1
|
Asano Y, Sasaki D, Ikoma Y, Matsui K. Glial tone of aggression. Neurosci Res 2024; 202:39-51. [PMID: 38007191 DOI: 10.1016/j.neures.2023.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Anger transition is often abrupt. In this study, we investigated the mechanisms responsible for switching and modulating aggression levels. The cerebellum is considered a center for motor coordination and learning; however, its connection to social behavior has long been observed. Here, we used the resident-intruder paradigm in male mice and examined local field potential (LFP) changes, glial cytosolic ion fluctuations, and vascular dynamics in the cerebellar vermis throughout various phases of a combat sequence. Notably, we observed the emergence of theta band oscillations in the LFP and sustained elevations in glial Ca2+ levels during combat breakups. When astrocytes, including Bergmann glial cells, were photoactivated using channelrhodopsin-2, the theta band emerged and an early combat breakup occurred. Within a single combat sequence, rapid alteration of offensive (fight) and passive (flight) responses were observed, which roughly correlated with decreases and increases in glial Ca2+, respectively. Neuron-glial interactions in the cerebellar vermis may play a role in adjusting Purkinje cell excitability and setting the tone of aggression. Future anger management strategies and clinical control of excessive aggression and violent behavior may be realized by developing a therapeutic strategy that adjusts glial activity in the cerebellum.
Collapse
Affiliation(s)
- Yuki Asano
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Daichi Sasaki
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan.
| |
Collapse
|
2
|
Shibasaki K. Regulation of Neural Functions by Brain Temperature and Thermo-TRP Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:199-211. [PMID: 39289283 DOI: 10.1007/978-981-97-4584-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Body temperature is an important determinant in regulating the activities of animals. In humans, a mild 0.5 °C hyperthermia can cause headaches, demonstrating that the maintenance of normal body temperature is a key for our health. In a more extreme example, accidental acute hypothermia can lead to severe shivering, loss of consciousness, or death, although the details of these mechanisms are poorly understood. We previously found that the TRPV4 ion channel is constitutively activated by normal body temperature. The activation threshold of TRPV4 is >34 °C in the brain, which enables TRPV4 to convert thermal information into cellular signaling. Here we review the data that describe how the deletion of TRPV4 evokes abnormal behavior in mice. These studies demonstrate that the maintenance of body temperature and the sensory system for detecting body temperature, such as via TRPV4, are critical components for normal cellular function. Moreover, abnormal TRPV4 activation exacerbates cell death, epilepsy, stroke, or brain edema. Notably, TRPV4 can detect mechanical stimuli and contributes to various neural functions similar to the mechanosensitive characteristics of TRPV2. In this review, I summarize the findings related to TRPV2/TRPV4 and neural functions.
Collapse
Affiliation(s)
- Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan.
| |
Collapse
|
3
|
Nanclares C, Noriega-Prieto JA, Labrada-Moncada FE, Cvetanovic M, Araque A, Kofuji P. Altered calcium signaling in Bergmann glia contributes to spinocerebellar ataxia type-1 in a mouse model of SCA1. Neurobiol Dis 2023; 187:106318. [PMID: 37802154 PMCID: PMC10624966 DOI: 10.1016/j.nbd.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
5
|
Liu Q, Zhang K, Kang Y, Li Y, Deng P, Li Y, Tian Y, Sun Q, Tang Y, Xu K, Zhou Y, Wang JL, Guo J, Li JD, Xia K, Meng Q, Allen EG, Wen Z, Li Z, Jiang H, Shen L, Duan R, Yao B, Tang B, Jin P, Pan Y. Expression of expanded GGC repeats within NOTCH2NLC causes behavioral deficits and neurodegeneration in a mouse model of neuronal intranuclear inclusion disease. SCIENCE ADVANCES 2022; 8:eadd6391. [PMID: 36417528 PMCID: PMC9683706 DOI: 10.1126/sciadv.add6391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 05/06/2023]
Abstract
GGC repeat expansions within NOTCH2NLC have been identified as the genetic cause of neuronal intranuclear inclusion disease (NIID). To understand the molecular pathogenesis of NIID, here, we established both a transgenic mouse model and a human neural progenitor cells (hNPCs) model. Expression of the NOTCH2NLC with expanded GGC repeats produced widespread intranuclear and perinuclear polyglycine (polyG), polyalanine (polyA), and polyarginine (polyR) inclusions, leading to behavioral deficits and severe neurodegeneration, which faithfully mimicked the clinical and pathological features associated with NIID. Furthermore, conserved alternative splicing events were identified between the NIID mouse and hNPC models, among which was the enrichment of the binding motifs of hnRNPM, an RNA binding protein known as alternative splicing regulator. Expanded NOTCH2NLC-polyG and NOTCH2NLC-polyA could interact with and sequester hnRNPM, while overexpression of hnRNPM could ameliorate the cellular toxicity. These results together suggested that dysfunction of hnRNPM could play an important role in the molecular pathogenesis of NIID.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Penghui Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yun Tian
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia-Da Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, Hunan 410008, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qingtuan Meng
- Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Emily G. Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Rodríguez-Arzate CA, Martínez-Mendoza ML, Rocha-Mendoza I, Luna-Palacios Y, Licea-Rodríguez J, Martínez-Torres A. Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine. Cells 2021; 10:cells10071581. [PMID: 34201497 PMCID: PMC8304447 DOI: 10.3390/cells10071581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Cortical dysplasias are alterations in the organization of the layers of the brain cortex due to problems in neuronal migration during development. The neuronal component has been widely studied in experimental models of cortical dysplasias. In contrast, little is known about how glia are affected. In the cerebellum, Bergmann glia (BG) are essential for neuronal migration during development, and in adult they mediate the control of fine movements through glutamatergic transmission. The aim of this study was to characterize the morphology and intracellular calcium dynamics of BG and astrocytes from mouse cerebellum and their modifications in a model of cortical dysplasia induced by carmustine (BCNU). Carmustine-treated mice were affected in their motor coordination and balance. Cerebellar dysplasias and heterotopias were more frequently found in lobule X. Morphology of BG cells and astrocytes was affected, as were their spontaneous [Ca2+]i transients in slice preparation and in vitro.
Collapse
Affiliation(s)
- Cynthia Alejandra Rodríguez-Arzate
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
| | - Marianne Lizeth Martínez-Mendoza
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
| | - Israel Rocha-Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
| | - Yryx Luna-Palacios
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
| | - Jacob Licea-Rodríguez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
- Cátedras CONACYT, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
- Correspondence:
| |
Collapse
|
7
|
Lim EY, Ye L, Paukert M. Potential and Realized Impact of Astroglia Ca 2 + Dynamics on Circuit Function and Behavior. Front Cell Neurosci 2021; 15:682888. [PMID: 34163330 PMCID: PMC8215280 DOI: 10.3389/fncel.2021.682888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Astroglia display a wide range of spontaneous and behavioral state-dependent Ca2+ dynamics. During heightened vigilance, noradrenergic signaling leads to quasi-synchronous Ca2+ elevations encompassing soma and processes across the brain-wide astroglia network. Distinct from this vigilance-associated global Ca2+ rise are apparently spontaneous fluctuations within spatially restricted microdomains. Over the years, several strategies have been pursued to shed light on the physiological impact of these signals including deletion of endogenous ion channels or receptors and reduction of intracellular Ca2+ through buffering, extrusion or inhibition of release. Some experiments that revealed the most compelling behavioral alterations employed chemogenetic and optogenetic manipulations to modify astroglia Ca2+ signaling. However, there is considerable contrast between these findings and the comparatively modest effects of inhibiting endogenous sources of Ca2+. In this review, we describe the underlying mechanisms of various forms of astroglia Ca2+ signaling as well as the functional consequences of their inhibition. We then discuss how the effects of exogenous astroglia Ca2+ modification combined with our knowledge of physiological mechanisms of astroglia Ca2+ activation could guide further refinement of behavioral paradigms that will help elucidate the natural Ca2+-dependent function of astroglia.
