1
|
Karamanlis D, Khani MH, Schreyer HM, Zapp SJ, Mietsch M, Gollisch T. Nonlinear receptive fields evoke redundant retinal coding of natural scenes. Nature 2025; 637:394-401. [PMID: 39567692 PMCID: PMC11711096 DOI: 10.1038/s41586-024-08212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
The role of the vertebrate retina in early vision is generally described by the efficient coding hypothesis1,2, which predicts that the retina reduces the redundancy inherent in natural scenes3 by discarding spatiotemporal correlations while preserving stimulus information4. It is unclear, however, whether the predicted decorrelation and redundancy reduction in the activity of ganglion cells, the retina's output neurons, hold under gaze shifts, which dominate the dynamics of the natural visual input5. We show here that species-specific gaze patterns in natural stimuli can drive correlated spiking responses both in and across distinct types of ganglion cells in marmoset as well as mouse retina. These concerted responses disrupt redundancy reduction to signal fixation periods with locally high spatial contrast. Model-based analyses of ganglion cell responses to natural stimuli show that the observed response correlations follow from nonlinear pooling of ganglion cell inputs. Our results indicate cell-type-specific deviations from efficient coding in retinal processing of natural gaze shifts.
Collapse
Affiliation(s)
- Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland.
| | - Mohammad H Khani
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Helene M Schreyer
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Sören J Zapp
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Matthias Mietsch
- German Primate Center, Laboratory Animal Science Unit, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Else Kröner Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Krüppel S, Khani MH, Schreyer HM, Sridhar S, Ramakrishna V, Zapp SJ, Mietsch M, Karamanlis D, Gollisch T. Applying Super-Resolution and Tomography Concepts to Identify Receptive Field Subunits in the Retina. PLoS Comput Biol 2024; 20:e1012370. [PMID: 39226328 PMCID: PMC11398665 DOI: 10.1371/journal.pcbi.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/13/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
Spatially nonlinear stimulus integration by retinal ganglion cells lies at the heart of various computations performed by the retina. It arises from the nonlinear transmission of signals that ganglion cells receive from bipolar cells, which thereby constitute functional subunits within a ganglion cell's receptive field. Inferring these subunits from recorded ganglion cell activity promises a new avenue for studying the functional architecture of the retina. This calls for efficient methods, which leave sufficient experimental time to leverage the acquired knowledge for further investigating identified subunits. Here, we combine concepts from super-resolution microscopy and computed tomography and introduce super-resolved tomographic reconstruction (STR) as a technique to efficiently stimulate and locate receptive field subunits. Simulations demonstrate that this approach can reliably identify subunits across a wide range of model variations, and application in recordings of primate parasol ganglion cells validates the experimental feasibility. STR can potentially reveal comprehensive subunit layouts within only a few tens of minutes of recording time, making it ideal for online analysis and closed-loop investigations of receptive field substructure in retina recordings.
Collapse
Affiliation(s)
- Steffen Krüppel
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Helene M Schreyer
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Shashwat Sridhar
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Varsha Ramakrishna
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Sören J Zapp
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Matthias Mietsch
- German Primate Center, Laboratory Animal Science Unit, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Else Kröner Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Zhou J, Whitmire M, Chen Y, Seidemann E. Disparate nonlinear neural dynamics measured with different techniques in macaque and human V1. Sci Rep 2024; 14:13193. [PMID: 38851784 PMCID: PMC11162458 DOI: 10.1038/s41598-024-63685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Diverse neuro-imaging techniques measure different aspects of neural responses with distinct spatial and temporal resolutions. Relating measured neural responses across different methods has been challenging. Here, we take a step towards overcoming this challenge, by comparing the nonlinearity of neural dynamics measured across methods. We used widefield voltage-sensitive dye imaging (VSDI) to measure neural population responses in macaque V1 to visual stimuli with a wide range of temporal waveforms. We found that stimulus-evoked VSDI responses are surprisingly near-additive in time. These results are qualitatively different from the strong sub-additive dynamics previously measured using fMRI and electrocorticography (ECoG) in human visual cortex with a similar set of stimuli. To test whether this discrepancy is specific to VSDI-a signal dominated by subthreshold neural activity, we repeated our measurements using widefield imaging of a genetically encoded calcium indicator (GcaMP6f)-a signal dominated by spiking activity, and found that GCaMP signals in macaque V1 are also near-additive. Therefore, the discrepancies in the extent of sub-additivity between the macaque and the human measurements are unlikely due to differences between sub- and supra-threshold neural responses. Finally, we use a simple yet flexible delayed normalization model to capture these different dynamics across measurements (with different model parameters). The model can potentially generalize to a broader set of stimuli, which aligns with previous suggestion that dynamic gain-control is a canonical computation contributing to neural processing in the brain.
