1
|
Vinnakota C, Hudson MR, Ikeda K, Ide S, Mishina M, Sundram S, Jones NC, Hill RA. Effects of NMDA receptor antagonists on working memory and gamma oscillations, and the mediating role of the GluN2D subunit. Neuropsychopharmacology 2025:10.1038/s41386-025-02129-9. [PMID: 40374854 DOI: 10.1038/s41386-025-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
Working memory relies on synchronised network oscillations involving complex interplay between pyramidal cells and GABAergic interneurons. NMDA receptor (NMDAR) antagonists influence both network oscillations and working memory, but the relationship between these two consequences has not been elucidated. This study aimed to determine the effect of NMDAR antagonists on network oscillations during a working memory task in mice, and the contribution of the GluN2D receptor subunit. After training wildtype (WT) and GluN2D-knockout (KO) mice on the Trial-Unique-Non-match to Location (TUNL) touchscreen task of working memory, recording electrodes were implanted into the prefrontal cortex (PFC) and hippocampus. Mice were challenged with either (S)-ketamine (30 mg/kg), (R)-ketamine (30 mg/kg), phencyclidine (PCP, 1 mg/kg), MK-801 (0.3 mg/kg) or saline prior to TUNL testing while simultaneous local field potential recordings were acquired. PCP disrupted working memory accuracy in WT (p = 0.001) but not GluN2D-KO mice (p = 0.79). MK-801 (p < 0.0001), (S)-ketamine (p < 0.0001) and (R)-ketamine (p = 0.007) disrupted working memory accuracy in both genotypes. PCP increased baseline hippocampal gamma (30-80 Hz) power in WT (p = 0.0015) but not GluN2D-KO mice (p = 0.92). All drugs increased baseline gamma power in the PFC in both genotypes (p < 0.05). Low gamma was induced during the maintenance phase of the TUNL task and increased when mice correctly completed the task (p = 0.024). This response-dependent increase in low gamma was disrupted by all drugs. In summary, PCP action involves the GluN2D subunit of the NMDA receptor in the hippocampus to alter baseline gamma power and working memory. Task-induced low gamma activity during maintenance aligns with task performance, and is disrupted by all NMDAR antagonists.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Department of Neuropsychopharmacology, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC, 3168, Australia
| | - Nigel C Jones
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Rachel Anne Hill
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Palacino F, Manganotti P, Benussi A. Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:547. [PMID: 40142358 PMCID: PMC11943909 DOI: 10.3390/medicina61030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.
Collapse
Affiliation(s)
| | | | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.P.); (P.M.)
| |
Collapse
|
3
|
Li J, Cao D, Li W, Sarnthein J, Jiang T. Re-evaluating human MTL in working memory: insights from intracranial recordings. Trends Cogn Sci 2024; 28:1132-1144. [PMID: 39174398 DOI: 10.1016/j.tics.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The study of human working memory (WM) holds significant importance in neuroscience; yet, exploring the role of the medial temporal lobe (MTL) in WM has been limited by the technological constraints of noninvasive methods. Recent advancements in human intracranial neural recordings have indicated the involvement of the MTL in WM processes. These recordings show that different regions of the MTL are involved in distinct aspects of WM processing and also dynamically interact with each other and the broader brain network. These findings support incorporating the MTL into models of the neural basis of WM. This integration can better reflect the complex neural mechanisms underlying WM and enhance our understanding of WM's flexibility, adaptability, and precision.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- School of Psychology, Capital Normal University, Beijing, 100048, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Zurich Neuroscience Center, ETH Zurich, 8057 Zurich, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
4
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
5
|
McGill MB, Kieffaber PD. Event-related theta and gamma band oscillatory dynamics during visuo-spatial sequence memory in younger and older adults. PLoS One 2024; 19:e0297995. [PMID: 38564573 PMCID: PMC10986947 DOI: 10.1371/journal.pone.0297995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Visuo-spatial working memory (VSWM) for sequences is thought to be crucial for daily behaviors. Decades of research indicate that oscillations in the gamma and theta bands play important functional roles in the support of visuo-spatial working memory, but the vast majority of that research emphasizes measures of neural activity during memory retention. The primary aims of the present study were (1) to determine whether oscillatory dynamics in the Theta and Gamma ranges would reflect item-level sequence encoding during a computerized spatial span task, (2) to determine whether item-level sequence recall is also related to these neural oscillations, and (3) to determine the nature of potential changes to these processes in healthy cognitive aging. Results indicate that VSWM sequence encoding is related to later (∼700 ms) gamma band oscillatory dynamics and may be preserved in healthy older adults; high gamma power over midline frontal and posterior sites increased monotonically as items were added to the spatial sequence in both age groups. Item-level oscillatory dynamics during the recall of VSWM sequences were related only to theta-gamma phase amplitude coupling (PAC), which increased monotonically with serial position in both age groups. Results suggest that, despite a general decrease in frontal theta power during VSWM sequence recall in older adults, gamma band dynamics during encoding and theta-gamma PAC during retrieval play unique roles in VSWM and that the processes they reflect may be spared in healthy aging.