Collapse
Affiliation(s)
- Eunice Y. Lim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,*Correspondence: Martin Paukert,
| |
Collapse
|
8
|
Yu X, Moye SL, Khakh BS. Local and CNS-Wide Astrocyte Intracellular Calcium Signaling Attenuation In Vivo with CalEx flox Mice. J Neurosci 2021; 41:4556-4574. [PMID: 33903221 PMCID: PMC8260243 DOI: 10.1523/jneurosci.0085-21.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023] Open
Abstract
Astrocytes exist throughout the CNS and affect neural circuits and behavior through intracellular Ca2+ signaling. Studying the function(s) of astrocyte Ca2+ signaling has proven difficult because of the paucity of tools to achieve selective attenuation. Based on recent studies, we generated and used male and female knock-in mice for Cre-dependent expression of mCherry-tagged hPMCA2w/b to attenuate astrocyte Ca2+ signaling in genetically defined cells in vivo (CalExflox mice for Calcium Extrusion). We characterized CalExflox mice following local AAV-Cre microinjections into the striatum and found reduced astrocyte Ca2+ signaling (∼90%) accompanied with repetitive self-grooming behavior. We also crossed CalExflox mice to astrocyte-specific Aldh1l1-Cre/ERT2 mice to achieve inducible global CNS-wide Ca2+ signaling attenuation. Within 6 d of induction in the bigenic mice, we observed significantly altered ambulation in the open field, disrupted motor coordination and gait, and premature lethality. Furthermore, with histologic, imaging, and transcriptomic analyses, we identified cellular and molecular alterations in the cerebellum following mCherry-tagged hPMCA2w/b expression. Our data show that expression of mCherry-tagged hPMCA2w/b with CalExflox mice throughout the CNS resulted in substantial attenuation of astrocyte Ca2+ signaling and significant behavioral alterations in adult mice. We interpreted these findings candidly in relation to the ability of CalEx to attenuate astrocyte Ca2+ signaling, with regards to additional mechanistic interpretations of the data, and their relation to past studies that reduced astrocyte Ca2+ signaling throughout the CNS. The data and resources provide complementary ways to interrogate the function(s) of astrocytes in multiple experimental scenarios.SIGNIFICANCE STATEMENT Astrocytes represent a significant fraction of all brain cells and tile the entire central nervous system. Unlike neurons, astrocytes lack propagated electrical signals. Instead, astrocytes are proposed to use diverse and dynamic intracellular Ca2+ signals to communicate with other cells. An open question concerns if and how astrocyte Ca2+ signaling regulates behavior in adult mice. We approached this problem by generating a new transgenic mouse line to achieve inducible astrocyte Ca2+ signaling attenuation in vivo We report our data with this mouse line and we interpret the findings candidly in relation to past studies and within the framework of different mechanistic interpretations.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Physiology
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704
| | | | - Baljit S Khakh
- Department of Physiology
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-1751
| |
Collapse
|
9
|
Emotional Stress Induces Structural Plasticity in Bergmann Glial Cells via an AC5-CPEB3-GluA1 Pathway. J Neurosci 2020; 40:3374-3384. [PMID: 32229518 DOI: 10.1523/jneurosci.0013-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022] Open
Abstract
Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a β-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling.SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of β-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes.
Collapse
|
10
|
Kim Y, Park J, Choi YK. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants (Basel) 2019; 8:antiox8050121. [PMID: 31060341 PMCID: PMC6562853 DOI: 10.3390/antiox8050121] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes’ functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer’s disease, Parkinson’s disease, and stroke.
Collapse
Affiliation(s)
- Yonghee Kim
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jinhong Park
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
11
|
Neuronal Activity-Dependent Activation of Astroglial Calcineurin in Mouse Primary Hippocampal Cultures. Int J Mol Sci 2018; 19:ijms19102997. [PMID: 30274399 PMCID: PMC6213389 DOI: 10.3390/ijms19102997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
Astrocytes respond to neuronal activity by generating calcium signals which are implicated in the regulation of astroglial housekeeping functions and/or in modulation of synaptic transmission. We hypothesized that activity-induced calcium signals in astrocytes may activate calcineurin (CaN), a calcium/calmodulin-regulated protein phosphatase, implicated in neuropathology, but whose role in astroglial physiology remains unclear. We used a lentiviral vector expressing NFAT-EYFP (NY) fluorescent calcineurin sensor and a chemical protocol of LTP induction (cLTP) to show that, in mixed neuron-astrocytic hippocampal cultures, cLTP induced robust NY translocation into astrocyte nuclei and, hence, CaN activation. NY translocation was abolished by the CaN inhibitor FK506, and was not observed in pure astroglial cultures. Using Fura-2 single cell calcium imaging, we found sustained Ca2+ elevations in juxtaneuronal, but not distal, astrocytes. Pharmacological analysis revealed that both the Ca2+ signals and the nuclear NY translocation in astrocytes required NMDA and mGluR5 receptors and depended on extracellular Ca2+ entry via a store-operated mechanism. Our results provide a proof of principle that calcineurin in astrocytes may be activated in response to neuronal activity, thereby delineating a framework for investigating the role of astroglial CaN in the physiology of central nervous system.
Collapse
|
12
|
Shim HG, Jang SS, Kim SH, Hwang EM, Min JO, Kim HY, Kim YS, Ryu C, Chung G, Kim Y, Yoon BE, Kim SJ. TNF-α increases the intrinsic excitability of cerebellar Purkinje cells through elevating glutamate release in Bergmann Glia. Sci Rep 2018; 8:11589. [PMID: 30072733 PMCID: PMC6072779 DOI: 10.1038/s41598-018-29786-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
For decades, the glial function has been highlighted not only as the ‘structural glue’, but also as an ‘active participant’ in neural circuits. Here, we suggest that tumor necrosis factor α (TNF-α), a key inflammatory cytokine, alters the neural activity of the cerebellar Purkinje cells (PCs) by facilitating gliotransmission in the juvenile male rat cerebellum. A bath application of TNF-α (100 ng/ml) in acute cerebellar slices elevates spiking activity of PCs with no alterations in the regularity of PC firings. Interestingly, the effect of TNF-α on the intrinsic excitability of PCs was abolished under a condition in which the type1 TNF receptor (TNFR1) in Bergmann glia (BG) was genetically suppressed by viral delivery of an adeno-associated virus (AAV) containing TNFR1-shRNA. In addition, we measured the concentration of glutamate derived from dissociated cerebellar cortical astrocyte cultures treated with TNF-α and observed a progressive increase of glutamate in a time-dependent manner. We hypothesised that TNF-α-induced elevation of glutamate from BGs enveloping the synaptic cleft may directly activate metabotropic glutamate receptor1 (mGluR1). Pharmacological inhibition of mGluR1, indeed, prevented the TNF-α-mediated elevation of the intrinsic excitability in PCs. Taken together, our study reveals that TNF-α triggers glutamate release in BG, thereby increasing the intrinsic excitability of cerebellar PCs in a mGluR1-dependent manner.