Collapse
Affiliation(s)
- Jingyang Zhou
- Center for Computational Neuroscience, Flatiron Institute, New York, USA.
- Center for Neural Science, New York University, New York, USA.
| | - Matt Whitmire
- Center for Perceptual Systems, University of Texas, Austin, Austin, USA
- Center for Theoretical and Computational Neuroscience, University of Texas, Austin, Austin, USA
- Department of Psychology, University of Texas, Austin, Austin, USA
- Department of Neuroscience, University of Texas, Austin, Austin, USA
| | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, Austin, USA
- Center for Theoretical and Computational Neuroscience, University of Texas, Austin, Austin, USA
- Department of Psychology, University of Texas, Austin, Austin, USA
- Department of Neuroscience, University of Texas, Austin, Austin, USA
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, Austin, USA.
- Center for Theoretical and Computational Neuroscience, University of Texas, Austin, Austin, USA.
- Department of Psychology, University of Texas, Austin, Austin, USA.
- Department of Neuroscience, University of Texas, Austin, Austin, USA.
| |
Collapse
|
4
|
Krüppel S, Khani MH, Karamanlis D, Erol YC, Zapp SJ, Mietsch M, Protti DA, Rozenblit F, Gollisch T. Diversity of Ganglion Cell Responses to Saccade-Like Image Shifts in the Primate Retina. J Neurosci 2023; 43:5319-5339. [PMID: 37339877 PMCID: PMC10359029 DOI: 10.1523/jneurosci.1561-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
Saccades are a fundamental part of natural vision. They interrupt fixations of the visual gaze and rapidly shift the image that falls onto the retina. These stimulus dynamics can cause activation or suppression of different retinal ganglion cells, but how they affect the encoding of visual information in different types of ganglion cells is largely unknown. Here, we recorded spiking responses to saccade-like shifts of luminance gratings from ganglion cells in isolated marmoset retinas and investigated how the activity depended on the combination of presaccadic and postsaccadic images. All identified cell types, On and Off parasol and midget cells, as well as a type of Large Off cells, displayed distinct response patterns, including particular sensitivity to either the presaccadic or the postsaccadic image or combinations thereof. In addition, Off parasol and Large Off cells, but not On cells, showed pronounced sensitivity to whether the image changed across the transition. Stimulus sensitivity of On cells could be explained based on their responses to step changes in light intensity, whereas Off cells, in particular, parasol and the Large Off cells, seem to be affected by additional interactions that are not triggered during simple light-intensity flashes. Together, our data show that ganglion cells in the primate retina are sensitive to different combinations of presaccadic and postsaccadic visual stimuli. This contributes to the functional diversity of the output signals of the retina and to asymmetries between On and Off pathways and provides evidence of signal processing beyond what is triggered by isolated steps in light intensity.SIGNIFICANCE STATEMENT Sudden eye movements (saccades) shift our direction of gaze, bringing new images in focus on our retinas. To study how retinal neurons deal with these rapid image transitions, we recorded spiking activity from ganglion cells, the output neurons of the retina, in isolated retinas of marmoset monkeys while shifting a projected image in a saccade-like fashion across the retina. We found that the cells do not just respond to the newly fixated image, but that different types of ganglion cells display different sensitivities to the presaccadic and postsaccadic stimulus patterns. Certain Off cells, for example, are sensitive to changes in the image across transitions, which contributes to differences between On and Off information channels and extends the range of encoded stimulus features.
