1
|
Borrus DS, Stettler MK, Grover CJ, Kalajian EJ, Gu J, Conradi Smith GD, Del Negro CA. Inspiratory and sigh breathing rhythms depend on distinct cellular signalling mechanisms in the preBötzinger complex. J Physiol 2024; 602:809-834. [PMID: 38353596 PMCID: PMC10940220 DOI: 10.1113/jp285582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.
Collapse
Affiliation(s)
- Daniel S. Borrus
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Marco K. Stettler
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Cameron J. Grover
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Eva J. Kalajian
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Jeffrey Gu
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Gregory D. Conradi Smith
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
- Conradi Smith and Del Negro contributed equally
| | - Christopher A. Del Negro
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
- Conradi Smith and Del Negro contributed equally
| |
Collapse
|
2
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
3
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythmogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564834. [PMID: 37961254 PMCID: PMC10634953 DOI: 10.1101/2023.10.30.564834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "pre-inspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S Phillips
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA, USA
| |
Collapse
|
4
|
Arthurs JW, Bowen AJ, Palmiter RD, Baertsch NA. Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control. Nat Commun 2023; 14:963. [PMID: 36810601 PMCID: PMC9944916 DOI: 10.1038/s41467-023-36603-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Breathing is regulated automatically by neural circuits in the medulla to maintain homeostasis, but breathing is also modified by behavior and emotion. Mice have rapid breathing patterns that are unique to the awake state and distinct from those driven by automatic reflexes. Activation of medullary neurons that control automatic breathing does not reproduce these rapid breathing patterns. By manipulating transcriptionally defined neurons in the parabrachial nucleus, we identify a subset of neurons that express the Tac1, but not Calca, gene that exerts potent and precise conditional control of breathing in the awake, but not anesthetized, state via projections to the ventral intermediate reticular zone of the medulla. Activating these neurons drives breathing to frequencies that match the physiological maximum through mechanisms that differ from those that underlie the automatic control of breathing. We postulate that this circuit is important for the integration of breathing with state-dependent behaviors and emotions.
Collapse
Affiliation(s)
- Joseph W Arthurs
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Anna J Bowen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Pulmonary Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Ashhad S, Slepukhin VM, Feldman JL, Levine AJ. Microcircuit Synchronization and Heavy-Tailed Synaptic Weight Distribution Augment preBötzinger Complex Bursting Dynamics. J Neurosci 2023; 43:240-260. [PMID: 36400528 PMCID: PMC9838711 DOI: 10.1523/jneurosci.1195-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The preBötzinger Complex (preBötC) encodes inspiratory time as rhythmic bursts of activity underlying each breath. Spike synchronization throughout a sparsely connected preBötC microcircuit initiates bursts that ultimately drive the inspiratory motor patterns. Using minimal microcircuit models to explore burst initiation dynamics, we examined the variability in probability and latency to burst following exogenous stimulation of a small subset of neurons, mimicking experiments. Among various physiologically plausible graphs of 1000 excitatory neurons constructed using experimentally determined synaptic and connectivity parameters, directed Erdős-Rényi graphs with a broad (lognormal) distribution of synaptic weights best captured the experimentally observed dynamics. preBötC synchronization leading to bursts was regulated by the efferent connectivity of spiking neurons that are optimally tuned to amplify modest preinspiratory activity through input convergence. Using graph-theoretic and machine learning-based analyses, we found that input convergence of efferent connectivity at the next-nearest neighbor order was a strong predictor of incipient synchronization. Our analyses revealed a crucial role of synaptic heterogeneity in imparting exceptionally robust yet flexible preBötC attractor dynamics. Given the pervasiveness of lognormally distributed synaptic strengths throughout the nervous system, we postulate that these mechanisms represent a ubiquitous template for temporal processing and decision-making computational motifs.SIGNIFICANCE STATEMENT Mammalian breathing is robust, virtually continuous throughout life, yet is inherently labile: to adapt to rapid metabolic shifts (e.g., fleeing a predator or chasing prey); for airway reflexes; and to enable nonventilatory behaviors (e.g., vocalization, breathholding, laughing). Canonical theoretical frameworks-based on pacemakers and intrinsic bursting-cannot account for the observed robustness and flexibility of the preBötzinger Complex rhythm. Experiments reveal that network synchronization is the key to initiate inspiratory bursts in each breathing cycle. We investigated preBötC synchronization dynamics using network models constructed with experimentally determined neuronal and synaptic parameters. We discovered that a fat-tailed (non-Gaussian) synaptic weight distribution-a manifestation of synaptic heterogeneity-augments neuronal synchronization and attractor dynamics in this vital rhythmogenic network, contributing to its extraordinary reliability and responsiveness.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Valentin M Slepukhin
- Department of Physics & Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1596
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Alex J Levine
- Department of Physics & Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1596
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1596
| |
Collapse
|
6
|
