inositol triphosphate or diacylglycerol. The recently discovered translocation of Gβγ from plasma membrane to endomembranes on receptor activation attenuated this response. A FRET based G protein sensor suggested that in contrast to translocating Gβγ, non-translocating Gβγ subunits do not dissociate from the αq subunit on receptor activation leading to prolonged retention of the heterotrimer state and an accentuated response. M3 receptors with tethered αq induced differential responses to receptor activation in cells with or without an endogenous translocation capable γ subunit. G protein heterotrimer dissociation and βγ translocation are thus unanticipated modulators of the intensity of a cell's response to an extracellular signal.
Collapse
Affiliation(s)
- Mariangela Chisari
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Deepak Kumar Saini
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joon-Ho Cho
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - N. Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Katz B, Minke B. Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 2009; 3:2. [PMID: 19623243 PMCID: PMC2701675 DOI: 10.3389/neuro.03.002.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/11/2009] [Indexed: 01/10/2023] Open
Abstract
Fly eyes have been a useful biological system in which fundamental principles of sensory signaling have been elucidated. The physiological optics of the fly compound eye, which was discovered in the Musca, Calliphora and Drosophila flies, has been widely exploited in pioneering genetic and developmental studies. The detailed photochemical cycle of bistable photopigments has been elucidated in Drosophila using the genetic approach. Studies of Drosophila phototransduction using the genetic approach have led to the discovery of novel proteins crucial to many biological processes. A notable example is the discovery of the inactivation no afterpotential D scaffold protein, which binds the light-activated channel, its activator the phospholipase C and it regulator protein kinase C. An additional protein discovered in the Drosophila eye is the light-activated channel transient receptor potential (TRP), the founding member of the diverse and widely spread TRP channel superfamily. The fly eye has thus played a major role in the molecular identification of processes and proteins with prime importance.
Collapse
Affiliation(s)
- Ben Katz
- Department of Physiology, Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine, The Hebrew UniversityJerusalem, Israel
| | - Baruch Minke
- Department of Physiology, Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine, The Hebrew UniversityJerusalem, Israel
| |
Collapse
|
22
|
Codega P, Della Santina L, Gargini C, Bedolla DE, Subkhankulova T, Livesey FJ, Cervetto L, Torre V. Prolonged illumination up-regulates arrestin and two guanylate cyclase activating proteins: a novel mechanism for light adaptation. J Physiol 2009; 587:2457-72. [PMID: 19332500 DOI: 10.1113/jphysiol.2009.168609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Light adaptation in vertebrate photoreceptors is mediated by multiple mechanisms, one of which could involve nuclear feedback and changes in gene expression. Therefore, we have investigated light adaptation-associated changes in gene expression using microarrays and real-time PCR in isolated photoreceptors, in cultured isolated retinas and in acutely isolated retinas. In all three preparations after 2 h of an exposure to a bright light, we observed an up-regulation of almost 100% of three genes, Sag, Guca1a and Guca1b, coding for proteins known to play a major role in phototransduction: arrestin, GCAP1 and GCAP2. No detectable up-regulation occurred for light exposures of less than 1 h. Functional in vivo electroretinographic tests show that a partial recovery of the dark current occurred 1-2 h after prolonged illumination with a steady light that initially caused a substantial suppression of the photoresponse. These observations demonstrate that prolonged illumination results in the up-regulation of genes coding for proteins involved in the phototransduction signalling cascade, possibly underlying a novel component of light adaptation occurring 1-2 h after the onset of a steady bright light.
Collapse
Affiliation(s)
- Paolo Codega
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lu H, Leung HT, Wang N, Pak WL, Shieh BH. Role of Ca2+/calmodulin-dependent protein kinase II in Drosophila photoreceptors. J Biol Chem 2009; 284:11100-9. [PMID: 19254957 DOI: 10.1074/jbc.m806956200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) modulates the visual response in both vertebrates and invertebrates. In Drosophila photoreceptors, an increase of cytoplasmic Ca(2+) mimics light adaptation. Little is known regarding the mechanism, however. We explored the role of the sole Drosophila Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to mediate light adaptation. CaMKII has been implicated in the phosphorylation of arrestin 2 (Arr2). However, the functional significance of Arr2 phosphorylation remains debatable. We identified retinal CaMKII by anti-CaMKII antibodies and by its Ca(2+)-dependent autophosphorylation. Moreover, we show that phosphorylation of CaMKII is greatly enhanced by okadaic acid, and indeed, purified PP2A catalyzes the dephosphorylation of CaMKII. Significantly, we demonstrate that anti-CaMKII antibodies co-immunoprecipitate, and CaMKII fusion proteins pull down the catalytic subunit of PP2A from fly extracts, indicating that PP2A interacts with CaMKII to form a protein complex. To investigate the function of CaMKII in photoreceptors, we show that suppression of CaMKII in transgenic flies affects light adaptation and increases prolonged depolarizing afterpotential amplitude, whereas a reduced PP2A activity brings about reduced prolonged depolarizing afterpotential amplitude. Taken together, we conclude that CaMKII is involved in the negative regulation of the visual response affecting light adaptation, possibly by catalyzing phosphorylation of Arr2. Moreover, the CaMKII activity appears tightly regulated by the co-localized PP2A.
Collapse
Affiliation(s)
- Haiqin Lu
- Department of Pharmacology, Center for Molecular Neuroscience, and Vision Research Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
24
|
Mutation of a TADR protein leads to rhodopsin and Gq-dependent retinal degeneration in Drosophila. J Neurosci 2009; 28:13478-87. [PMID: 19074021 DOI: 10.1523/jneurosci.2122-08.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Drosophila photoreceptor is a model system for genetic study of retinal degeneration. Many gene mutations cause fly photoreceptor degeneration, either because of excessive stimulation of the visual transduction (phototransduction) cascade, or through apoptotic pathways that in many cases involve a visual arrestin Arr2. Here we report a gene named tadr (for torn and diminished rhabdomeres), which, when mutated, leads to photoreceptor degeneration through a different mechanism. Degeneration in the tadr mutant is characterized by shrunk and disrupted rhabdomeres, the light sensory organelles of photoreceptor. The TADR protein interacted in vitro with the major light receptor Rh1 rhodopsin, and genetic reduction of the Rh1 level suppressed the tadr mutation-caused degeneration, suggesting the degeneration is Rh1-dependent. Nonetheless, removal of phospholipase C (PLC), a key enzyme in phototransduction, and that of Arr2 failed to inhibit rhabdomeral degeneration in the tadr mutant background. Biochemical analyses revealed that, in the tadr mutant, the G(q) protein of Rh1 is defective in dissociation from the membrane during light stimulation. Importantly, reduction of G(q) level by introducing a hypomorphic allele of G(alphaq) gene greatly inhibited the tadr degeneration phenotype. These results may suggest that loss of a potential TADR-Rh1 interaction leads to an abnormality in the G(q) signaling, which in turn triggers rhabdomeral degeneration independent of the PLC phototransduction cascade. We propose that TADR-like proteins may also protect photoreceptors from degeneration in mammals including humans.
Collapse
|