Collapse
Affiliation(s)
- Steffen Krüppel
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Dimokratis Karamanlis
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Yunus C Erol
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Sören J Zapp
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, 37077 Göttingen, Germany
- German Center for Cardiovascular Research, 37075 Göttingen, Germany
| | - Dario A Protti
- School of Medical Sciences (Neuroscience), The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Abstract
An ultimate goal in retina science is to understand how the neural circuit of the retina processes natural visual scenes. Yet most studies in laboratories have long been performed with simple, artificial visual stimuli such as full-field illumination, spots of light, or gratings. The underlying assumption is that the features of the retina thus identified carry over to the more complex scenario of natural scenes. As the application of corresponding natural settings is becoming more commonplace in experimental investigations, this assumption is being put to the test and opportunities arise to discover processing features that are triggered by specific aspects of natural scenes. Here, we review how natural stimuli have been used to probe, refine, and complement knowledge accumulated under simplified stimuli, and we discuss challenges and opportunities along the way toward a comprehensive understanding of the encoding of natural scenes. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dimokratis Karamanlis
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Helene Marianne Schreyer
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Zapp SJ, Nitsche S, Gollisch T. Retinal receptive-field substructure: scaffolding for coding and computation. Trends Neurosci 2022; 45:430-445. [DOI: 10.1016/j.tins.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|
7
|
Liu JK, Karamanlis D, Gollisch T. Simple model for encoding natural images by retinal ganglion cells with nonlinear spatial integration. PLoS Comput Biol 2022; 18:e1009925. [PMID: 35259159 PMCID: PMC8932571 DOI: 10.1371/journal.pcbi.1009925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/18/2022] [Accepted: 02/14/2022] [Indexed: 01/05/2023] Open
Abstract
A central goal in sensory neuroscience is to understand the neuronal signal processing involved in the encoding of natural stimuli. A critical step towards this goal is the development of successful computational encoding models. For ganglion cells in the vertebrate retina, the development of satisfactory models for responses to natural visual scenes is an ongoing challenge. Standard models typically apply linear integration of visual stimuli over space, yet many ganglion cells are known to show nonlinear spatial integration, in particular when stimulated with contrast-reversing gratings. We here study the influence of spatial nonlinearities in the encoding of natural images by ganglion cells, using multielectrode-array recordings from isolated salamander and mouse retinas. We assess how responses to natural images depend on first- and second-order statistics of spatial patterns inside the receptive field. This leads us to a simple extension of current standard ganglion cell models. We show that taking not only the weighted average of light intensity inside the receptive field into account but also its variance over space can partly account for nonlinear integration and substantially improve response predictions of responses to novel images. For salamander ganglion cells, we find that response predictions for cell classes with large receptive fields profit most from including spatial contrast information. Finally, we demonstrate how this model framework can be used to assess the spatial scale of nonlinear integration. Our results underscore that nonlinear spatial stimulus integration translates to stimulation with natural images. Furthermore, the introduced model framework provides a simple, yet powerful extension of standard models and may serve as a benchmark for the development of more detailed models of the nonlinear structure of receptive fields. For understanding how sensory systems operate in the natural environment, an important goal is to develop models that capture neuronal responses to natural stimuli. For retinal ganglion cells, which connect the eye to the brain, current standard models often fail to capture responses to natural visual scenes. This shortcoming is at least partly rooted in the fact that ganglion cells may combine visual signals over space in a nonlinear fashion. We here show that a simple model, which not only considers the average light intensity inside a cell’s receptive field but also the variance of light intensity over space, can partly account for these nonlinearities and thereby improve current standard models. This provides an easy-to-obtain benchmark for modeling ganglion cell responses to natural images.