Collapse
Affiliation(s)
- Makenna B. McGill
- Department of Psychological Sciences, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Paul D. Kieffaber
- Department of Psychological Sciences, College of William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
6
|
Borderie A, Caclin A, Lachaux JP, Perrone-Bertollotti M, Hoyer RS, Kahane P, Catenoix H, Tillmann B, Albouy P. Cross-frequency coupling in cortico-hippocampal networks supports the maintenance of sequential auditory information in short-term memory. PLoS Biol 2024; 22:e3002512. [PMID: 38442128 PMCID: PMC10914261 DOI: 10.1371/journal.pbio.3002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
It has been suggested that cross-frequency coupling in cortico-hippocampal networks enables the maintenance of multiple visuo-spatial items in working memory. However, whether this mechanism acts as a global neural code for memory retention across sensory modalities remains to be demonstrated. Intracranial EEG data were recorded while drug-resistant patients with epilepsy performed a delayed matched-to-sample task with tone sequences. We manipulated task difficulty by varying the memory load and the duration of the silent retention period between the to-be-compared sequences. We show that the strength of theta-gamma phase amplitude coupling in the superior temporal sulcus, the inferior frontal gyrus, the inferior temporal gyrus, and the hippocampus (i) supports the short-term retention of auditory sequences; (ii) decodes correct and incorrect memory trials as revealed by machine learning analysis; and (iii) is positively correlated with individual short-term memory performance. Specifically, we show that successful task performance is associated with consistent phase coupling in these regions across participants, with gamma bursts restricted to specific theta phase ranges corresponding to higher levels of neural excitability. These findings highlight the role of cortico-hippocampal activity in auditory short-term memory and expand our knowledge about the role of cross-frequency coupling as a global biological mechanism for information processing, integration, and memory in the human brain.
Collapse
Affiliation(s)
- Arthur Borderie
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
| | - Anne Caclin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Jean-Philippe Lachaux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | | | - Roxane S. Hoyer
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Hélène Catenoix
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Department of Functional Neurology and Epileptology, Lyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 University, Lyon, France
| | - Barbara Tillmann
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Laboratory for Research on Learning and Development, LEAD–CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| |
Collapse
|
7
|
Yokota Y, Tanaka K, Chang M, Naruse Y, Imamura Y, Fujii S. Gamma music: a new acoustic stimulus for gamma-frequency auditory steady-state response. Front Hum Neurosci 2024; 17:1287018. [PMID: 38273878 PMCID: PMC10808749 DOI: 10.3389/fnhum.2023.1287018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A frequency range exceeding approximately 30 Hz, denoted as the gamma frequency range, is associated with various cognitive functions, consciousness, sensory integration, short-term memory, working memory, encoding and maintenance of episodic memory, and retrieval processes. In this study, we proposed a new form of gamma stimulation, called gamma music, combining 40 Hz auditory stimuli and music. This gamma music consists of drums, bass, and keyboard sounds, each containing a 40 Hz frequency oscillation. Since 40 Hz stimuli are known to induce an auditory steady-state response (ASSR), we used the 40 Hz power and phase locking index (PLI) as indices of neural activity during sound stimulation. We also recorded subjective ratings of each sound through a questionnaire using a visual analog scale. The gamma music, gamma drums, gamma bass, and gamma keyboard sounds showed significantly higher values in 40 Hz power and PLI compared to the control music without a 40 Hz oscillation. Particularly, the gamma keyboard sound showed a potential to induce strong ASSR, showing high values in these indices. In the subjective ratings, the gamma music, especially the gamma keyboard sound, received more relaxed, comfortable, preferred, pleasant, and natural impressions compared to the control music with conventional gamma stimulation. These results indicate that our proposed gamma music has potential as a new method for inducing ASSR. Particularly, the gamma keyboard sound proved to be an effective acoustic source for inducing a strong ASSR while preserving the comfortable and pleasant sensation of listening to music. Our developed gamma music, characterized by its pleasantness to the human ear, offers a significant advantage for the long-term use of gamma stimulation. The utilization of this music could potentially reduce the physical and psychological burden on participants compared to conventional 40 Hz stimuli. This music is not only expected to contribute to fundamental neuroscience research utilizing ASSR but also to facilitate the implementation of gamma music-based interventions aimed at enhancing human cognitive functions in everyday life.
Collapse
|
8
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
9
|
Barnard IL, Onofrychuk TJ, Toderash AD, Patel VN, Glass AE, Adrian JC, Laprairie RB, Howland JG. High-THC Cannabis Smoke Impairs Incidental Memory Capacity in Spontaneous Tests of Novelty Preference for Objects and Odors in Male Rats. eNeuro 2023; 10:ENEURO.0115-23.2023. [PMID: 37973381 PMCID: PMC10714893 DOI: 10.1523/eneuro.0115-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Working memory is an executive function that orchestrates the use of limited amounts of information, referred to as working memory capacity, in cognitive functions. Cannabis exposure impairs working memory in humans; however, it is unclear whether Cannabis facilitates or impairs rodent working memory and working memory capacity. The conflicting literature in rodent models may be at least partly because of the use of drug exposure paradigms that do not closely mirror patterns of human Cannabis use. Here, we used an incidental memory capacity paradigm where a novelty preference is assessed after a short delay in spontaneous recognition-based tests. Either object or odor-based stimuli were used in test variations with sets of identical [identical stimuli test (IST)] and different [different stimuli test (DST)] stimuli (three or six) for low-memory and high-memory loads, respectively. Additionally, we developed a human-machine hybrid behavioral quantification approach which supplements stopwatch-based scoring with supervised machine learning-based classification. After validating the spontaneous IST and DST in male rats, 6-item test versions with the hybrid quantification method were used to evaluate the impact of acute exposure to high-Δ9-tetrahydrocannabinol (THC) or high-CBD Cannabis smoke on novelty preference. Under control conditions, male rats showed novelty preference in all test variations. We found that high-THC, but not high-CBD, Cannabis smoke exposure impaired novelty preference for objects under a high-memory load. Odor-based recognition deficits were seen under both low-memory and high-memory loads only following high-THC smoke exposure. Ultimately, these data show that Cannabis smoke exposure impacts incidental memory capacity of male rats in a memory load-dependent, and stimuli-specific manner.