Jørgensen AB, Rasmussen CM, Rekling JC. µ-Opioid Receptor Activation Reduces Glutamate Release in the PreBötzinger Complex in Organotypic Slice Cultures. J Neurosci 2022; 42:8066-8077. [PMID: 36096669 PMCID: PMC9636991 DOI: 10.1523/jneurosci.1369-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The inspiratory rhythm generator, located in the brainstem preBötzinger complex (preBötC), is dependent on glutamatergic signaling and is affected profoundly by opioids. Here, we used organotypic slice cultures of the newborn mouse brainstem of either sex in combination with genetically encoded sensors for Ca2+, glutamate, and GABA to visualize Ca2+, glutamatergic and GABAergic signaling during spontaneous rhythm and in the presence of DAMGO. During spontaneous rhythm, the glutamate sensor SF-iGluSnFR.A184S revealed punctate synapse-like fluorescent signals along dendrites and somas in the preBötC with decay times that were prolonged by the glutamate uptake blocker (TFB-TBOA). The GABA sensor iGABASnFR showed a more diffuse fluorescent signal during spontaneous rhythm. Rhythmic Ca2+- and glutamate transients had an inverse relationship between the spontaneous burst frequency and the burst amplitude of the Ca2+ and glutamate signals. A similar inverse relationship was observed when bath applied DAMGO reduced spontaneous burst frequency and increased the burst amplitude of Ca2+, glutamate, and GABA transient signals. However, a hypoxic challenge reduced both burst frequency and Ca2+ transient amplitude. Using a cocktail that blocked glutamatergic, GABAergic, and glycinergic transmission to indirectly measure the release of glutamate/GABA in response to an electrical stimulus, we found that DAMGO reduces the release of glutamate in the preBötC but has no effect on GABA release. This suggest that the opioid mediated slowing of respiratory rhythm involves presynaptic reduction of glutamate release, which would impact the ability of the network to engage in recurrent excitation, and may result in the opioid-induced slowing of inspiratory rhythm.SIGNIFICANCE STATEMENT Opioids slow down breathing rhythm by affecting neurons in the preBötzinger complex (preBötC) and other brainstem regions. Here, we used cultured slices of the preBötC to better understand this effect by optically recording Ca2+, glutamate, and GABA transients during preBötC activity. Spontaneous rhythm showed an inverse relationship between burst frequency and burst amplitude in the Ca2+ and glutamate signals. Application of the opioid DAMGO slowed the rhythm, with a concomitant increase in Ca2+, glutamate, and GABA signals. When rhythm was blocked pharmacologically, DAMGO reduced the presynaptic release of glutamate, but not GABA. These data suggest the mechanism of action of opioids involves presynaptic reduction of glutamate release, which may play an important role in the opioid-induced slowing of inspiratory rhythm.
Collapse
Affiliation(s)
- Anders B Jørgensen
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
7
|
Abstract
Breathing is a vital rhythmic motor behavior with a surprisingly broad influence on the brain and body. The apparent simplicity of breathing belies a complex neural control system, the breathing central pattern generator (bCPG), that exhibits diverse operational modes to regulate gas exchange and coordinate breathing with an array of behaviors. In this review, we focus on selected advances in our understanding of the bCPG. At the core of the bCPG is the preBötzinger complex (preBötC), which drives inspiratory rhythm via an unexpectedly sophisticated emergent mechanism. Synchronization dynamics underlying preBötC rhythmogenesis imbue the system with robustness and lability. These dynamics are modulated by inputs from throughout the brain and generate rhythmic, patterned activity that is widely distributed. The connectivity and an emerging literature support a link between breathing, emotion, and cognition that is becoming experimentally tractable. These advances bring great potential for elucidating function and dysfunction in breathing and other mammalian neural circuits.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, California, USA;
| | - Kaiwen Kam
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | - Jack L Feldman
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
8
|
Phillips RS, Koizumi H, Molkov YI, Rubin JE, Smith JC. Predictions and experimental tests of a new biophysical model of the mammalian respiratory oscillator. eLife 2022; 11:74762. [PMID: 35796425 PMCID: PMC9262387 DOI: 10.7554/elife.74762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Previously our computational modeling studies (Phillips et al., 2019) proposed that neuronal persistent sodium current (INaP) and calcium-activated non-selective cation current (ICAN) are key biophysical factors that, respectively, generate inspiratory rhythm and burst pattern in the mammalian preBötzinger complex (preBötC) respiratory oscillator isolated in vitro. Here, we experimentally tested and confirmed three predictions of the model from new simulations concerning the roles of INaP and ICAN: (1) INaP and ICAN blockade have opposite effects on the relationship between network excitability and preBötC rhythmic activity; (2) INaP is essential for preBötC rhythmogenesis; and (3) ICAN is essential for generating the amplitude of rhythmic output but not rhythm generation. These predictions were confirmed via optogenetic manipulations of preBötC network excitability during graded INaP or ICAN blockade by pharmacological manipulations in slices in vitro containing the rhythmically active preBötC from the medulla oblongata of neonatal mice. Our results support and advance the hypothesis that INaP and ICAN mechanistically underlie rhythm and inspiratory burst pattern generation, respectively, in the isolated preBötC.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of Pittsburgh
- Center for the Neural Basis of Cognition
| | | | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University
- Neuroscience Institute, Georgia State University
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh
- Center for the Neural Basis of Cognition
| | | |
Collapse
|
9
|
Phillips RS, Rubin JE. Putting the theory into 'burstlet theory' with a biophysical model of burstlets and bursts in the respiratory preBötzinger complex. eLife 2022; 11:e75713. [PMID: 35380537 PMCID: PMC9023056 DOI: 10.7554/elife.75713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice preparations containing the preBötC, extracellular potassium must be elevated above physiological levels (to 7-9 mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity has revealed that low-amplitude oscillations persist at physiological levels. These oscillatory events are subthreshold from the standpoint of transmission to motor output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to recruit the larger network events, or bursts, required to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm generation. Experimental and computational studies have suggested that recruitment of the non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics and activation of a calcium-activated nonselective cationic current. In this computational study, we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated nonselective cationic current can reproduce and offer an explanation for many of the key properties associated with the burstlet theory of respiratory rhythm generation. Altogether, our modeling work provides a mechanistic basis that can unify a wide range of experimental findings on rhythm generation and motor output recruitment in the preBötC.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| |
Collapse
|
10
|
de Sousa Abreu RP, Bondarenko E, Feldman JL. Phase- and state-dependent modulation of breathing pattern by preBötzinger complex somatostatin expressing neurons. J Physiol 2022; 600:143-165. [PMID: 34783033 PMCID: PMC9261878 DOI: 10.1113/jp282002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