Collapse
Affiliation(s)
- Jian K. Liu
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
8
|
Ding J, Chen A, Chung J, Acaron Ledesma H, Wu M, Berson DM, Palmer SE, Wei W. Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit. eLife 2021; 10:e68181. [PMID: 34096504 PMCID: PMC8211448 DOI: 10.7554/elife.68181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/06/2021] [Indexed: 12/19/2022] Open
Abstract
Spatially distributed excitation and inhibition collectively shape a visual neuron's receptive field (RF) properties. In the direction-selective circuit of the mammalian retina, the role of strong null-direction inhibition of On-Off direction-selective ganglion cells (On-Off DSGCs) on their direction selectivity is well-studied. However, how excitatory inputs influence the On-Off DSGC's visual response is underexplored. Here, we report that On-Off DSGCs have a spatially displaced glutamatergic receptive field along their horizontal preferred-null motion axes. This displaced receptive field contributes to DSGC null-direction spiking during interrupted motion trajectories. Theoretical analyses indicate that population responses during interrupted motion may help populations of On-Off DSGCs signal the spatial location of moving objects in complex, naturalistic visual environments. Our study highlights that the direction-selective circuit exploits separate sets of mechanisms under different stimulus conditions, and these mechanisms may help encode multiple visual features.
Collapse
Affiliation(s)
- Jennifer Ding
- Committee on Neurobiology Graduate Program, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Albert Chen
- Department of Organismal Biology, The University of ChicagoChicagoUnited States
| | - Janet Chung
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Hector Acaron Ledesma
- Graduate Program in Biophysical Sciences, The University of ChicagoChicagoUnited States
| | - Mofei Wu
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - David M Berson
- Department of Neuroscience and Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Stephanie E Palmer
- Committee on Neurobiology Graduate Program, The University of ChicagoChicagoUnited States
- Department of Organismal Biology, The University of ChicagoChicagoUnited States
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Wei Wei
- Committee on Neurobiology Graduate Program, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| |
Collapse
|
9
|
Khani MH, Gollisch T. Linear and nonlinear chromatic integration in the mouse retina. Nat Commun 2021; 12:1900. [PMID: 33772000 PMCID: PMC7997992 DOI: 10.1038/s41467-021-22042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/23/2021] [Indexed: 11/09/2022] Open
Abstract
The computations performed by a neural circuit depend on how it integrates its input signals into an output of its own. In the retina, ganglion cells integrate visual information over time, space, and chromatic channels. Unlike the former two, chromatic integration is largely unexplored. Analogous to classical studies of spatial integration, we here study chromatic integration in mouse retina by identifying chromatic stimuli for which activation from the green or UV color channel is maximally balanced by deactivation through the other color channel. This reveals nonlinear chromatic integration in subsets of On, Off, and On-Off ganglion cells. Unlike the latter two, nonlinear On cells display response suppression rather than activation under balanced chromatic stimulation. Furthermore, nonlinear chromatic integration occurs independently of nonlinear spatial integration, depends on contributions from the rod pathway and on surround inhibition, and may provide information about chromatic boundaries, such as the skyline in natural scenes.
Collapse
Affiliation(s)
- Mohammad Hossein Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- International Max Planck Research School for Neuroscience, Göttingen, Germany.
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
10
|
Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images. J Neurosci 2021; 41:3479-3498. [PMID: 33664129 PMCID: PMC8051676 DOI: 10.1523/jneurosci.3075-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. We found that standard linear receptive field models yielded good predictions of responses to flashed natural images for a subset of cells but failed to capture the spiking activity for many others. Cells with poor model performance displayed pronounced sensitivity to fine spatial contrast and local signal rectification as the dominant nonlinearity. By contrast, sensitivity to high-frequency contrast-reversing gratings, a classical test for nonlinear spatial integration, was not a good predictor of model performance and thus did not capture the variability of nonlinear spatial integration under natural images. In addition, we also observed a class of nonlinear ganglion cells with inverse tuning for spatial contrast, responding more strongly to spatially homogeneous than to spatially structured stimuli. These findings highlight the diversity of receptive field nonlinearities as a crucial component for understanding early sensory encoding in the context of natural stimuli. SIGNIFICANCE STATEMENT Experiments with artificial visual stimuli have revealed that many types of retinal ganglion cells pool spatial input signals nonlinearly. However, it is still unclear how relevant this nonlinear spatial integration is when the input signals are natural images. Here we analyze retinal responses to natural scenes in large populations of mouse ganglion cells. We show that nonlinear spatial integration strongly influences responses to natural images for some ganglion cells, but not for others. Cells with nonlinear spatial integration were sensitive to spatial structure inside their receptive fields, and a small group of cells displayed a surprising sensitivity to spatially homogeneous stimuli. Traditional analyses with contrast-reversing gratings did not predict this variability of nonlinear spatial integration under natural images.