Collapse
Affiliation(s)
- Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Aaron D Toderash
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5C9, Canada
| | - Vyom N Patel
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5C9, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Jesse C Adrian
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| |
Collapse
|
10
|
Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer's disease. Mol Psychiatry 2023; 28:4954-4967. [PMID: 37419975 PMCID: PMC11041664 DOI: 10.1038/s41380-023-02168-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Sara Hijazi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Fincham GW, Kartar A, Uthaug MV, Anderson B, Hall L, Nagai Y, Critchley H, Colasanti A. High ventilation breathwork practices: An overview of their effects, mechanisms, and considerations for clinical applications. Neurosci Biobehav Rev 2023; 155:105453. [PMID: 37923236 DOI: 10.1016/j.neubiorev.2023.105453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
High Ventilation Breathwork (HVB) refers to practices employing specific volitional manipulation of breathing, with a long history of use to relieve various forms of psychological distress. This paper seeks to offer a consolidative insight into potential clinical application of HVB as a treatment of psychiatric disorders. We thus review the characteristic phenomenological and neurophysiological effects of these practices to inform their mechanism of therapeutic action, safety profiles and future clinical applications. Clinical observations and data from neurophysiological studies indicate that HVB is associated with extraordinary changes in subjective experience, as well as with profound effects on central and autonomic nervous systems functions through modulation of neurometabolic parameters and interoceptive sensory systems. This growing evidence base may guide how the phenomenological effects of HVB can be understood, and potentially harnessed in the context of such volitional perturbation of psychophysiological state. Reports of putative beneficial effects for trauma-related, affective, and somatic disorders invite further research to obtain detailed mechanistic knowledge, and rigorous clinical testing of these potential therapeutic uses.
Collapse
Affiliation(s)
- Guy W Fincham
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK; University of Sussex, School of Psychology, Brighton, UK.
| | - Amy Kartar
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Malin V Uthaug
- The Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, UK; Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - Brittany Anderson
- University of Wisconsin School of Medicine & Public Health, Department of Psychiatry, University of Wisconsin-Madison, USA
| | - Lottie Hall
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Yoko Nagai
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Hugo Critchley
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Alessandro Colasanti
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK; Sussex Partnership NHS Foundation Trust.
| |
Collapse
|
12
|
Behboudi MH, Castro S, Chalamalasetty P, Maguire MJ. Development of Gamma Oscillation during Sentence Processing in Early Adolescence: Insights into the Maturation of Semantic Processing. Brain Sci 2023; 13:1639. [PMID: 38137087 PMCID: PMC10741943 DOI: 10.3390/brainsci13121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Children's ability to retrieve word meanings and incorporate them into sentences, along with the neural structures that support these skills, continues to evolve throughout adolescence. Theta (4-8 Hz) activity that corresponds to word retrieval in children decreases in power and becomes more localized with age. This bottom-up word retrieval is often paired with changes in gamma (31-70 Hz), which are thought to reflect semantic unification in adults. Here, we studied gamma engagement during sentence processing using EEG time-frequency in children (ages 8-15) to unravel the developmental trajectory of the gamma network during sentence processing. Children heavily rely on semantic integration for sentence comprehension, but as they mature, semantic and syntactic processing units become distinct and localized. We observed a similar developmental shift in gamma oscillation around age 11, with younger groups (8-9 and 10-11) exhibiting broadly distributed gamma activity with higher amplitudes, while older groups (12-13 and 14-15) exhibited smaller and more localized gamma activity, especially over the left central and posterior regions. We interpret these findings as support for the argument that younger children rely more heavily on semantic processes for sentence comprehension than older children. And like adults, semantic processing in children is associated with gamma activity.
Collapse
Affiliation(s)
- Mohammad Hossein Behboudi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Stephanie Castro
- Department of Human Development and Family Sciences, The University of Texas at Austin, Austin, TX 78705, USA
| | - Prasanth Chalamalasetty
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
| | - Mandy J. Maguire
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
13
|
Yuasa K, Hirosawa T, Soma D, Furutani N, Kameya M, Sano M, Kitamura K, Ueda M, Kikuchi M. Eyes-state-dependent alterations of magnetoencephalographic connectivity associated with delayed recall in Alzheimer's disease via graph theory approach. Front Psychiatry 2023; 14:1272120. [PMID: 37941968 PMCID: PMC10628524 DOI: 10.3389/fpsyt.2023.1272120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
IntroductionAlzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory impairment and cognitive decline. Electroencephalography (EEG) and magnetoencephalography (MEG) studies using graph theory show altered “Small-Worldness (SW)” properties in AD. This study aimed to investigate whether eye-state-dependent alterations in SW differ between patients with AD and healthy controls, considering the symptoms of AD.MethodsNineteen patients with AD and 24 healthy controls underwent MEG under different conditions (eyes-open [EO] and eyes-closed [EC]) and the Wechsler Memory Scale-Revised (WMS-R) with delayed recall. After the signal sources were mapped onto the Desikan–Killiany brain atlas, the statistical connectivity of five frequency bands (delta, theta, alpha, beta, and gamma) was calculated using the phase lag index (PLI), and binary graphs for each frequency band were constructed based on the PLI. Next, we measured SW as a graph metric and evaluated three points: the impact of AD and experimental conditions on SW, the association between SW and delayed recall, and changes in SW across experimental conditions correlated with delayed recall.ResultsSW in the gamma band was significantly lower in patients with AD (z = −2.16, p = 0.031), but the experimental conditions did not exhibit a significant effect in any frequency band. Next, in the AD group, higher scores on delayed recall correlated with diminished SW across delta, alpha, and beta bands in the EO condition. Finally, delayed recall scores significantly predicted relative differences in the SW group in the alpha band (t = −2.98, p = 0.009).DiscussionGiven that network studies could corroborate the results of previous power spectrum studies, our findings contribute to a multifaceted understanding of functional brain networks in AD, emphasizing that the SW properties of these networks change according to disease status, cognitive function, and experimental conditions.