Collapse
Affiliation(s)
- Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Soo Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Joo Ok Min
- Department of Molecular biology, Dankook University, Chungnam, Korea
| | - Hye Yun Kim
- Department of Pharmacy and Integrated Science and Engineering Division, Yonsei University, Incheon, Korea
| | - Yoo Sung Kim
- Department of Molecular biology, Dankook University, Chungnam, Korea
| | - Changhyeon Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Geehoon Chung
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Brain and Cognitive Science, College of Science, Seoul National University, Seoul, Korea
| | - YoungSoo Kim
- Department of Pharmacy and Integrated Science and Engineering Division, Yonsei University, Incheon, Korea
| | - Bo-Eun Yoon
- Department of Molecular biology, Dankook University, Chungnam, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea. .,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
14
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1073] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
15
|
Helleringer R, Chever O, Daniel H, Galante M. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca 2+ Rises Mainly Mediated by K + and ATP Increases in the Extracellular Space. Front Cell Neurosci 2017; 11:349. [PMID: 29163059 PMCID: PMC5675856 DOI: 10.3389/fncel.2017.00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.
Collapse
Affiliation(s)
- Romain Helleringer
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - Hervé Daniel
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| |
Collapse
|
16
|
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18:419-434. [PMID: 28515434 PMCID: PMC5759779 DOI: 10.1038/nrn.2017.48] [Citation(s) in RCA: 838] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral blood flow (CBF) regulation is essential for normal brain function. The mammalian brain has evolved a unique mechanism for CBF control known as neurovascular coupling. This mechanism ensures a rapid increase in the rate of CBF and oxygen delivery to activated brain structures. The neurovascular unit is composed of astrocytes, mural vascular smooth muscle cells and pericytes, and endothelia, and regulates neurovascular coupling. This Review article examines the cellular and molecular mechanisms within the neurovascular unit that contribute to CBF control, and neurovascular dysfunction in neurodegenerative disorders such as Alzheimer disease.
Collapse
Affiliation(s)
- Kassandra Kisler
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
Mishra A. Binaural blood flow control by astrocytes: listening to synapses and the vasculature. J Physiol 2016; 595:1885-1902. [PMID: 27619153 DOI: 10.1113/jp270979] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+ -dependent signalling pathways such as K+ release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals.
Collapse
Affiliation(s)
- Anusha Mishra
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
18
|
Shibasaki K. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol Sci 2016; 66:359-65. [PMID: 26841959 PMCID: PMC10717341 DOI: 10.1007/s12576-016-0434-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
Abstract
This review provides a summary of the physiological significance of the TRPV2 ion channel. While TRPV2 was initially characterized as a noxious heat sensor, we found that TRPV2 can also act as a mechanosensor in embryonic neurons or adult myenteric neurons. Here, we summarize the newly characterized functions of TRPV2, including the research progress that has been made toward our understanding of TRPV2 physiology, and discuss other recent data pertaining to TRPV2. It is thought that TRPV2 may be an important drug target based on its broad expression patterns and important physiological roles. The possible associations between diseases and TRPV2 are also discussed.
Collapse
Affiliation(s)
- Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| |
Collapse
|
19
|
Rudolph R, Jahn HM, Courjaret R, Messemer N, Kirchhoff F, Deitmer JW. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 2016; 64:1265-80. [PMID: 27144942 DOI: 10.1002/glia.22999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Abstract
Synaptic transmission has been shown to be modulated by glial functions, but the modes of specific glial action may vary in different neural circuits. We have tested the hypothesis, if Bergmann GLIA (BG) are involved in shaping neuronal communication in the mouse cerebellar cortex, using acutely isolated cerebellar slices of wild-type (WT) and of glia-specific receptor knockout mice. Activation of P2Y1 receptors by ADP (100 µM) or glutamatergic receptors by AMPA (0.3 µM) resulted in a robust, reversible and repeatable rise of evoked inhibitory input in Purkinje cells by 80% and 150%, respectively. The ADP-induced response was suppressed by prior application of AMPA, and the AMPA-induced response was suppressed by prior application of ADP. Genetic deletion or pharmacological blockade of either receptor restored the response to the other receptor agonist. Both ADP and AMPA responses were sensitive to Rose Bengal, which blocks vesicular glutamate uptake, and to the NMDA receptor antagonist D-AP5. Our results provide strong evidence that activation of both ADP and AMPA receptors, located on BGs, results in the release of glutamate, which in turn activates inhibitory interneurons via NMDA-type glutamate receptors. This infers that BG cells, by means of metabotropic signaling via their AMPA and P2Y1 receptors, which mutually suppress each other, would interdependently contribute to the fine-tuning of Purkinje cell activity in the cerebellar cortex. GLIA 2016. GLIA 2016;64:1265-1280.
Collapse
Affiliation(s)
- Ramona Rudolph
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Hannah M Jahn
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Raphael Courjaret
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany.,Weill Cornell Medical College, Doha, Qatar
| | - Nanette Messemer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Joachim W Deitmer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| |
Collapse
|
20
|
Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study. PLoS One 2016; 11:e0150636. [PMID: 26930485 PMCID: PMC4773004 DOI: 10.1371/journal.pone.0150636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Cerebellar GABAergic inhibitory transmission between interneurons and Purkinje cells (PCs) undergoes a long-lasting enhancement following different stimulations, such as brief depolarization or activation of purinergic receptors of postsynaptic PCs. The underlying mechanisms, however, are not completely understood. Using a peak-scaled non-stationary fluctuation analysis, we therefore aimed at characterizing changes in the electrophysiological properties of GABAA receptors in PCs of rat cerebellar cortex during depolarization-induced “rebound potentiation (RP)” and purinoceptor-mediated long-term potentiation (PM-LTP), because both RP and PM-LTP likely depend on postsynaptic mechanisms. Stimulation-evoked inhibitory postsynaptic currents (eIPSCs) were recorded from PCs in neonatal rat cerebellar slices. Our analysis showed that postsynaptic membrane depolarization induced RP of eIPSCs in association with significant increase in the number of synaptic GABAA receptors without changing the channel conductance. By contrast, bath application of ATP induced PM-LTP of eIPSCs with a significant increase of the channel conductance of GABAA receptors without affecting the receptor number. Pretreatment with protein kinase A (PKA) inhibitors, H-89 and cAMPS-Rp, completely abolished the PM-LTP. The CaMKII inhibitor KN-62 reported to abolish RP did not alter PM-LTP. These results suggest that the signaling mechanism underlying PM-LTP could involve ATP-induced phosphorylation of synaptic GABAA receptors, thereby resulting in upregulation of the channel conductance by stimulating adenylyl cyclase-PKA signaling cascade, possibly via activation of P2Y11 purinoceptor. Thus, our findings reveal that postsynaptic GABAA receptors at the interneuron-PC inhibitory synapses are under the control of two distinct forms of long-term potentiation linked with different second messenger cascades.