Collapse
|
11
|
Rozenblit F, Gollisch T. What the salamander eye has been telling the vision scientist's brain. Semin Cell Dev Biol 2020; 106:61-71. [PMID: 32359891 PMCID: PMC7493835 DOI: 10.1016/j.semcdb.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Salamanders have been habitual residents of research laboratories for more than a century, and their history in science is tightly interwoven with vision research. Nevertheless, many vision scientists - even those working with salamanders - may be unaware of how much our knowledge about vision, and particularly the retina, has been shaped by studying salamanders. In this review, we take a tour through the salamander history in vision science, highlighting the main contributions of salamanders to our understanding of the vertebrate retina. We further point out specificities of the salamander visual system and discuss the perspectives of this animal system for future vision research.
Collapse
Affiliation(s)
- Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Shirzhiyan Z, Keihani A, Farahi M, Shamsi E, GolMohammadi M, Mahnam A, Haidari MR, Jafari AH. Introducing chaotic codes for the modulation of code modulated visual evoked potentials (c-VEP) in normal adults for visual fatigue reduction. PLoS One 2019; 14:e0213197. [PMID: 30840671 PMCID: PMC6402685 DOI: 10.1371/journal.pone.0213197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/16/2019] [Indexed: 11/19/2022] Open
Abstract
Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-sequences as a modulating codes for their broadband spectrum and correlation property. However, subjective fatigue of the presented codes has been a problem. In this study, we introduce chaotic codes containing broadband spectrum and similar correlation property. We examined whether the introduced chaotic codes could be decoded from EEG signals and also compared the subjective fatigue level with m-sequence codes in normal subjects. We generated chaotic code from one-dimensional logistic map and used it with conventional 31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we presented these codes visually and recorded EEG signals from the corresponding codes for their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beamforming (STB) methods were used for target identification and comparison of responses. Additionally, we compared the subjective self-declared fatigue using VAS caused by presented m-sequence and chaotic codes. The introduced chaotic code was decoded from EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes for all subjects respectively. The achieved accuracies in all subjects were not significantly different in m-sequence and chaotic codes. There was significant reduction in subjective fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods. The chaotic codes significantly reduced subjective fatigue compared to the m-sequence codes.
Collapse
Affiliation(s)
- Zahra Shirzhiyan
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Keihani
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Farahi
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Shamsi
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Mina GolMohammadi
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mahnam
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohsen Reza Haidari
- Section of Neuroscience, Department of Neurology, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Homayoun Jafari
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Turner MH, Schwartz GW, Rieke F. Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina. eLife 2018; 7:e38841. [PMID: 30188320 PMCID: PMC6185113 DOI: 10.7554/elife.38841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
Antagonistic receptive field surrounds are a near-universal property of early sensory processing. A key assumption in many models for retinal ganglion cell encoding is that receptive field surrounds are added only to the fully formed center signal. But anatomical and functional observations indicate that surrounds are added before the summation of signals across receptive field subunits that creates the center. Here, we show that this receptive field architecture has an important consequence for spatial contrast encoding in the macaque monkey retina: the surround can control sensitivity to fine spatial structure by changing the way the center integrates visual information over space. The impact of the surround is particularly prominent when center and surround signals are correlated, as they are in natural stimuli. This effect of the surround differs substantially from classic center-surround models and raises the possibility that the surround plays unappreciated roles in shaping ganglion cell sensitivity to natural inputs.