Collapse
Affiliation(s)
- Keigo Yuasa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koji Kitamura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Minehisa Ueda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Pei L, Northoff G, Ouyang G. Comparative analysis of multifaceted neural effects associated with varying endogenous cognitive load. Commun Biol 2023; 6:795. [PMID: 37524883 PMCID: PMC10390511 DOI: 10.1038/s42003-023-05168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Contemporary neuroscience has firmly established that mental state variation concurs with changes in neural dynamic activity in a complex way that a one-to-one mapping cannot describe. To explore the scenario of the multifaceted changes in neural dynamics associated with simple mental state variation, we took cognitive load - a common cognitive manipulation in psychology - as a venue to characterize how multiple neural dynamic features are simultaneously altered by the manipulation and how their sensitivity differs. Electroencephalogram was collected from 152 participants performing stimulus-free tasks with different demands. The results show that task demand alters wide-ranging neural dynamic features, including band-specific oscillations across broad frequency bands, scale-free dynamics, and cross-frequency phase-amplitude coupling. The scale-free dynamics outperformed others in indexing cognitive load variation. This study demonstrates a complex relationship between cognitive dynamics and neural dynamics, which points to a necessity to integrate multifaceted neural dynamic features when studying mind-brain relationship in the future.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Georg Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Canada
| | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Sawicki J, Berner R, Loos SAM, Anvari M, Bader R, Barfuss W, Botta N, Brede N, Franović I, Gauthier DJ, Goldt S, Hajizadeh A, Hövel P, Karin O, Lorenz-Spreen P, Miehl C, Mölter J, Olmi S, Schöll E, Seif A, Tass PA, Volpe G, Yanchuk S, Kurths J. Perspectives on adaptive dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:071501. [PMID: 37486668 DOI: 10.1063/5.0147231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Rico Berner
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Sarah A M Loos
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Mehrnaz Anvari
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt-Augustin, Germany
| | - Rolf Bader
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | - Wolfram Barfuss
- Transdisciplinary Research Area: Sustainable Futures, University of Bonn, 53113 Bonn, Germany
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany
| | - Nicola Botta
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nuria Brede
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science, University of Potsdam, An der Bahn 2, 14476 Potsdam, Germany
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Daniel J Gauthier
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Sebastian Goldt
- Department of Physics, International School of Advanced Studies (SISSA), Trieste, Italy
| | - Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Philipp Hövel
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philipp Lorenz-Spreen
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Christoph Miehl
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Jan Mölter
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany
| | - Simona Olmi
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Alireza Seif
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
16
|
Arroyo-García LE, Bachiller S, Ruiz R, Boza-Serrano A, Rodríguez-Moreno A, Deierborg T, Andrade-Talavera Y, Fisahn A. Targeting galectin-3 to counteract spike-phase uncoupling of fast-spiking interneurons to gamma oscillations in Alzheimer's disease. Transl Neurodegener 2023; 12:6. [PMID: 36740709 PMCID: PMC9901156 DOI: 10.1186/s40035-023-00338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. METHODS Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20-80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-β (Aβ) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). RESULTS Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aβ42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aβ plaque load. CONCLUSIONS We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Luis Enrique Arroyo-García
- grid.465198.7Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Sara Bachiller
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden ,grid.9224.d0000 0001 2168 1229Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Rocío Ruiz
- grid.9224.d0000 0001 2168 1229Department of Biochemistry and Molecular Biology, University of Seville, Calle Profesor García González Nº2, 41012 Seville, Spain
| | - Antonio Boza-Serrano
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden ,grid.9224.d0000 0001 2168 1229Department of Biochemistry and Molecular Biology, University of Seville, Calle Profesor García González Nº2, 41012 Seville, Spain
| | - Antonio Rodríguez-Moreno
- grid.15449.3d0000 0001 2200 2355Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cellular Biology, Universidad Pablo de Olavide, Carretera de Utrera Km-1, 41013 Seville, Spain
| | - Tomas Deierborg
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164, Solna, Sweden. .,Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cellular Biology, Universidad Pablo de Olavide, Carretera de Utrera Km-1, 41013, Seville, Spain.
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164, Solna, Sweden. .,Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
17
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
18
|
Malekmohammadi A, Ehrlich SK, Cheng G. Modulation of theta and gamma oscillations during familiarization with previously unknown music. Brain Res 2023; 1800:148198. [PMID: 36493897 DOI: 10.1016/j.brainres.2022.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Repeated listening to unknown music leads to gradual familiarization with musical sequences. Passively listening to musical sequences could involve an array of dynamic neural responses in reaching familiarization with the musical excerpts. This study elucidates the dynamic brain response and its variation over time by investigating the electrophysiological changes during the familiarization with initially unknown music. Twenty subjects were asked to familiarize themselves with previously unknown 10 s classical music excerpts over three repetitions while their electroencephalogram was recorded. Dynamic spectral changes in neural oscillations are monitored by time-frequency analyses for all frequency bands (theta: 5-9 Hz, alpha: 9-13 Hz, low-beta: 13-21 Hz, high beta: 21-32 Hz, and gamma: 32-50 Hz). Time-frequency analyses reveal sustained theta event-related desynchronization (ERD) in the frontal-midline and the left pre-frontal electrodes which decreased gradually from 1st to 3rd time repetition of the same excerpts (frontal-midline: 57.90 %, left-prefrontal: 75.93 %). Similarly, sustained gamma ERD decreased in the frontal-midline and bilaterally frontal/temporal areas (frontal-midline: 61.47 %, left-frontal: 90.88 %, right-frontal: 87.74 %). During familiarization, the decrease of theta ERD is superior in the first part (1-5 s) whereas the decrease of gamma ERD is superior in the second part (5-9 s) of music excerpts. The results suggest that decreased theta ERD is associated with successfully identifying familiar sequences, whereas decreased gamma ERD is related to forming unfamiliar sequences.