Collapse
|
21
|
Höft S, Griemsmann S, Seifert G, Steinhäuser C. Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130602. [PMID: 25225096 DOI: 10.1098/rstb.2013.0602] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Astrocytes may express ionotropic glutamate and gamma-aminobutyric acid (GABA) receptors, which allow them to sense and to respond to neuronal activity. However, so far the properties of astrocytes have been studied only in a few brain regions. Here, we provide the first detailed receptor analysis of astrocytes in the murine ventrobasal thalamus and compare the properties with those in other regions. To improve voltage-clamp control and avoid indirect effects during drug applications, freshly isolated astrocytes were employed. Two sub-populations of astrocytes were found, expressing or lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. AMPA receptor-bearing astrocytes displayed a lower Kir current density than cells lacking the receptors. In contrast, all cells expressed GABAA receptors. Single-cell RT-PCR was employed to identify the receptor subunits in thalamic astrocytes. Our findings add to the emerging evidence of functional heterogeneity of astrocytes, the impact of which still remains to be defined.
Collapse
Affiliation(s)
- Simon Höft
- Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Stephanie Griemsmann
- Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| |
Collapse
|
22
|
Rosa JM, Bos R, Sack GS, Fortuny C, Agarwal A, Bergles DE, Flannery JG, Feller MB. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover. eLife 2015; 4. [PMID: 26274565 PMCID: PMC4566075 DOI: 10.7554/elife.09590] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
Neuron-glia interactions play a critical role in the maturation of neural circuits; however, little is known about the pathways that mediate their communication in the developing CNS. We investigated neuron-glia signaling in the developing retina, where we demonstrate that retinal waves reliably induce calcium transients in Müller glial cells (MCs). During cholinergic waves, MC calcium transients were blocked by muscarinic acetylcholine receptor antagonists, whereas during glutamatergic waves, MC calcium transients were inhibited by ionotropic glutamate receptor antagonists, indicating that the responsiveness of MCs changes to match the neurotransmitter used to support retinal waves. Using an optical glutamate sensor we show that the decline in MC calcium transients is caused by a reduction in the amount of glutamate reaching MCs. Together, these studies indicate that neurons and MCs exhibit correlated activity during a critical period of retinal maturation that is enabled by neurotransmitter spillover from retinal synapses.
Collapse
Affiliation(s)
- Juliana M Rosa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rémi Bos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Georgeann S Sack
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Cécile Fortuny
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, United States
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
23
|
Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 2015; 99:396-407. [PMID: 26260232 DOI: 10.1016/j.neuropharm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
The Bergmann glia is equipped with Ca2+-permeable AMPA receptors for glutamate, indispensable for structural and functional relations between the Bergmann glia and parallel/climbing fibers-Purkinje cell synapses. To better understand roles for the Bergmann AMPA receptors, herein we investigate on gliotransmitter release and Ca2+ signals in isolated Bergmann glia processes obtained from adult rat cerebellum. We found that: 1) the rat cerebellar purified astrocyte processes (gliosomes) expressed astrocytic and Bergmann markers and exhibited negligible contamination by nerve terminals, microglia, or oligodendrocytes; 2) activation of Ca2+-permeable AMPA receptors caused Ca2+ signals in the processes, and the release of glutamate from the processes; 3) effectiveness of rose bengal, trypan blue or bafilomycin A1, indicated that activation of the AMPA receptors evoked vesicular glutamate release. Cerebellar purified nerve terminals appeared devoid of glutamate-releasing Ca2+-permeable AMPA receptors, indicating that neuronal contamination may not be the source of the signals detected. Ultrastructural analysis indicated the presence of vesicles in the cytoplasm of the processes; confocal imaging confirmed the presence of vesicular glutamate transporters in Bergmann glia processes. We conclude that: a vesicular mechanism for release of the gliotransmitter glutamate is present in mature Bergmann processes; entry of Ca2+ through the AMPA receptors located on Bergmann processes is coupled with vesicular glutamate release. The findings would add a new role for a well-known Bergmann target for glutamate (the Ca2+-permeable AMPA receptors) and a new actor (the gliotransmitter glutamate) at the cerebellar excitatory synapses onto Purkinje cells.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Daniela Frattaroli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, Italian Institute of Biostructures and Biosystems, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Mario Nobile
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Susanna Alloisio
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132 Genova, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
24
|
De Zeeuw CI, Hoogland TM. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Front Cell Neurosci 2015; 9:246. [PMID: 26190972 PMCID: PMC4488625 DOI: 10.3389/fncel.2015.00246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
Abstract
Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the BG in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | - Tycho M Hoogland
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| |
Collapse
|
25
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
26
|
Kiyokage E, Toida K, Suzuki-Yamamoto T, Ishimura K. Cellular localization of 5α-reductase in the rat cerebellum. J Chem Neuroanat 2014; 59-60:8-16. [DOI: 10.1016/j.jchemneu.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/11/2014] [Accepted: 04/25/2014] [Indexed: 01/14/2023]
|
27
|
Howarth C. The contribution of astrocytes to the regulation of cerebral blood flow. Front Neurosci 2014; 8:103. [PMID: 24847203 PMCID: PMC4023041 DOI: 10.3389/fnins.2014.00103] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
In order to maintain normal brain function, it is critical that cerebral blood flow (CBF) is matched to neuronal metabolic needs. Accordingly, blood flow is increased to areas where neurons are more active (a response termed functional hyperemia). The tight relationships between neuronal activation, glial cell activity, cerebral energy metabolism, and the cerebral vasculature, known as neurometabolic and neurovascular coupling, underpin functional MRI (fMRI) signals but are incompletely understood. As functional imaging techniques, particularly BOLD fMRI, become more widely used, their utility hinges on our ability to accurately and reliably interpret the findings. A growing body of data demonstrates that astrocytes can serve as a "bridge," relaying information on the level of neural activity to blood vessels in order to coordinate oxygen and glucose delivery with the energy demands of the tissue. It is widely assumed that calcium-dependent release of vasoactive substances by astrocytes results in arteriole dilation and the increased blood flow which accompanies neuronal activity. However, the signaling molecules responsible for this communication between astrocytes and blood vessels are yet to be definitively confirmed. Indeed, there is controversy over whether activity-induced changes in astrocyte calcium are widespread and fast enough to elicit such functional hyperemia responses. In this review, I will summarize the evidence which has convincingly demonstrated that astrocytes are able to modify the diameter of cerebral arterioles. I will discuss the prevalence, presence, and timing of stimulus-induced astrocyte calcium transients and describe the evidence for and against the role of calcium-dependent formation and release of vasoactive substances by astrocytes. I will also review alternative mechanisms of astrocyte-evoked changes in arteriole diameter and consider the questions which remain to be answered in this exciting area of research.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield Sheffield, UK
| |
Collapse
|
28
|
Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J Biol Chem 2014; 289:14470-80. [PMID: 24737318 DOI: 10.1074/jbc.m114.557132] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Astrocytes play active roles in the regulation of synaptic transmission. Neuronal excitation can evoke Ca(2+) transients in astrocytes, and these Ca(2+) transients can modulate neuronal excitability. Although only a subset of astrocytes appears to communicate with neurons, the types of astrocytes that can regulate neuronal excitability are poorly characterized. We found that ∼30% of astrocytes in the brain express transient receptor potential vanilloid 4 (TRPV4), indicating that astrocytic subtypes can be classified on the basis of their expression patterns. When TRPV4(+) astrocytes are activated by ligands such as arachidonic acid, the activation propagates to neighboring astrocytes through gap junctions and by ATP release from the TRPV4(+) astrocytes. After activation, both TRPV4(+) and TRPV4(-) astrocytes release glutamate, which acts as an excitatory gliotransmitter to increase synaptic transmission through type 1 metabotropic glutamate receptor (mGluR). Our results indicate that TRPV4(+) astrocytes constitute a novel subtype of the population and are solely responsible for initiating excitatory gliotransmitter release to enhance synaptic transmission. We propose that TRPV4(+) astrocytes form a core of excitatory glial assembly in the brain and function to efficiently increase neuronal excitation in response to endogenous TRPV4 ligands.