Collapse
Affiliation(s)
- Maxwell H Turner
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleUnited States
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleUnited States
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Neurobiology, Weinberg College of Arts and SciencesNorthwestern UniversityChicagoUnited States
| | - Fred Rieke
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleUnited States
| |
Collapse
|
14
|
Cowan CS, Sabharwal J, Wu SM. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields. Physiol Rep 2017; 4:4/17/e12952. [PMID: 27604400 PMCID: PMC5027358 DOI: 10.14814/phy2.12952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reverse correlation methods such as spike‐triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space–time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space–time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion. J Neurosci 2017; 37:610-625. [PMID: 28100743 DOI: 10.1523/jneurosci.2804-16.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/14/2016] [Accepted: 11/25/2016] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) are frequently divided into functional types by their ability to extract and relay specific features from a visual scene, such as the capacity to discern local or global motion, direction of motion, stimulus orientation, contrast or uniformity, or the presence of large or small objects. Here we introduce three previously uncharacterized, nondirection-selective ON-OFF RGC types that represent a distinct set of feature detectors in the mouse retina. The three high-definition (HD) RGCs possess small receptive-field centers and strong surround suppression. They respond selectively to objects of specific sizes, speeds, and types of motion. We present comprehensive morphological characterization of the HD RGCs and physiological recordings of their light responses, receptive-field size and structure, and synaptic mechanisms of surround suppression. We also explore the similarities and differences between the HD RGCs and a well characterized RGC with a comparably small receptive field, the local edge detector, in response to moving objects and textures. We model populations of each RGC type to study how they differ in their performance tracking a moving object. These results, besides introducing three new RGC types that together constitute a substantial fraction of mouse RGCs, provide insights into the role of different circuits in shaping RGC receptive fields and establish a foundation for continued study of the mechanisms of surround suppression and the neural basis of motion detection. SIGNIFICANCE STATEMENT The output cells of the retina, retinal ganglion cells (RGCs), are a diverse group of ∼40 distinct neuron types that are often assigned "feature detection" profiles based on the specific aspects of the visual scene to which they respond. Here we describe, for the first time, morphological and physiological characterization of three new RGC types in the mouse retina, substantially augmenting our understanding of feature selectivity. Experiments and modeling show that while these three "high-definition" RGCs share certain receptive-field properties, they also have distinct tuning to the size, speed, and type of motion on the retina, enabling them to occupy different niches in stimulus space.
Collapse
|
16
|
Real E, Asari H, Gollisch T, Meister M. Neural Circuit Inference from Function to Structure. Curr Biol 2017; 27:189-198. [PMID: 28065610 DOI: 10.1016/j.cub.2016.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022]
Abstract
Advances in technology are opening new windows on the structural connectivity and functional dynamics of brain circuits. Quantitative frameworks are needed that integrate these data from anatomy and physiology. Here, we present a modeling approach that creates such a link. The goal is to infer the structure of a neural circuit from sparse neural recordings, using partial knowledge of its anatomy as a regularizing constraint. We recorded visual responses from the output neurons of the retina, the ganglion cells. We then generated a systematic sequence of circuit models that represents retinal neurons and connections and fitted them to the experimental data. The optimal models faithfully recapitulated the ganglion cell outputs. More importantly, they made predictions about dynamics and connectivity among unobserved neurons internal to the circuit, and these were subsequently confirmed by experiment. This circuit inference framework promises to facilitate the integration and understanding of big data in neuroscience.