Collapse
Affiliation(s)
- Alireza Malekmohammadi
- Chair for Cognitive System, Technical University of Munich, Electrical Engineering, Munich, 80333, Germany.
| | - Stefan K Ehrlich
- Chair for Cognitive System, Technical University of Munich, Electrical Engineering, Munich, 80333, Germany
| | - Gordon Cheng
- Chair for Cognitive System, Technical University of Munich, Electrical Engineering, Munich, 80333, Germany
| |
Collapse
|
19
|
Wang L, Wu H, Dai C, Peng Z, Song T, Xu L, Xu M, Shao Y, Li S, Fu W. Dynamic hippocampal functional connectivity responses to varying working memory loads following total sleep deprivation. J Sleep Res 2022; 32:e13797. [PMID: 36528854 DOI: 10.1111/jsr.13797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Sleep loss with work overload can impact human cognitive performance. However, the brain's response to an increased working memory load following total sleep deprivation (TSD) remains unclear. In the present study, we focussed on the dynamic response of the hippocampus to increased working memory load before and after total sleep deprivation of 36 h. A total of 16 male participants completed a verbal working memory task under functional magnetic resonance imaging. After whole-brain activation analysis and region of interest analysis of the hippocampus, the generalised form of context-dependent psychophysiological interactions (gPPI) was used to analyse the hippocampal functional connectivity with the whole brain. The results revealed that as the working memory load increased within a small range, from 0-back to 1-back task, the left hippocampal functional connectivity decreased with the left supplementary motor area, left pars opercularis, left rolandic operculum, right superior frontal gyrus, bilateral precentral gyrus, and left middle cingulate cortex following total sleep deprivation compared with that observed in resting wakefulness. When the working memory load further increased from 1-back to 2-back task, the connectivity increased between the left hippocampus and the left superior parietal lobule as well as between the left hippocampus and right lingual gyrus after total sleep deprivation compared with that observed in resting wakefulness. Moreover, the left hippocampus gPPI effect on the left middle cingulate cortex and left superior parietal lobule could predict the behavioural test accuracy in 1-back and 2-back task, respectively, following total sleep deprivation. These findings indicated that increased working memory load after total sleep deprivation disrupts working memory processes. The brain reacts to these disruptions in a dynamic and flexible manner, involving not only brain activation but also hippocampus-related functional network connections.
Collapse
Affiliation(s)
- Letong Wang
- School of Psychology Beijing Sport University Beijing China
| | - Haijing Wu
- Department of Gynecologic Oncology Sichuan Cancer Hospital Chengdu China
| | - Cimin Dai
- School of Psychology Beijing Sport University Beijing China
| | - Ziyi Peng
- School of Psychology Beijing Sport University Beijing China
| | - Tao Song
- School of Psychology Beijing Sport University Beijing China
| | - Lin Xu
- School of Psychology Beijing Sport University Beijing China
| | - Mengmeng Xu
- School of Psychology Beijing Sport University Beijing China
| | - Yongcong Shao
- School of Psychology Beijing Sport University Beijing China
- School of Biological Science and Medical Engineering Beihang University Beijing China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou China
| | - Shijun Li
- Department of Radiology, First Medical Center Chinese PLA General Hospital Beijing China
| | - Weiwei Fu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou China
| |
Collapse
|
20
|
Andrade-Talavera Y, Chen G, Pansieri J, Arroyo-García LE, Toleikis Z, Smirnovas V, Johansson J, Morozova-Roche L, Fisahn A. S100A9 amyloid growth and S100A9 fibril-induced impairment of gamma oscillations in area CA3 of mouse hippocampus ex vivo is prevented by Bri2 BRICHOS. Prog Neurobiol 2022; 219:102366. [PMID: 36273719 DOI: 10.1016/j.pneurobio.2022.102366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils. Using ex-vivo neuronal network electrophysiology in mouse brain slices we also show that both native S100A9 and amyloids of S100A9 disrupt cognition-relevant gamma oscillation power and rhythmicity in hippocampal area CA3 in a time- and protein conformation-dependent manner. Both effects were associated with Toll-like receptor 4 (TLR4) activation and were not observed upon TLR4 blockade. Importantly, S100A9 that had co-aggregated with Bri2 BRICHOS did not elicit degradation of gamma oscillations. Taken together, this work provides insights on the potential influence of S100A9 on cognitive dysfunction in Alzheimer's disease (AD) via gamma oscillation impairment from experimentally-induced gamma oscillations, and further highlights Bri2 BRICHOS as a chaperone against detrimental effects of amyloid self-assembly.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet, 17164 Solna, Sweden.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Luis Enrique Arroyo-García
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet, 17164 Solna, Sweden
| | - Zigmantas Toleikis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden.
| | | | - André Fisahn
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet, 17164 Solna, Sweden.