Collapse
Affiliation(s)
- Koji Shibasaki
- From the Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan,
| | - Kazuhiro Ikenaka
- Division of Neurobiology Neuroinformatics, Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Fuminobu Tamalu
- Department of Physiology, Saitama Medical University, Moroyama 350-0495, Japan
| | - Makoto Tominaga
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan, Division of Cell Signaling, National Institute for Physiological Sciences, and
| | - Yasuki Ishizaki
- From the Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
29
|
Kur J, Newman EA. Purinergic control of vascular tone in the retina. J Physiol 2014; 592:491-504. [PMID: 24277867 PMCID: PMC3930435 DOI: 10.1113/jphysiol.2013.267294] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
Purinergic control of vascular tone in the CNS has been largely unexplored. This study examines the contribution of endogenous extracellular ATP, acting on vascular smooth muscle cells, in controlling vascular tone in the in vivo rat retina. Retinal vessels were labelled by i.v. injection of a fluorescent dye and imaged with scanning laser confocal microscopy. The diameters of primary arterioles were monitored under control conditions and following intravitreal injection of pharmacological agents. Apyrase (500 units ml(-1)), an ATP hydrolysing enzyme, dilated retinal arterioles by 40.4 ± 2.8%, while AOPCP (12.5 mm), an ecto-5'-nucleotidase inhibitor that increases extracellular ATP levels, constricted arterioles by 58.0 ± 3.8% (P < 0.001 for both), demonstrating the importance of ATP in the control of basal vascular tone. Suramin (500 μm), a broad-spectrum P2 receptor antagonist, dilated retinal arterioles by 50.9 ± 3.7% (P < 0.001). IsoPPADS (300 μm) and TNP-ATP (50 μm), more selective P2X antagonists, dilated arterioles by 41.0 ± 5.3% and 55.2 ± 6.1% respectively (P < 0.001 for both). NF023 (50 μm), a potent antagonist of P2X1 receptors, dilated retinal arterioles by 32.1 ± 2.6% (P < 0.001). A438079 (500 μm) and AZ10606120 (50 μm), P2X7 antagonists, had no effect on basal vascular tone (P = 0.99 and P = 1.00 respectively). In the ex vivo retina, the P2X1 receptor agonist α,β-methylene ATP (300 nm) evoked sustained vasoconstrictions of 18.7 ± 3.2% (P < 0.05). In vivo vitreal injection of the gliotoxin fluorocitrate (150 μm) dilated retinal vessels by 52.3 ± 1.1% (P < 0.001) and inhibited the vasodilatory response to NF023 (50 μm, 7.9 ± 2.0%; P < 0.01). These findings suggest that vascular tone in rat retinal arterioles is maintained by tonic release of ATP from the retina. ATP acts on P2X1 receptors, although contributions from other P2X and P2Y receptors cannot be ruled out. Retinal glial cells are a possible source of the vasoconstricting ATP.
Collapse
Affiliation(s)
- Joanna Kur
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
30
|
Verkhratsky A, Burnstock G. Purinergic and glutamatergic receptors on astroglia. ADVANCES IN NEUROBIOLOGY 2014; 11:55-79. [PMID: 25236724 DOI: 10.1007/978-3-319-08894-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astroglial cells express many neurotransmitter receptors; the receptors to glutamate and ATP being the most abundant. Here, we provide a concise overview on the expression and main properties of astroglial glutamate receptors (ionotropic receptors represented by AMPA and NMDA subtypes) and metabotropic (mainly mGluR5 and mGluR3 subtypes) and purinoceptors (adenosine receptors of A1, A2A, A2B, and A3 types, ionotropic P2X1/5 and P2X7 subtypes, and metabotropic P2Y purinoceptors). We also discuss the role of these receptors in glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK,
| | | |
Collapse
|
31
|
Shibasaki K, Ishizaki Y, Mandadi S. Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun 2013; 441:327-32. [PMID: 24161738 DOI: 10.1016/j.bbrc.2013.10.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
Abstract
Thermosensitive transient receptor potential (thermo TRP) channels are important for sensory transduction. Among them, TRPV2 has an interesting characteristic of being activated by very high temperature (>52 °C). In addition to the heat sensor function, TRPV2 also acts as a mechanosensor, an osomosensor and a lipid sensor. It has been reported that TRPV2 is expressed in heart, intestine, pancreas and sensory nerves. In the central nervous system, neuronal TRPV2 expression was reported, however, glial expression and the precise roles of TRPV2 have not been determined. To explore the functional expression of TRPV2 in astrocytes, the expression was determined by histological and physiological methods. Interestingly, TRPV2 expression was detected in plasma membrane of astrocytes, and the astrocytic TRPV2 was activated by very high temperature (>50 °C) consistent with the reported characteristic. We revealed that the astrocytic TRPV2 was also activated by lysophosphatidylcholine, a known endogenous lipid ligand for TRPV2, suggesting that astrocytic TRPV2 might regulate neuronal activities in response to lipid metabolism. Thus, for the first time we revealed that TRPV2 is functionally expressed in astrocytes in addition to neurons.
Collapse
Affiliation(s)
- Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| | | | | |
Collapse
|
32
|
Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol 2013; 109:42-63. [PMID: 23981535 DOI: 10.1016/j.pneurobio.2013.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022]
Abstract
The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum.