Collapse
Affiliation(s)
| | | | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen 37073, Germany
| | | |
Collapse
|
17
|
Greene G, Gollisch T, Wachtler T. Non-linear retinal processing supports invariance during fixational eye movements. Vision Res 2016; 118:158-70. [DOI: 10.1016/j.visres.2015.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
|
18
|
Liu JK, Gollisch T. Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina. PLoS Comput Biol 2015; 11:e1004425. [PMID: 26230927 PMCID: PMC4521887 DOI: 10.1371/journal.pcbi.1004425] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022] Open
Abstract
When visual contrast changes, retinal ganglion cells adapt by adjusting their sensitivity as well as their temporal filtering characteristics. The latter has classically been described by contrast-induced gain changes that depend on temporal frequency. Here, we explored a new perspective on contrast-induced changes in temporal filtering by using spike-triggered covariance analysis to extract multiple parallel temporal filters for individual ganglion cells. Based on multielectrode-array recordings from ganglion cells in the isolated salamander retina, we found that contrast adaptation of temporal filtering can largely be captured by contrast-invariant sets of filters with contrast-dependent weights. Moreover, differences among the ganglion cells in the filter sets and their contrast-dependent contributions allowed us to phenomenologically distinguish three types of filter changes. The first type is characterized by newly emerging features at higher contrast, which can be reproduced by computational models that contain response-triggered gain-control mechanisms. The second type follows from stronger adaptation in the Off pathway as compared to the On pathway in On-Off-type ganglion cells. Finally, we found that, in a subset of neurons, contrast-induced filter changes are governed by particularly strong spike-timing dynamics, in particular by pronounced stimulus-dependent latency shifts that can be observed in these cells. Together, our results show that the contrast dependence of temporal filtering in retinal ganglion cells has a multifaceted phenomenology and that a multi-filter analysis can provide a useful basis for capturing the underlying signal-processing dynamics. Our sensory systems have to process stimuli under a wide range of environmental conditions. To cope with this challenge, the involved neurons adapt by adjusting their signal processing to the recently encountered intensity range. In the visual system, one finds, for example, that higher visual contrast leads to changes in how visual signals are temporally filtered, making signal processing faster and more band-pass-like at higher contrast. By analyzing signals from neurons in the retina of salamanders, we here found that these adaptation effects can be described by a fixed set of filters, independent of contrast, whose relative contributions change with contrast. Also, we found that different phenomena contribute to this adaptation. In particular, some cells change their relative sensitivity to light increments and light decrements, whereas other cells are influenced by a strong contrast-dependence of the exact timing of their responses. Our results show that contrast adaptation in the retina is not an entirely homogeneous phenomenon, and that models with multiple filters can help in characterizing sensory adaptation.
Collapse
Affiliation(s)
- Jian K. Liu
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
19
|
Marre O, Botella-Soler V, Simmons KD, Mora T, Tkačik G, Berry MJ. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population. PLoS Comput Biol 2015; 11:e1004304. [PMID: 26132103 PMCID: PMC4489022 DOI: 10.1371/journal.pcbi.1004304] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.
Collapse
Affiliation(s)
- Olivier Marre
- Department of Molecular Biology and Neuroscience Institute, Princeton University, Princeton, United States of America
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
- * E-mail:
| | | | - Kristina D. Simmons
- Department of Psychology, University of Pennsylvania, Philadelphia, United States of America
| | - Thierry Mora
- Laboratoire de Physique Statistique, École Normale Supérieure, CNRS and UPMC, Paris, France
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael J. Berry
- Department of Molecular Biology and Neuroscience Institute, Princeton University, Princeton, United States of America
| |
Collapse
|
20
|
Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R, Sethuramanujam S, Schwab D, Briggman KL, Awatramani GB. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron 2015; 86:276-91. [PMID: 25801705 DOI: 10.1016/j.neuron.2015.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/13/2014] [Accepted: 02/11/2015] [Indexed: 01/24/2023]
Abstract
Local and global forms of inhibition controlling directionally selective ganglion cells (DSGCs) in the mammalian retina are well documented. It is established that local inhibition arising from GABAergic starburst amacrine cells (SACs) strongly contributes to direction selectivity. Here, we demonstrate that increasing ambient illumination leads to the recruitment of GABAergic wide-field amacrine cells (WACs) endowing the DS circuit with an additional feature: size selectivity. Using a combination of electrophysiology, pharmacology, and light/electron microscopy, we show that WACs predominantly contact presynaptic bipolar cells, which drive direct excitation and feedforward inhibition (through SACs) to DSGCs, thus maintaining the appropriate balance of inhibition/excitation required for generating DS. This circuit arrangement permits high-fidelity direction coding over a range of ambient light levels, over which size selectivity is adjusted. Together, these results provide novel insights into the anatomical and functional arrangement of multiple inhibitory interneurons within a single computational module in the retina.
Collapse
Affiliation(s)
- Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Kara Ronellenfitch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Stuart Trenholm
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Rishi Vasandani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Schwab
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road F165, Evanston, IL 60208, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|