| |
Collapse
|
21
|
Graves KN, Sherman BE, Huberdeau D, Damisah E, Quraishi IH, Turk-Browne NB. Remembering the pattern: A longitudinal case study on statistical learning in spatial navigation and memory consolidation. Neuropsychologia 2022; 174:108341. [PMID: 35961387 PMCID: PMC9578695 DOI: 10.1016/j.neuropsychologia.2022.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
Distinct brain systems are thought to support statistical learning over different timescales. Regularities encountered during online perceptual experience can be acquired rapidly by the hippocampus. Further processing during offline consolidation can establish these regularities gradually in cortical regions, including the medial prefrontal cortex (mPFC). These mechanisms of statistical learning may be critical during spatial navigation, for which knowledge of the structure of an environment can facilitate future behavior. Rapid acquisition and prolonged retention of regularities have been investigated in isolation, but how they interact in the context of spatial navigation is unknown. We had the rare opportunity to study the brain systems underlying both rapid and gradual timescales of statistical learning using intracranial electroencephalography (iEEG) longitudinally in the same patient over a period of three weeks. As hypothesized, spatial patterns were represented in the hippocampus but not mPFC for up to one week after statistical learning and then represented in the mPFC but not hippocampus two and three weeks after statistical learning. Taken together, these findings suggest that the hippocampus may contribute to the initial extraction of regularities prior to cortical consolidation.
Collapse
Affiliation(s)
- Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA.
| | - Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA
| | - David Huberdeau
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale University, 333 Cedar St., New Haven, CT, 06510, USA
| | - Imran H Quraishi
- Department of Neurology, Yale University, 800 Howard Ave., New Haven, CT, 06519, USA
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA; Wu Tsai Institute, Yale University, 100 College St, New Haven, CT, 06510, USA
| |
Collapse
|
22
|
Dimakopoulos V, Mégevand P, Stieglitz LH, Imbach L, Sarnthein J. Information flows from hippocampus to auditory cortex during replay of verbal working memory items. eLife 2022; 11:78677. [PMID: 35960169 PMCID: PMC9374435 DOI: 10.7554/elife.78677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and – additionally in four participants – recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance. Every day, the brain’s ability to temporarily store and recall information – called working memory – enables us to reason, solve complex problems or to speak. Holding pieces of information in working memory for short periods of times is a skill that relies on communication between neural circuits that span several areas of the brain. The hippocampus, a seahorse-shaped area at the centre of the brain, is well-known for its role in learning and memory. Less clear, however, is how brain regions that process sensory inputs, including visual stimuli and sounds, contribute to working memory. To investigate, Dimakopoulos et al. studied the flow of information between the hippocampus and the auditory cortex, which processes sound. To do so, various types of electrodes were placed on the scalp or surgically implanted in the brains of people with drug-resistant epilepsy. These electrodes measured the brain activity of participants as they read, heard and then mentally replayed strings of up to 8 letters. The electrical signals analysed reflected the flow of information between brain areas. When participants read and heard the sequence of letters, brain signals flowed from the auditory cortex to the hippocampus. The flow of electrical activity was reversed while participants recalled the letters. This pattern was found only in the left side of the brain, as expected for a language related task, and only if participants recalled the letters correctly. This work by Dimakopoulos et al. provides the first evidence of bidirectional communication between brain areas that are active when people memorise and recall information from their working memory. In doing so, it provides a physiological basis for how the brain encodes and replays information stored in working memory, which evidently relies on the interplay between the hippocampus and sensory cortex.
Collapse
Affiliation(s)
- Vasileios Dimakopoulos
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Pierre Mégevand
- Département des neurosciences fondamentales, Faculté de médecine, Université de Genève, Genève, Switzerland.,Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland, Genève, Switzerland
| | - Lennart H Stieglitz
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Lukas Imbach
- Schweizerisches Epilepsie Zentrum, Klinik Lengg AG, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| |
Collapse
|
23
|
Davis ZW, Muller L, Reynolds JH. Spontaneous Spiking Is Governed by Broadband Fluctuations. J Neurosci 2022; 42:5159-5172. [PMID: 35606140 PMCID: PMC9236292 DOI: 10.1523/jneurosci.1899-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022] Open
Abstract
Populations of cortical neurons generate rhythmic fluctuations in their ongoing spontaneous activity. These fluctuations can be seen in the local field potential (LFP), which reflects summed return currents from synaptic activity in the local population near a recording electrode. The LFP is spectrally broad, and many researchers view this breadth as containing many narrowband oscillatory components that may have distinct functional roles. This view is supported by the observation that the phase of narrowband oscillations is often correlated with cortical excitability and can relate to the timing of spiking activity and the fidelity of sensory evoked responses. Accordingly, researchers commonly tune in to these channels by narrowband filtering the LFP. Alternatively, neural activity may be fundamentally broadband and composed of transient, nonstationary rhythms that are difficult to approximate as oscillations. In this view, the instantaneous state of the broad ensemble relates directly to the excitability of the local population with no particular allegiance to any frequency band. To test between these alternatives, we asked whether the spiking activity of neocortical neurons in marmoset of either sex is better aligned with the phase of the LFP within narrow frequency bands or with a broadband measure. We find that the phase of broadband LFP fluctuations provides a better predictor of spike timing than the phase after filtering in narrow bands. These results challenge the view of the neocortex as a system composed of narrowband oscillators and supports a view in which neural activity fluctuations are intrinsically broadband.SIGNIFICANCE STATEMENT Research into the dynamical state of neural populations often attributes unique significance to the state of narrowband oscillatory components. However, rhythmic fluctuations in cortical activity are nonstationary and broad spectrum. We find that the timing of spontaneous spiking activity is better captured by the state of broadband fluctuations over any latent oscillatory component. These results suggest narrowband interpretations of rhythmic population activity may be limited, and broader representations may provide higher fidelity in describing moment-to-moment fluctuations in cortical activity.