As neuronal subtypes are increasingly categorized, delineating their functional role is paramount. The preBötzinger complex (preBötC) subpopulation expressing the neuropeptide somatostatin (SST) is classified as mostly excitatory, inspiratory-modulated and not rhythmogenic. We further characterized their phenotypic identity: 87% were glutamatergic and the balance were glycinergic and/or GABAergic. We then used optogenetics to investigate their modulatory role in both anaesthetized and freely moving mice. In anaesthetized mice, short photostimulation (100 ms) of preBötC SST+ neurons modulated breathing-related variables in a combinatory phase- and state-dependent manner; changes in inspiratory duration, inspiratory peak amplitude (Amp), and phase were different at higher (≥2.5 Hz) vs. lower (<2.5 Hz) breathing frequency (f). Moreover, we observed a biphasic effect of photostimulation during expiration that is probabilistic, that is photostimulation given at the same phase in consecutive cycles can evoke opposite responses (lengthening vs. shortening of the phase). These unexpected probabilistic state- and phase-dependent responses to photostimulation exposed properties of the preBötC that were not predicted and cannot be readily accounted for in current models of preBötC pattern generation. In freely moving mice, prolonged photostimulation decreased f in normoxia, hypoxia or hypercapnia, and increased Amp and produced a phase advance, which was similar to the results in anaesthetized mice when f ≥ 2.5 Hz. We conclude that preBötC SST+ neurons are a key mediator of the extraordinary and essential lability of breathing pattern. KEY POINTS: PreBötzinger complex (preBötC) SST+ neurons, which modulate respiratory pattern but are not rhythmogenic, were transfected with channelrhodopsin to investigate phase- and state-dependent modulation of breathing pattern in anaesthetized and freely behaving mice in normoxia, hypoxia and hypercapnia. In anaesthetized mice, photostimulation during inspiration increased inspiratory duration and amplitude regardless of baseline f, yet the effects were more robust at higher f. In anaesthetized mice with low f (<2.5 Hz), photostimulation during expiration evoked either phase advance or phase delay, whereas in anaesthetized mice with high f (≥2.5 Hz) and in freely behaving mice in normoxia, hypoxia or hypercapnia, photostimulation always evoked phase advance. Phase- and state-dependency is a function of overall breathing network excitability. The f-dependent probabilistic modulation of breathing pattern by preBötC SST+ neurons was unexpected, requiring reconsideration of current models of preBötC function, which neither predict nor can readily account for such responses.
Collapse
Affiliation(s)
- Raquel P. de Sousa Abreu
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Evgeny Bondarenko
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
11
|
Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. eLife 2021; 10:e67523. [PMID: 34402425 PMCID: PMC8390004 DOI: 10.7554/elife.67523] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the μ-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo. Based on these results, a model of OIRD was developed in silico. We conclude that hyperpolarization of MOR-expressing preBötC neurons alone does not phenocopy OIRD. Instead, the effects of MOR activation are twofold: (1) pre-inspiratory spiking is reduced and (2) excitatory synaptic transmission is suppressed, thereby disrupting network-driven rhythmogenesis. These dual mechanisms of opioid action act synergistically to make the normally robust inspiratory rhythm-generating network particularly prone to collapse when challenged with exogenous opioids.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department Neurological Surgery, University of WashingtonSeattleUnited States
| |
Collapse
|
12
|
Oliveira LM, Baertsch NA, Moreira TS, Ramirez JM, Takakura AC. Unraveling the Mechanisms Underlying Irregularities in Inspiratory Rhythm Generation in a Mouse Model of Parkinson's Disease. J Neurosci 2021; 41:4732-4747. [PMID: 33863785 PMCID: PMC8260248 DOI: 10.1523/jneurosci.2114-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder anatomically characterized by a progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). Much less known, yet clinically very important, are the detrimental effects on breathing associated with this disease. Consistent with the human pathophysiology, the 6-hydroxydopamine hydrochloride (6-OHDA) rodent model of PD shows reduced respiratory frequency (fR) and NK1r-immunoreactivity in the pre-Bötzinger complex (preBötC) and PHOX2B+ neurons in the retrotrapezoid nucleus (RTN). To unravel mechanisms that underlie bradypnea in PD, we employed a transgenic approach to label or stimulate specific neuron populations in various respiratory-related brainstem regions. PD mice were characterized by a pronounced decreased number of putatively rhythmically active excitatory neurons in the preBötC and adjacent ventral respiratory column (VRC). Specifically, the number of Dbx1 and Vglut2 neurons was reduced by 47.6% and 17.3%, respectively. By contrast, inhibitory Vgat+ neurons in the VRC, as well as neurons in other respiratory-related brainstem regions, showed relatively minimal or no signs of neuronal loss. Consistent with these anatomic observations, optogenetic experiments identified deficits in respiratory function that were specific to manipulations of excitatory (Dbx1/Vglut2) neurons in the preBötC. We conclude that the decreased number of this critical population of respiratory neurons is an important contributor to the development of irregularities in inspiratory rhythm generation in this mouse model of PD.SIGNIFICANCE STATEMENT We found a decreased number of a specific population of medullary neurons which contributes to breathing abnormalities in a mouse model of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| |
Collapse
|
13
|
Revill AL, Katzell A, Del Negro CA, Milsom WK, Funk GD. KCNQ Current Contributes to Inspiratory Burst Termination in the Pre-Bötzinger Complex of Neonatal Rats in vitro. Front Physiol 2021; 12:626470. [PMID: 33927636 PMCID: PMC8078421 DOI: 10.3389/fphys.2021.626470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
The pre-Bötzinger complex (preBötC) of the ventral medulla generates the mammalian inspiratory breathing rhythm. When isolated in explants and deprived of synaptic inhibition, the preBötC continues to generate inspiratory-related rhythm. Mechanisms underlying burst generation have been investigated for decades, but cellular and synaptic mechanisms responsible for burst termination have received less attention. KCNQ-mediated K+ currents contribute to burst termination in other systems, and their transcripts are expressed in preBötC neurons. Therefore, we tested the hypothesis that KCNQ channels also contribute to burst termination in the preBötC. We recorded KCNQ-like currents in preBötC inspiratory neurons in neonatal rat slices that retain respiratory rhythmicity. Blocking KCNQ channels with XE991 or linopirdine (applied via superfusion or locally) increased inspiratory burst duration by 2- to 3-fold. By contrast, activation of KCNQ with retigabine decreased inspiratory burst duration by ~35%. These data from reduced preparations suggest that the KCNQ current in preBötC neurons contributes to inspiratory burst termination.