Collapse
Affiliation(s)
- Annalisa Buffo
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello, 30, 10125 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Neuroscience Institute of Turin, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | | |
Collapse
|
33
|
Beierlein M. Imaging calcium waves in cerebellar Bergmann glia. Cold Spring Harb Protoc 2013; 2013:2013/1/pdb.prot072637. [PMID: 23282638 DOI: 10.1101/pdb.prot072637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This protocol describes methods for recording synaptically evoked Ca(2+) waves from individual Bergmann glia (BG) in slices of cerebellar cortex. Unlike protoplasmic, star-shaped astrocytes, whose thin processes pose a serious challenge to stable Ca(2+) measurements, BG are large radial cells, with several main processes that run over distances of several hundred micrometers toward the pia and ensheathe thousands of parallel fiber (PF) synapses. Stimulation of PF synapses with brief bursts can trigger long-lasting Ca(2+) responses in BG processes, which can be reliably recorded using a cooled charge-coupled device (CCD) camera. This protocol was developed to enable measurements of Ca(2+) waves in individual BG loaded with a high-affinity Ca(2+) indicator such as Fura-2 for up to 2 h. Because BG recorded in slices rarely display spontaneous (i.e., tetrodotoxin [TTX]-sensitive) or intrinsic Ca(2+) transients, Ca(2+) waves can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Fluorescence measurements obtained using CCD technology offer a straightforward means of characterizing the mechanisms and potential functional consequences of widespread and long-lasting, store-mediated Ca(2+) increases in astrocytes.
Collapse
|
34
|
De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E. Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 2012; 6:98. [PMID: 23267326 PMCID: PMC3528083 DOI: 10.3389/fncom.2012.00098] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023] Open
Abstract
The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function.
Collapse
Affiliation(s)
- Maurizio De Pittà
- School of Physics and Astronomy, Tel Aviv University Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Brazhe A, Mathiesen C, Lauritzen M. Multiscale vision model highlights spontaneous glial calcium waves recorded by 2-photon imaging in brain tissue. Neuroimage 2012; 68:192-202. [PMID: 23219568 DOI: 10.1016/j.neuroimage.2012.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/26/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022] Open
Abstract
Intercellular glial calcium waves (GCW) constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca(2+) changes. Reliable detection of calcium waves in multiphoton imaging data is challenging because of low signal-to-noise ratio. We modified the multiscale vision model (MVM), originally employed to detect faint objects in astronomy data to process stacks of fluorescent images. We demonstrate that the MVM identified and characterized GCWs with much higher sensitivity and detail than pixel thresholding. Origins of GCWs were often associated with prolonged secondary Ca(2+) elevations. The GCWs had variable shapes, and secondary GCWs were observed to bud from the primary, larger GCW. GCWs evaded areas shortly before occupied by a preceding GCW instead circulating around the refractory area. Blood vessels uniquely reshaped GCWs and were associated with secondary GCW events. We conclude that the MVM provides unique possibilities to study spatiotemporally correlated Ca(2+) signaling in brain tissue.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Faculty of Biology, Moscow State University, 119234 Moscow, Russia.
| | | | | |
Collapse
|
36
|
Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc Natl Acad Sci U S A 2012. [PMID: 23185019 DOI: 10.1073/pnas.1213458109] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic activity of glia has repeatedly been demonstrated, but if such activity is independent from neuronal activity, glia would not have any role in the information processing in the brain or in the generation of animal behavior. Evidence for neurons communicating with glia is solid, but the signaling pathway leading back from glial-to-neuronal activity was often difficult to study. Here, we introduced a transgenic mouse line in which channelrhodopsin-2, a light-gated cation channel, was expressed in astrocytes. Selective photostimulation of these astrocytes in vivo triggered neuronal activation. Using slice preparations, we show that glial photostimulation leads to release of glutamate, which was sufficient to activate AMPA receptors on Purkinje cells and to induce long-term depression of parallel fiber-to-Purkinje cell synapses through activation of metabotropic glutamate receptors. In contrast to neuronal synaptic vesicular release, glial activation likely causes preferential activation of extrasynaptic receptors that appose glial membrane. Finally, we show that neuronal activation by glial stimulation can lead to perturbation of cerebellar modulated motor behavior. These findings demonstrate that glia can modulate the tone of neuronal activity and behavior. This animal model is expected to be a potentially powerful approach to study the role of glia in brain function.
Collapse
|
37
|
Oswald DJ, Lee A, Trinidad M, Chi C, Ren R, Rich CB, Trinkaus-Randall V. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors. PLoS One 2012; 7:e44574. [PMID: 22970252 PMCID: PMC3436752 DOI: 10.1371/journal.pone.0044574] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/09/2012] [Indexed: 01/15/2023] Open
Abstract
Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca2+ wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca2+ wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca2+ mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca2+ mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca2+ waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.
Collapse
Affiliation(s)
- Duane J Oswald
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | | | | | | | | | | |
Collapse
|
38
|
Tamamushi S, Nakamura T, Inoue T, Ebisui E, Sugiura K, Bannai H, Mikoshiba K. Type 2 inositol 1,4,5-trisphosphate receptor is predominantly involved in agonist-induced Ca2+ signaling in Bergmann glia. Neurosci Res 2012; 74:32-41. [DOI: 10.1016/j.neures.2012.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
39
|
Agulhon C, Sun MY, Murphy T, Myers T, Lauderdale K, Fiacco TA. Calcium Signaling and Gliotransmission in Normal vs. Reactive Astrocytes. Front Pharmacol 2012; 3:139. [PMID: 22811669 PMCID: PMC3395812 DOI: 10.3389/fphar.2012.00139] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023] Open
Abstract
A prominent area of neuroscience research over the past 20 years has been the acute modulation of neuronal synaptic activity by Ca2+-dependent release of the transmitters ATP, D-serine, and glutamate (called gliotransmitters) by astrocytes. Although the physiological relevance of this mechanism is under debate, emerging evidence suggests that there are critical factors in addition to Ca2+ that are required for gliotransmitters to be released from astrocytes. Interestingly, these factors include activated microglia and the proinflammatory cytokine Tumor Necrosis Factor α (TNFα), chemotactic cytokine Stromal cell-Derived Factor-1α (SDF-1α), and inflammatory mediator prostaglandin E2 (PGE2). Of note, microglial activation and release of inflammatory molecules from activated microglia and reactive astrocytes can occur within minutes of a triggering stimulus. Therefore, activation of astrocytes by inflammatory molecules combined with Ca2+ elevations may lead to gliotransmitter release, and be an important step in the early sequence of events contributing to hyperexcitability, excitotoxicity, and neurodegeneration in the damaged or diseased brain. In this review, we will first examine evidence questioning Ca2+-dependent gliotransmitter release from astrocytes in healthy brain tissue, followed by a close examination of recent work suggesting that Ca2+-dependent gliotransmitter release occurs as an early event in the development of neurological disorders and neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cendra Agulhon
- UFR Biomédicale, CNRS UMR 8154, Université Paris Descartes Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
In the CNS, excitatory amino acid transporters (EAATs) localized to neurons and glia terminate the actions of synaptically released glutamate. Whereas glial transporters are primarily responsible for maintaining low ambient levels of extracellular glutamate, neuronal transporters have additional roles in shaping excitatory synaptic transmission. Here we test the hypothesis that the expression level of the Purkinje cell (PC)-specific transporter, EAAT4, near parallel fiber (PF) release sites controls the extrasynaptic glutamate concentration transient following synaptic stimulation. Expression of EAAT4 follows a parasagittal banding pattern that allows us to compare regions of high and low EAAT4-expressing PCs. Using EAAT4 promoter-driven eGFP reporter mice together with pharmacology and genetic deletion, we show that the level of neuronal transporter expression influences extrasynaptic transmission from PFs to adjacent Bergmann glia (BG). Surprisingly, a twofold difference in functional EAAT4 levels is sufficient to alter signaling to BG, although EAAT4 may only be responsible for removing a fraction of released glutamate. These results demonstrate that physiological regulation of neuronal transporter expression can alter extrasynaptic neuroglial signaling.