Collapse
Affiliation(s)
- Zachary W Davis
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - John H Reynolds
- Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
24
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
Müller V. Neural Synchrony and Network Dynamics in Social Interaction: A Hyper-Brain Cell Assembly Hypothesis. Front Hum Neurosci 2022; 16:848026. [PMID: 35572007 PMCID: PMC9101304 DOI: 10.3389/fnhum.2022.848026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting neurophysiological evidence suggests that interpersonal interaction relies on continual communication between cell assemblies within interacting brains and continual adjustments of these neuronal dynamic states between the brains. In this Hypothesis and Theory article, a Hyper-Brain Cell Assembly Hypothesis is suggested on the basis of a conceptual review of neural synchrony and network dynamics and their roles in emerging cell assemblies within the interacting brains. The proposed hypothesis states that such cell assemblies can emerge not only within, but also between the interacting brains. More precisely, the hyper-brain cell assembly encompasses and integrates oscillatory activity within and between brains, and represents a common hyper-brain unit, which has a certain relation to social behavior and interaction. Hyper-brain modules or communities, comprising nodes across two or several brains, are considered as one of the possible representations of the hypothesized hyper-brain cell assemblies, which can also have a multidimensional or multilayer structure. It is concluded that the neuronal dynamics during interpersonal interaction is brain-wide, i.e., it is based on common neuronal activity of several brains or, more generally, of the coupled physiological systems including brains.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
26
|
Recent insights into respiratory modulation of brain activity offer new perspectives on cognition and emotion. Biol Psychol 2022; 170:108316. [PMID: 35292337 PMCID: PMC10155500 DOI: 10.1016/j.biopsycho.2022.108316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Over the past six years, a rapidly growing number of studies have shown that respiration exerts a significant influence on sensory, affective, and cognitive processes. At the same time, an increasing amount of experimental evidence indicates that this influence occurs via modulation of neural oscillations and their synchronization between brain areas. In this article, we review the relevant findings and discuss whether they might inform our understanding of a variety of disorders that have been associated with abnormal patterns of respiration. We review literature on the role of respiration in chronic obstructive pulmonary disease (COPD), anxiety (panic attacks), and autism spectrum disorder (ASD), and we conclude that the new insights into respiratory modulation of neuronal activity may help understand the relationship between respiratory abnormalities and cognitive and affective deficits.
Collapse
|
27
|
Haaf M, Curic S, Steinmann S, Rauh J, Leicht G, Mulert C. Glycine attenuates impairments of stimulus-evoked gamma oscillations in the ketamine model of schizophrenia. Neuroimage 2022; 251:119004. [PMID: 35176492 DOI: 10.1016/j.neuroimage.2022.119004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/18/2022] [Accepted: 02/13/2022] [Indexed: 01/17/2023] Open
Abstract
Although a substantial number of studies suggests some clinical benefit concerning negative symptoms in schizophrenia through the modulation of NMDA-receptor function, none of these approaches achieved clinical approval. Given the large body of evidence concerning glutamatergic dysfunction in a subgroup of patients, biomarkers to identify those with a relevant clinical benefit through glutamatergic modulation are urgently needed. A similar reduction of the early auditory evoked gamma-band response (aeGBR) as found in schizophrenia patients can be observed in healthy subjects following the application of an NMDA-receptor antagonist in the ketamine-model, which addresses the excitation / inhibition (E/I) imbalance of the disease. Moreover, this oscillatory change can be related to the emergence of negative symptoms. Accordingly, this study investigated whether glycine-related increases of the aeGBR, through NMDA-receptor co-agonism, accompany an improvement concerning negative symptoms in the ketamine-model. The impact of subanesthetic ketamine doses and the pretreatment with glycine was examined in twenty-four healthy male participants while performing a cognitively demanding aeGBR paradigm with 64-channel electroencephalography. Negative Symptoms were assessed through the PANSS. S-Ketamine alone caused a reduction of the aeGBR amplitude associated with more pronounced negative symptoms compared to placebo. Pretreatment with glycine attenuated both, the ketamine-induced alterations of the aeGBR amplitude and the increased PANSS negative scores in glycine-responders, classified based on relative aeGBR increase. Thus, we propose that the aeGBR represents a possible biomarker for negative symptoms in schizophrenia related to insufficient glutamatergic neurotransmission. This would allow to identify patients with negative symptoms, who might benefit from glutamatergic treatment.
Collapse
Affiliation(s)
- Moritz Haaf
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stjepan Curic
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center of Psychiatry, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
28
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
29
|
Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex 2021; 147:112-139. [PMID: 35032750 DOI: 10.1016/j.cortex.2021.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
The recent introduction of Transcranial Alternating Current stimulation (tACS) in research on memory modulation has yielded some exciting findings. Whilst evidence suggests small but significant modulatory effects of tACS on perception and cognition, it is unclear how effective tACS is at modulating memory, and the neural oscillations underlying memory. The aim of this systematic review was to determine the efficacy with which tACS, compared to sham stimulation, can modify working memory (WM) and long-term memory (LTM) performance in healthy adults. We examined how these effects may be moderated by specific tACS parameters and study/participant characteristics. Our secondary goal was to investigate the neural correlates of tACS' effects on memory performance in healthy adults. A systematic search of eight databases yielded 11,413 records, resulting in 34 papers that included 104 eligible studies. The results were synthesised by memory type (WM/LTM) and according to the specific parameters of frequency band, stimulation montage, individual variability, cognitive demand, and phase. A second synthesis examined the correspondence between tACS' effects on memory performance and the oscillatory features of electroencephalography (EEG) and magnetencephalography (MEG) recordings in a subset of 26 studies. The results showed a small-to-medium effect of tACS on WM and LTM performance overall. There was strong evidence to suggest that posterior theta-tACS modulates WM performance, whilst the modulation of LTM is achieved by anterior gamma-tACS. Moreover, there was a correspondence between tACS effects on memory performance and oscillatory outcomes at the stimulation frequency. We discuss limitations in the field and suggest ways to improve our understanding of tACS efficacy to ensure a transition of tACS from an investigative method to a therapeutic tool.