Collapse
Affiliation(s)
- Ann L. Revill
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Alexis Katzell
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Gregory D. Funk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Inspiratory Off-Switch Mediated by Optogenetic Activation of Inhibitory Neurons in the preBötzinger Complex In Vivo. Int J Mol Sci 2021; 22:ijms22042019. [PMID: 33670653 PMCID: PMC7922779 DOI: 10.3390/ijms22042019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
The role of inhibitory neurons in the respiratory network is a matter of ongoing debate. Conflicting and contradicting results are manifold and the question whether inhibitory neurons are essential for the generation of the respiratory rhythm as such is controversial. Inhibitory neurons are required in pulmonary reflexes for adapting the activity of the central respiratory network to the status of the lung and it is hypothesized that glycinergic neurons mediate the inspiratory off-switch. Over the years, optogenetic tools have been developed that allow for cell-specific activation of subsets of neurons in vitro and in vivo. In this study, we aimed to identify the effect of activation of inhibitory neurons in vivo. Here, we used a conditional transgenic mouse line that expresses Channelrhodopsin 2 in inhibitory neurons. A 200 µm multimode optical fiber ferrule was implanted in adult mice using stereotaxic surgery, allowing us to stimulate inhibitory, respiratory neurons within the core excitatory network in the preBötzinger complex of the ventrolateral medulla. We show that, in anesthetized mice, activation of inhibitory neurons by blue light (470 nm) continuously or with stimulation frequencies above 10 Hz results in a significant reduction of the respiratory rate, in some cases leading to complete cessation of breathing. However, a lower stimulation frequency (4–5 Hz) could induce a significant increase in the respiratory rate. This phenomenon can be explained by the resetting of the respiratory cycle, since stimulation during inspiration shortened the associated breath and thereby increased the respiratory rate, while stimulation during the expiratory interval reduced the respiratory rate. Taken together, these results support the concept that activation of inhibitory neurons mediates phase-switching by inhibiting excitatory rhythmogenic neurons in the preBötzinger complex.
Collapse
|
15
|
Borrus DS, Grover CJ, Conradi Smith GD, Del Negro CA. Role of Synaptic Inhibition in the Coupling of the Respiratory Rhythms that Underlie Eupnea and Sigh Behaviors. eNeuro 2020; 7:ENEURO.0302-19.2020. [PMID: 32393585 PMCID: PMC7363481 DOI: 10.1523/eneuro.0302-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 11/21/2022] Open
Abstract
The preBötzinger complex (preBötC) gives rise to two types of breathing behavior under normal physiological conditions: eupnea and sighing. Here, we examine the neural mechanisms that couple their underlying rhythms. We measured breathing in awake intact adult mice and recorded inspiratory rhythms from the preBötC in neonatal mouse brainstem slice preparations. We show previously undocumented variability in the temporal relationship between sigh breaths or bursts and their preceding eupneic breaths or inspiratory bursts. Investigating the synaptic mechanisms for this variability in vitro, we further show that pharmacological blockade of chloride-mediated synaptic inhibition strengthens inspiratory-to-sigh temporal coupling. These findings contrast with previous literature, which suggested glycinergic inhibition linked sigh bursts to their preceding inspiratory bursts with minimal time intervals. Furthermore, we verify that pharmacological disinhibition did not alter the duration of the prolonged interval that follows a sigh burst before resumption of the inspiratory rhythm. These results demonstrate that synaptic inhibition does not enhance coupling between sighs and preceding inspiratory events or contribute to post-sigh apneas. Instead, we conclude that excitatory synaptic mechanisms coordinate inspiratory (eupnea) and sigh rhythms.