Collapse
|
41
|
Abstract
Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structurally more complex, larger, and propagate calcium signals significantly faster than rodent astrocytes. In this chapter, we review the diversity of astrocytic form and function, while considering the markedly expanded roles of astrocytes with phylogenetic evolution. We also define major challenges for the future, which include determining how astrocytic functions are locally specified, defining the molecular controls upon astrocytic fate and physiology and establishing how evolutionary changes in astrocytes contribute to higher cognitive functions.
Collapse
Affiliation(s)
- Nancy Ann Oberheim
- Center for Translational Neuromedicine, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
42
|
Molnár T, Héja L, Emri Z, Simon A, Nyitrai G, Pál I, Kardos J. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens. FRONTIERS IN NEUROENERGETICS 2011; 3:7. [PMID: 22180742 PMCID: PMC3235779 DOI: 10.3389/fnene.2011.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/25/2011] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signaling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested that Ca2+ was released from internal stores. Similarly to SUC, the GHB response was also characterized by an effective concentration of 50 μM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1 subunit in the presence and absence of the N-Methyl-d-Aspartate (NMDA) receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV), indicating action mechanisms independent of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252, and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91) also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca2+ signaling in astrocytic networks.
Collapse
Affiliation(s)
- Tünde Molnár
- Department of Neurochemistry, Chemical Research Center, Hungarian Academy of Sciences Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Molnár T, Dobolyi A, Nyitrai G, Barabás P, Héja L, Emri Z, Palkovits M, Kardos J. Calcium signals in the nucleus accumbens: activation of astrocytes by ATP and succinate. BMC Neurosci 2011; 12:96. [PMID: 21967230 PMCID: PMC3199278 DOI: 10.1186/1471-2202-12-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc), and thereby to explore the action of citric acid cycle intermediate succinate (SUC). Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43) and the glial fibrillary acidic protein (GFAP) indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthio)adenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM) in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We concluded, therefore, that ATP- and SUC-sensitive Ca2+ transients appear to represent a signalling layer independent of NAc neurons. This previously unrecognised glial action of SUC, a major cellular energy metabolite, may play a role in linking metabolism to Ca2+ signalling in astrocytic networks under physiological and pathological conditions such as exercise and metabolic diseases.
Collapse
Affiliation(s)
- Tünde Molnár
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeriút 59-67, 1025 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
44
|
McDougal DH, Hermann GE, Rogers RC. Vagal afferent stimulation activates astrocytes in the nucleus of the solitary tract via AMPA receptors: evidence of an atypical neural-glial interaction in the brainstem. J Neurosci 2011; 31:14037-45. [PMID: 21957265 PMCID: PMC3445261 DOI: 10.1523/jneurosci.2855-11.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/27/2011] [Indexed: 01/01/2023] Open
Abstract
The nucleus of the solitary tract (NST), located in the dorsomedial medulla, is the site of visceral sensory modulation of a variety of homeostatic reflexes. Given recent advancements in the understanding of active regulation of synaptic information flow by astrocytes, we sought to determine whether afferent sensory inputs to NST neurons also activates NST astrocytes. Using confocal, live-cell calcium imaging of brainstem slices, we investigated the possibility that stimulation of vagal sensory afferents, the major sensory input into the NST, activated NST astrocytes, as indicated by increases in astrocytic intracellular calcium concentrations ([Ca²⁺](i)). Astrocytes and neurons were preloaded with the calcium reporter dye Calcium Green, and astrocytes were selectively stained by sulforhodamine 101. Electrical stimulation of vagal afferent axons produced rapid increases in [Ca²⁺](i) in NST astrocytes as well as neurons. Surprisingly, this effect on astrocytes was blocked by the AMPA receptor antagonist NBQX and was unaffected by antagonism of NMDA and metabotropic glutamate receptors. Bath application of AMPA also activated astrocytes. This activation was dependent on extracellular Ca²⁺ influx through both typical AMPA receptors and calcium-permeable AMPA receptors. This AMPA-mediated Ca²⁺ influx was further amplified by actions of the ryanodine receptor by way of calcium-induced calcium release. Our immunohistochemical staining of NST cells further verified the presence of the AMPAR subunit GluR1 on astrocytes. These observations suggest that NST astrocytes may be active participants in the regulation of autonomic reflexes even in the normal, healthy state.
Collapse
Affiliation(s)
- David H McDougal
- Laboratory of Autonomic Neurosciences, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | |
Collapse
|
45
|
Habbas S, Ango F, Daniel H, Galante M. Purinergic signaling in the cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors. Glia 2011; 59:1800-12. [PMID: 21830236 DOI: 10.1002/glia.21224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 07/05/2011] [Indexed: 11/07/2022]
Abstract
Astrocytes constitute active networks of intercommunicating cells that support the metabolism and the development of neurons and affect synaptic functions via multiple pathways. ATP is one of the major neurotransmitters mediating signaling between neurons and astrocytes. Potentially acting through both purinergic metabotropic P2Y receptors (P2YRs) and ionotropic P2X receptors (P2XRs), up until now ATP has only been shown to activate P2YRs in Bergmann cells, the radial glia of the cerebellar cortex that envelopes Purkinje cell afferent synapses. In this study, using multiple experimental approaches in acute cerebellar slices we demonstrate the existence of functional P2XRs on Bergmann cells. In particular, we show here that Bergmann cells express uniquely P2X7R subtypes: (i) immunohistochemical analysis revealed the presence of P2X7Rs on Bergmann cell processes, (ii) in whole cell recordings P2XR pharmacological agonists induced depolarizing currents that were blocked by specific antagonists of P2X7Rs, and could not be elicited in slices from P2X₇R-deficient mice and finally, (iii) calcium imaging experiments revealed two distinct calcium signals triggered by application of exogenous ATP: a transient signal deriving from release of calcium from intracellular stores, and a persistent one following activation of P2X7Rs. Our data thus reveal a new pathway by which extracellular ATP may affect glial cell function, thus broadening our knowledge on purinergic signaling in the cerebellum.