Collapse
Affiliation(s)
- Daniel S Borrus
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Cameron J Grover
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Gregory D Conradi Smith
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| |
Collapse
|
16
|
Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. eLife 2019; 8:51350. [PMID: 31804180 PMCID: PMC6957314 DOI: 10.7554/elife.51350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBötzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
17
|
Wei AD, Ramirez JM. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Front Physiol 2019; 10:1407. [PMID: 31824331 PMCID: PMC6882777 DOI: 10.3389/fphys.2019.01407] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) is the major cause of death associated with opioid analgesics and drugs of abuse, but the underlying cellular and molecular mechanisms remain poorly understood. We investigated opioid action in vivo in unanesthetized mice and in in vitro medullary slices containing the preBötzinger Complex (preBötC), a locus critical for breathing and inspiratory rhythm generation. Although hypothesized as a primary mechanism, we found that mu-opioid receptor (MOR1)-mediated GIRK activation contributed only modestly to OIRD. Instead, mEPSC recordings from genetically identified Dbx1-derived interneurons, essential for rhythmogenesis, revealed a prevalent presynaptic mode of action for OIRD. Consistent with MOR1-mediated suppression of presynaptic release as a major component of OIRD, Cacna1a KO slices lacking P/Q-type Ca2+ channels enhanced OIRD. Furthermore, OIRD was mimicked and reversed by KCNQ potassium channel activators and blockers, respectively. In vivo whole-body plethysmography combined with systemic delivery of GIRK- and KCNQ-specific potassium channel drugs largely recapitulated these in vitro results, and revealed state-dependent modulation of OIRD. We propose that respiratory failure from OIRD results from a general reduction of synaptic efficacy, leading to a state-dependent collapse of rhythmic network activity.
Collapse
Affiliation(s)
- Aguan D. Wei
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
18
|
Phillips RS, Rubin JE. Effects of persistent sodium current blockade in respiratory circuits depend on the pharmacological mechanism of action and network dynamics. PLoS Comput Biol 2019; 15:e1006938. [PMID: 31469828 PMCID: PMC6742421 DOI: 10.1371/journal.pcbi.1006938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/12/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanism(s) of action of most commonly used pharmacological blockers of voltage-gated ion channels are well understood; however, this knowledge is rarely considered when interpreting experimental data. Effects of blockade are often assumed to be equivalent, regardless of the mechanism of the blocker involved. Using computer simulations, we demonstrate that this assumption may not always be correct. We simulate the blockade of a persistent sodium current (INaP), proposed to underlie rhythm generation in pre-Bötzinger complex (pre-BötC) respiratory neurons, via two distinct pharmacological mechanisms: (1) pore obstruction mediated by tetrodotoxin and (2) altered inactivation dynamics mediated by riluzole. The reported effects of experimental application of tetrodotoxin and riluzole in respiratory circuits are diverse and seemingly contradictory and have led to considerable debate within the field as to the specific role of INaP in respiratory circuits. The results of our simulations match a wide array of experimental data spanning from the level of isolated pre-BötC neurons to the level of the intact respiratory network and also generate a series of experimentally testable predictions. Specifically, in this study we: (1) provide a mechanistic explanation for seemingly contradictory experimental results from in vitro studies of INaP block, (2) show that the effects of INaP block in in vitro preparations are not necessarily equivalent to those in more intact preparations, (3) demonstrate and explain why riluzole application may fail to effectively block INaP in the intact respiratory network, and (4) derive the prediction that effective block of INaP by low concentration tetrodotoxin will stop respiratory rhythm generation in the intact respiratory network. These simulations support a critical role for INaP in respiratory rhythmogenesis in vivo and illustrate the importance of considering mechanism when interpreting and simulating data relating to pharmacological blockade. The application of pharmacological agents that affect transmembrane ionic currents in neurons is a commonly used experimental technique. A simplistic interpretation of experiments involving these agents suggests that antagonist application removes the impacted current and that subsequently observed changes in activity are attributable to the loss of that current’s effects. The more complex reality, however, is that different drugs may have distinct mechanisms of action, some corresponding not to a removal of a current but rather to a changing of its properties. We use computational modeling to explore the implications of the distinct mechanisms associated with two drugs, riluzole and tetrodotoxin, that are often characterized as sodium channel blockers. Through this approach, we offer potential explanations for disparate findings observed in experiments on neural respiratory circuits and show that the experimental results are consistent with a key role for the persistent sodium current in respiratory rhythm generation.
Collapse
Affiliation(s)
- Ryan S. Phillips
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Jonathan E. Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
19
|
Abstract
Breathing is a vital rhythmic behavior that originates from neural networks within the brainstem. It is hypothesized that the breathing rhythm is generated by spatially distinct networks localized to discrete kernels or compartments. Here, we provide evidence that the functional boundaries of these compartments expand and contract dynamically based on behavioral or physiological demands. The ability of these rhythmic networks to change in size may allow the breathing rhythm to be very reliable, yet flexible enough to accommodate the large repertoire of mammalian behaviors that must be integrated with breathing. The ability of neuronal networks to reconfigure is a key property underlying behavioral flexibility. Networks with recurrent topology are particularly prone to reconfiguration through changes in synaptic and intrinsic properties. Here, we explore spatial reconfiguration in the reticular networks of the medulla that generate breathing. Combined results from in vitro and in vivo approaches demonstrate that the network architecture underlying generation of the inspiratory phase of breathing is not static but can be spatially redistributed by shifts in the balance of excitatory and inhibitory network influences. These shifts in excitation/inhibition allow the size of the active network to expand and contract along a rostrocaudal medullary column during behavioral or metabolic challenges to breathing, such as changes in sensory feedback, sighing, and gasping. We postulate that the ability of this rhythm-generating network to spatially reconfigure contributes to the remarkable robustness and flexibility of breathing.