Collapse
Affiliation(s)
- Samia Habbas
- Laboratoire de Pharmacologie et Biochimie de la Synapse, CNRS UMR 8619, Université Paris-sud 11, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
46
|
Ortega F, Pérez-Sen R, Delicado EG, Teresa Miras-Portugal M. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology 2011; 61:1210-21. [PMID: 21798274 DOI: 10.1016/j.neuropharm.2011.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
Cerebellar granule neurons express several types of nucleotide receptors, with the metabotropic P2Y(13) and the ionotropic P2X7 being the most relevant in this model. In the present study we investigated the role of P2Y(13) and P2X7 nucleotide receptors in ERK1/2 signalling. The nucleotidic agonists 2MeSADP (2-methylthioadenosine-5'-diphosphate) for P2Y(13) and BzATP (2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate) for P2X7 receptors were coupled to ERK1/2 activation in granule neurons, being able to increase around two-fold the levels of ERK1/2 phosphorylation. These effects were sensitive to the inhibitory action of the antagonists MRS-2211 and A-438079, specific for P2Y(13) and P2X7 receptors, respectively. Although both receptor subtypes shared the same pattern of transient ERK1/2 phosphorylation, they differed in the intracellular cascades they triggered, being PI3K-dependent for P2Y(13) and calcium/calmodulin kinase II (CaMKII)-dependent for P2X7. These two different ERK-mediated pathways were involved in the neuroprotective effects displayed by both P2Y(13) and P2X7 receptors against apoptosis induced by an excitotoxic concentration of glutamate, in a similar manner to the neurotrophin, BDNF. In addition, P2Y(13) and P2X7 receptor agonists were also able to phosphorylate and activate the ERK-dependent target CREB, which could be involved in their neuroprotective effect. These results indicate that nucleotide receptors share with trophic factors the same survival routes in neurons, such as the ERK signalling route, and therefore, can contribute to the maintenance of granule neurons in conditions in which survival is being compromised.
Collapse
Affiliation(s)
- Felipe Ortega
- Department of Biochemistry, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
47
|
Danjo R, Kawasaki F, Ordway RW. A tripartite synapse model in Drosophila. PLoS One 2011; 6:e17131. [PMID: 21359186 PMCID: PMC3040228 DOI: 10.1371/journal.pone.0017131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/21/2011] [Indexed: 11/18/2022] Open
Abstract
Tripartite (three-part) synapses are defined by physical and functional interactions of glia with pre- and post-synaptic elements. Although tripartite synapses are thought to be of widespread importance in neurological health and disease, we are only beginning to develop an understanding of glial contributions to synaptic function. In contrast to studies of neuronal mechanisms, a significant limitation has been the lack of an invertebrate genetic model system in which conserved mechanisms of tripartite synapse function may be examined through large-scale application of forward genetics and genome-wide genetic tools. Here we report a Drosophila tripartite synapse model which exhibits morphological and functional properties similar to those of mammalian synapses, including glial regulation of extracellular glutamate, synaptically-induced glial calcium transients and glial coupling of synapses with tracheal structures mediating gas exchange. In combination with classical and cell-type specific genetic approaches in Drosophila, this model is expected to provide new insights into the molecular and cellular mechanisms of tripartite synapse function.
Collapse
Affiliation(s)
- Rie Danjo
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| | - Fumiko Kawasaki
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| | - Richard W. Ordway
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
48
|
Recent developments in the understanding of astrocyte function in the cerebellum in vivo. THE CEREBELLUM 2011; 9:264-71. [PMID: 19904577 DOI: 10.1007/s12311-009-0139-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several studies have contributed to our understanding of astrocytes, especially Bergmann glia, in the cerebellum; but, until recently, none has looked at their function in vivo. Multicell bolus loading of fluorescent calcium indicators in combination with the astrocytic marker SR101 has allowed imaging of up to hundreds of astrocytes at once in the intact cerebellum. In addition, the selective targeting of astrocytes with fluorescent calcium indicator proteins has enabled the study of their function in vivo without the confounding effects of other neuropil signals and with a resolution that surpasses multicell bolus loading and SR101 staining. The two astrocyte types of the cerebellar cortex, Bergmann glia, and velate protoplasmic astrocytes display a diverse signaling repertoire in vivo, which ranges from localized calcium elevations in subcellular processes to waves, triggered by the release of purines and mediated by purinergic receptors that span multiple processes and can involve tens of astrocytes. During locomotor behavior, even larger numbers of astrocytes display calcium increases that are driven by neuronal activity and correlate with global changes in blood flow. In this review, we give an overview of our current understanding of the function of Bergmann glia and velate protoplasmic astrocytes and the promise of the tools used to study their calcium dynamics and function in vivo.
Collapse
|
49
|
Klyuch BP, Richardson MJE, Dale N, Wall MJ. The dynamics of single spike-evoked adenosine release in the cerebellum. J Physiol 2011; 589:283-95. [PMID: 21078589 PMCID: PMC3043533 DOI: 10.1113/jphysiol.2010.198986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/15/2010] [Indexed: 01/03/2023] Open
Abstract
The purine adenosine is a potent neuromodulator in the brain, with roles in a number of diverse physiological and pathological processes. Modulators such as adenosine are difficult to study as once released they have a diffuse action (which can affect many neurones) and, unlike classical neurotransmitters, have no inotropic receptors. Thus rapid postsynaptic currents (PSCs) mediated by adenosine (equivalent to mPSCs) are not available for study. As a result the mechanisms and properties of adenosine release still remain relatively unclear. We have studied adenosine release evoked by stimulating the parallel fibres in the cerebellum. Using adenosine biosensors combined with deconvolution analysis and mathematical modelling, we have characterised the release dynamics and diffusion of adenosine in unprecedented detail. By partially blocking K+ channels, we were able to release adenosine in response to a single stimulus rather than a train of stimuli. This allowed reliable sub-second release of reproducible quantities of adenosine with stereotypic concentration waveforms that agreed well with predictions of a mathematical model of purine diffusion. We found no evidence for ATP release and thus suggest that adenosine is directly released in response to parallel fibre firing and does not arise from extracellular ATP metabolism. Adenosine release events showed novel short-term dynamics, including facilitated release with paired stimuli at millisecond stimulation intervals but depletion-recovery dynamics with paired stimuli delivered over minute time scales. These results demonstrate rich dynamics for adenosine release that are placed, for the first time, on a quantitative footing and show strong similarity with vesicular exocytosis.
Collapse
Affiliation(s)
- Boris P Klyuch
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
50
|
Mashimo M, Okubo Y, Yamazawa T, Yamasaki M, Watanabe M, Murayama T, Iino M. Inositol 1,4,5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia. Eur J Neurosci 2010; 32:1668-77. [PMID: 20958799 DOI: 10.1111/j.1460-9568.2010.07452.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The maintenance of synaptic functions is essential for neuronal information processing in the adult brain. Astrocytes express glutamate transporters that rapidly remove glutamate from the extracellular space and they play a critical role in the precise operation of glutamatergic transmission. However, how the glutamate clearance function of astrocytes is maintained remains elusive. Here, we describe a maintenance mechanism for the glutamate uptake capacity of Bergmann glial cells (BGs) in the cerebellum. When inositol 1,4,5-trisphosphate (IP(3) ) signaling was chronically and selectively inhibited in BGs in vivo, the retention time of glutamate around parallel fiber-Purkinje cell synapses was increased. Under these conditions, a decrease in the level of the glutamate/aspartate transporter (GLAST) in BGs was observed. The same effects were observed after chronic in vivo inhibition of purinergic P2 receptors in the cerebellar cortex. These results suggest that the IP(3) signaling cascade is involved in regulating GLAST levels in BGs to maintain glutamate clearance in the mature cerebellum.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|