Collapse
|
20
|
Picardo MCD, Sugimura YK, Dorst KE, Kallurkar PS, Akins VT, Ma X, Teruyama R, Guinamard R, Kam K, Saha MS, Del Negro CA. Trpm4 ion channels in pre-Bötzinger complex interneurons are essential for breathing motor pattern but not rhythm. PLoS Biol 2019; 17:e2006094. [PMID: 30789900 PMCID: PMC6400419 DOI: 10.1371/journal.pbio.2006094] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/05/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Inspiratory breathing movements depend on pre-Bötzinger complex (preBötC) interneurons that express calcium (Ca2+)-activated nonselective cationic current (ICAN) to generate robust neural bursts. Hypothesized to be rhythmogenic, reducing ICAN is predicted to slow down or stop breathing; its contributions to motor pattern would be reflected in the magnitude of movements (output). We tested the role(s) of ICAN using reverse genetic techniques to diminish its putative ion channels Trpm4 or Trpc3 in preBötC neurons in vivo. Adult mice transduced with Trpm4-targeted short hairpin RNA (shRNA) progressively decreased the tidal volume of breaths yet surprisingly increased breathing frequency, often followed by gasping and fatal respiratory failure. Mice transduced with Trpc3-targeted shRNA survived with no changes in breathing. Patch-clamp and field recordings from the preBötC in mouse slices also showed an increase in the frequency and a decrease in the magnitude of preBötC neural bursts in the presence of Trpm4 antagonist 9-phenanthrol, whereas the Trpc3 antagonist pyrazole-3 (pyr-3) showed inconsistent effects on magnitude and no effect on frequency. These data suggest that Trpm4 mediates ICAN, whose influence on frequency contradicts a direct role in rhythm generation. We conclude that Trpm4-mediated ICAN is indispensable for motor output but not the rhythmogenic core mechanism of the breathing central pattern generator.
Collapse
Affiliation(s)
- Maria Cristina D. Picardo
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Yae K. Sugimura
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Kaitlyn E. Dorst
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Prajkta S. Kallurkar
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Victoria T. Akins
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Xingru Ma
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Ryoichi Teruyama
- Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Romain Guinamard
- Signalisation, Electrophysiologie et Imagerie des Lésions d’Ischémie-Reperfusion Myocardique, Normandie Université, UNICAEN, Caen, France
| | - Kaiwen Kam
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, Chicago, Illinois, United States of America
| | - Margaret S. Saha
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Christopher A. Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
21
|
Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018; 33:302-316. [PMID: 30109823 PMCID: PMC6230551 DOI: 10.1152/physiol.00025.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Breathing's remarkable ability to adapt to changes in metabolic, environmental, and behavioral demands stems from a complex integration of its rhythm-generating network within the wider nervous system. Yet, this integration complicates identification of its specific rhythmogenic elements. Based on principles learned from smaller rhythmic networks of invertebrates, we define criteria that identify rhythmogenic elements of the mammalian breathing network and discuss how they interact to produce robust, dynamic breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| | - Nathan Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| |
Collapse
|
22
|
Kottick A, Martin CA, Del Negro CA. Fate mapping neurons and glia derived from Dbx1-expressing progenitors in mouse preBötzinger complex. Physiol Rep 2018; 5:5/11/e13300. [PMID: 28611151 PMCID: PMC5471439 DOI: 10.14814/phy2.13300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/23/2023] Open
Abstract
The brainstem preBötzinger complex (preBötC) generates the inspiratory breathing rhythm, and its core rhythmogenic interneurons are derived from Dbx1‐expressing progenitors. To study the neural bases of breathing, tamoxifen‐inducible Cre‐driver mice and Cre‐dependent reporters are used to identify, record, and perturb Dbx1 preBötC neurons. However, the relationship between tamoxifen administration and reporter protein expression in preBötC neurons and glia has not been quantified. To address this problem, we crossed mice that express tamoxifen‐inducible Cre recombinase under the control of the Dbx1 gene (Dbx1CreERT2) with Cre‐dependent fluorescent reporter mice (Rosa26tdTomato), administered tamoxifen at different times during development, and analyzed tdTomato expression in the preBötC of their offspring. We also crossed Rosa26tdTomato reporters with mice that constitutively express Cre driven by Dbx1 (Dbx1Cre) and analyzed tdTomato expression in the preBötC of their offspring for comparison. We show that Dbx1‐expressing progenitors give rise to preBötC neurons and glia. Peak neuronal tdTomato expression occurs when tamoxifen is administered at embryonic day 9.5 (E9.5), whereas tdTomato expression in glia shows no clear relationship with tamoxifen timing. These results can be used to bias reporter protein expression in neurons (or glia). Tamoxifen administration at E9.5 labels 91% of Dbx1‐derived neurons in the preBötC, yet only 48% of Dbx1‐derived glia. By fate mapping Dbx1‐expressing progenitors, this study illustrates the developmental assemblage of Dbx1‐derived cells in preBötC, which can be used to design intersectional Cre/lox experiments that interrogate its cellular composition, structure, and function.
Collapse
Affiliation(s)
- Andrew Kottick
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | - Caroline A Martin
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | | |
Collapse
|
23
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
Affiliation(s)
- Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women's and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Premotor Neuron Divergence Reflects Vocal Evolution. J Neurosci 2018; 38:5325-5337. [PMID: 29875228 DOI: 10.1523/jneurosci.0089-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/28/2018] [Indexed: 11/21/2022] Open
Abstract
To identify mechanisms of behavioral evolution, we investigated the hindbrain circuit that generates distinct vocal patterns in two closely related frog species. Male Xenopus laevis and Xenopus petersii produce courtship calls that include a fast trill: trains of ∼60 Hz sound pulses. Although fast trill rates are similar, X. laevis fast trills have a longer duration and period than those of X. petersii To pinpoint the neural basis of these differences, we used whole-cell patch-clamp recordings in a key premotor hindbrain nucleus (the Xenopus parabrachial area, PBX) in ex vivo brains that produce fictive vocalizations, vocal nerve activity corresponding to advertisement call patterns. We found two populations of PBX neurons with distinct properties: fast trill neurons (FTNs) and early vocal neurons (EVNs). FTNs, but not EVNs, appear to be intrinsically tuned to produce each species' call patterns because: (1) X. laevis FTNs generate longer and slower depolarizations than X. petersii FTNs during their respective fictive vocalizations, (2) current steps in FTNs induce burst durations that are significantly longer in X. laevis than X. petersii, and (3) synaptically isolated FTNs oscillate in response to NMDA in a species-specific manner: longer and slower in X. laevis than in X. petersii Therefore, divergence of premotor neuron membrane properties is a strong candidate for generating vocal differences between species.SIGNIFICANCE STATEMENT The vertebrate hindbrain includes multiple neural circuits that generate rhythmic behaviors including vocalizations. Male African clawed frogs produce courtship calls that are unique to each species and differ in temporal patterns. Here, we identified two functional subtypes of neurons located in the parabrachial nucleus: a hindbrain region implicated in vocal and respiratory control across vertebrates. One of these neuronal subtypes exhibits distinct properties across species that can account for the evolutionary divergence of song patterns. Our results suggest that changes to this group of neurons during evolution may have had a major role in establishing novel behaviors in closely related species.
Collapse
|
25
|
Kolnes LJ, Stensrud T. Exercise-induced laryngeal obstruction in athletes: Contributory factors and treatment implications. Physiother Theory Pract 2018; 35:1170-1181. [PMID: 29757061 DOI: 10.1080/09593985.2018.1474306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Otherwise healthy adolescent athletes presenting with respiratory symptoms consistent with exercise-induced laryngeal obstruction (EILO) are frequently encountered in clinical practice. The symptoms are often incorrectly considered to result from exercise-induced asthma, and may be wrongly treated as such. Given the potential implications for health and performance if EILO is left untreated, a more comprehensive understanding of contributory mechanisms is essential in order to create appropriate treatment procedures. Informed by knowledge from physical therapy, as well as the fields of voice rehabilitation and vocal pedagogy, this theoretical article presents a novel way of understanding and managing EILO by exploring bodily mechanisms and structures that may disturb laryngeal function during strenuous exercise. Firstly, the status quo of the EILO diagnosis, its aetiology and treatment options are reviewed. Secondly, considerations associated with laryngeal structures and mechanisms, and their potential influence on laryngeal movement and sensitivity are examined. Thirdly, the manner in which postural de-alignment and breathing pattern may interfere with laryngeal functioning will be discussed. Finally, interventions for voice disorders and singing and the relevance of these for EILO are evaluated. It is argued that clients with EILO should undergo a thorough physical examination to identify constrictions in the body as a whole - such as postural de-alignments and a dysfunctional breathing pattern - as these are hypothesized as playing a critical role in laryngeal tightness during exercise. Physical therapists possess particular skills and competence with regard to examining breathing patterns and postural de-alignments, and should be included in the treatment process of EILO.
Collapse
Affiliation(s)
- Liv-Jorunn Kolnes
- Faculty of Health Sciences, Department of Health and Care Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of health, Norwegian Institute of Sports Medicine, Oslo, Norway
| | - Trine Stensrud
- Department of Sports medicine, The Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
26
|
Vann NC, Pham FD, Dorst KE, Del Negro CA. Dbx1 Pre-Bötzinger Complex Interneurons Comprise the Core Inspiratory Oscillator for Breathing in Unanesthetized Adult Mice. eNeuro 2018; 5:ENEURO.0130-18.2018. [PMID: 29845107 PMCID: PMC5971373 DOI: 10.1523/eneuro.0130-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/20/2023] Open
Abstract
The brainstem pre-Bötzinger complex (preBötC) generates inspiratory breathing rhythms, but which neurons comprise its rhythmogenic core? Dbx1-derived neurons may play the preeminent role in rhythm generation, an idea well founded at perinatal stages of development but incompletely evaluated in adulthood. We expressed archaerhodopsin or channelrhodopsin in Dbx1 preBötC neurons in intact adult mice to interrogate their function. Prolonged photoinhibition slowed down or stopped breathing, whereas prolonged photostimulation sped up breathing. Brief inspiratory-phase photoinhibition evoked the next breath earlier than expected, whereas brief expiratory-phase photoinhibition delayed the subsequent breath. Conversely, brief inspiratory-phase photostimulation increased inspiratory duration and delayed the subsequent breath, whereas brief expiratory-phase photostimulation evoked the next breath earlier than expected. Because they govern the frequency and precise timing of breaths in awake adult mice with sensorimotor feedback intact, Dbx1 preBötC neurons constitute an essential core component of the inspiratory oscillator, knowledge directly relevant to human health and physiology.
Collapse
Affiliation(s)
- Nikolas C Vann
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Francis D Pham
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Kaitlyn E Dorst
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| |
Collapse
|
27
|
Baertsch NA, Baertsch HC, Ramirez JM. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat Commun 2018; 9:843. [PMID: 29483589 PMCID: PMC5827754 DOI: 10.1038/s41467-018-03223-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.
Collapse
Affiliation(s)
- Nathan Andrew Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Hans Christopher Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA.
- Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
| |
Collapse
|
28
|
Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proc Natl Acad Sci U S A 2017; 114:12815-12820. [PMID: 29133427 DOI: 10.1073/pnas.1711536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO2-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.
Collapse
|
29
|
Hayes JA, Kottick A, Picardo MCD, Halleran AD, Smith RD, Smith GD, Saha MS, Del Negro CA. Transcriptome of neonatal preBötzinger complex neurones in Dbx1 reporter mice. Sci Rep 2017; 7:8669. [PMID: 28819234 PMCID: PMC5561182 DOI: 10.1038/s41598-017-09418-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
We sequenced the transcriptome of brainstem interneurons in the specialized respiratory rhythmogenic site dubbed preBötzinger Complex (preBötC) from newborn mice. To distinguish molecular characteristics of the core oscillator we compared preBötC neurons derived from Dbx1-expressing progenitors that are respiratory rhythmogenic to neighbouring non-Dbx1-derived neurons, which support other respiratory and non-respiratory functions. Results in three categories are particularly salient. First, Dbx1 preBötC neurons express κ-opioid receptors in addition to μ-opioid receptors that heretofore have been associated with opiate respiratory depression, which may have clinical applications. Second, Dbx1 preBötC neurons express the hypoxia-inducible transcription factor Hif1a at levels three-times higher than non-Dbx1 neurons, which links core rhythmogenic microcircuits to O2-related chemosensation for the first time. Third, we detected a suite of transcription factors including Hoxa4 whose expression pattern may define the rostral preBötC border, Pbx3 that may influence ipsilateral connectivity, and Pax8 that may pertain to a ventrally-derived subset of Dbx1 preBötC neurons. These data establish the transcriptomic signature of the core respiratory oscillator at a perinatal stage of development.
Collapse
Affiliation(s)
- John A Hayes
- Department of Applied Science, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Andrew Kottick
- Department of Applied Science, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Maria Cristina D Picardo
- Department of Applied Science, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Andrew D Halleran
- Department of Biology, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Ronald D Smith
- Department of Applied Science, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Gregory D Smith
- Department of Applied Science, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Margaret S Saha
- Department of Biology, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, 540 Landrum Dr., The College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
30
|
Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry. J Neurosci 2017; 36:7223-33. [PMID: 27383596 DOI: 10.1523/jneurosci.0296-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/27/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a "small-world" network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called "small-world" network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals.
Collapse
|
31
|
Anwar H, Li X, Bucher D, Nadim F. Functional roles of short-term synaptic plasticity with an emphasis on inhibition. Curr Opin Neurobiol 2017; 43:71-78. [PMID: 28122326 DOI: 10.1016/j.conb.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/16/2022]
Abstract
Almost all synapses show activity-dependent dynamic changes in efficacy. Numerous studies have explored the mechanisms underlying different forms of short-term synaptic plasticity (STP), but the functional role of STP for circuit output and animal behavior is less understood. This is particularly true for inhibitory synapses that can play widely varied roles in circuit activity. We review recent findings on the role of synaptic STP in sensory, pattern generating, thalamocortical, and hippocampal networks, with a focus on synaptic inhibition. These studies show a variety of functions including sensory adaptation and gating, dynamic gain control and rhythm generation. Because experimental manipulations of STP are difficult and nonspecific, a clear demonstration of STP function often requires a combination of experimental and computational techniques.
Collapse
Affiliation(s)
- Haroon Anwar
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Xinping Li
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States.
| |
Collapse
|
32
|
Microcircuits in respiratory rhythm generation: commonalities with other rhythm generating networks and evolutionary perspectives. Curr Opin Neurobiol 2016; 41:53-61. [PMID: 27589601 DOI: 10.1016/j.conb.2016.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Rhythmicity is critical for the generation of rhythmic behaviors and higher brain functions. This review discusses common mechanisms of rhythm generation, including the role of synaptic inhibition and excitation, with a focus on the mammalian respiratory network. This network generates three phases of breathing and is highly integrated with brain regions associated with numerous non-ventilatory behaviors. We hypothesize that during evolution multiple rhythmogenic microcircuits were recruited to accommodate the generation of each breathing phase. While these microcircuits relied primarily on excitatory mechanisms, synaptic inhibition became increasingly important to coordinate the different microcircuits and to integrate breathing into a rich behavioral repertoire that links breathing to sensory processing, arousal, and emotions as well as learning and memory.
Collapse
|
33
|
Cui Y, Kam K, Sherman D, Janczewski WA, Zheng Y, Feldman JL. Defining preBötzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo. Neuron 2016; 91:602-14. [PMID: 27497222 PMCID: PMC4978183 DOI: 10.1016/j.neuron.2016.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Normal breathing in rodents requires activity of glutamatergic Dbx1-derived (Dbx1(+)) preBötzinger Complex (preBötC) neurons expressing somatostatin (SST). We combined in vivo optogenetic and pharmacological perturbations to elucidate the functional roles of these neurons in breathing. In transgenic adult mice expressing channelrhodopsin (ChR2) in Dbx1(+) neurons, photoresponsive preBötC neurons had preinspiratory or inspiratory firing patterns associated with excitatory effects on burst timing and pattern. In transgenic adult mice expressing ChR2 in SST(+) neurons, photoresponsive preBötC neurons had inspiratory or postinspiratory firing patterns associated with excitatory responses on pattern or inhibitory responses that were largely eliminated by blocking synaptic inhibition within preBötC or by local viral infection limiting ChR2 expression to preBötC SST(+) neurons. We conclude that: (1) preinspiratory preBötC Dbx1(+) neurons are rhythmogenic, (2) inspiratory preBötC Dbx1(+) and SST(+) neurons primarily act to pattern respiratory motor output, and (3) SST(+)-neuron-mediated pathways and postsynaptic inhibition within preBötC modulate breathing pattern.
Collapse
Affiliation(s)
- Yan Cui
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kaiwen Kam
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David Sherman
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wiktor A Janczewski
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yu Zheng
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Jones SE, Dutschmann M. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat. J Neurophysiol 2016; 115:2593-607. [PMID: 26888109 DOI: 10.1152/jn.01073.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/12/2016] [Indexed: 11/22/2022] Open
Abstract
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation.
Collapse
Affiliation(s)
- Sarah E Jones
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| |
Collapse
|