Collapse
Affiliation(s)
- Samantha J Booth
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Laura J E Brown
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| |
Collapse
|
30
|
Traikapi A, Konstantinou N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front Syst Neurosci 2021; 15:782399. [PMID: 34966263 PMCID: PMC8710538 DOI: 10.3389/fnsys.2021.782399] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Despite decades of research, Alzheimer’s Disease (AD) remains a lethal neurodegenerative disorder for which there are no effective treatments. This review examines the latest evidence of a novel and newly introduced perspective, which focuses on the restoration of gamma oscillations and investigates their potential role in the treatment of AD. Gamma brain activity (∼25–100 Hz) has been well-known for its role in cognitive function, including memory, and it is fundamental for healthy brain activity and intra-brain communication. Aberrant gamma oscillations have been observed in both mice AD models and human AD patients. A recent line of work demonstrated that gamma entrainment, through auditory and visual sensory stimulation, can effectively attenuate AD pathology and improve cognitive function in mice models of the disease. The first evidence from AD patients indicate that gamma entrainment therapy can reduce loss of functional connectivity and brain atrophy, improve cognitive function, and ameliorate several pathological markers of the disease. Even though research is still in its infancy, evidence suggests that gamma-based therapy may have a disease-modifying effect and has signified a new and promising era in AD research.
Collapse
|
31
|
The Modulation of Working-Memory Performance Using Gamma-Electroacupuncture and Theta-Electroacupuncture in Healthy Adults. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2062718. [PMID: 34824588 PMCID: PMC8610651 DOI: 10.1155/2021/2062718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Working memory (WM), a central component of general cognition, plays an essential role in human beings' daily lives. WM impairments often occur in psychiatric, neurodegenerative, and neurodevelopmental disorders, mainly presenting as loss of high-load WM. In previous research, electroacupuncture (EA) has been shown to be an effective treatment for cognitive impairments. Frequency parameters are an important factor in therapeutic results, but the optimal frequency parameters of EA have not yet been identified. In this study, we chose theta-EA (θ-EA; 6 Hz) and gamma-EA (γ-EA; 40 Hz), corresponding to the transcranial alternating-current stimulation (tACS) frequency parameters at the Baihui (DU20) and Shenting (DU24) acupoints, in order to compare the effects of different EA frequencies on WM. We evaluated WM performance using visual 1-back, 2-back, and 3-back WM tasks involving digits. Each participant (N = 30) attended three different sessions in accordance with a within-subject crossover design. We performed θ-EA, γ-EA, and sham-EA in a counterbalanced order, conducting the WM task both before and after intervention. The results showed that d-prime (d′) under all three stimulation conditions had no significance in the 1-back and 2-back tasks. However, in the 3-back task, there was a significant improvement in d′ after intervention compared to d′ before intervention under θ-EA (F [1, 29] = 22.64; P < 0.001), while we saw no significant difference in the γ-EA and sham-EA groups. Reaction times for hits (RT-hit) under all three stimulation conditions showed decreasing trends in 1-, 2-, and 3-back tasks but without statistically significant differences. These findings suggest that the application of θ-EA might facilitate high-load WM performance.
Collapse
|
32
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
33
|
Andrade-Talavera Y, Chen G, Kurudenkandy FR, Johansson J, Fisahn A. Bri2 BRICHOS chaperone rescues impaired fast-spiking interneuron behavior and neuronal network dynamics in an AD mouse model in vitro. Neurobiol Dis 2021; 159:105514. [PMID: 34555537 DOI: 10.1016/j.nbd.2021.105514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Synchronized and properly balanced electrical activity of neurons is the basis for the brain's ability to process information, to learn, and to remember. In Alzheimer's disease (AD), which causes cognitive decline in patients, this synchronization and balance is disturbed by the accumulation of neuropathological biomarkers such as amyloid-beta peptide (Aβ42). Failure of Aβ42 clearance mechanisms as well as desynchronization of crucial neuronal classes such as fast-spiking interneurons (FSN) are root causes for the disruption of the cognition-relevant gamma brain rhythm (30-80 Hz) and consequent cognitive impairment observed in AD. Here we show that recombinant BRICHOS molecular chaperone domains from ProSP-C or Bri2, which interfere with Aβ42 aggregation, can rescue the gamma rhythm. We demonstrate that Aβ42 progressively decreases gamma oscillation power and rhythmicity, disrupts the inhibition/excitation balance in pyramidal cells, and desynchronizes FSN firing during gamma oscillations in the hippocampal CA3 network of mice. Application of the more efficacious Bri2 BRICHOS chaperone rescued the cellular and neuronal network performance from all ongoing Aβ42-induced functional impairments. Collectively, our findings offer critical missing data to explain the importance of FSN for normal network function and underscore the therapeutic potential of Bri2 BRICHOS to rescue the disruption of cognition-relevant brain rhythms in AD.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden.
| | - Gefei Chen
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Firoz Roshan Kurudenkandy
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden.
| |
Collapse
|
34
|
Barbosa J, Babushkin V, Temudo A, Sreenivasan KK, Compte A. Across-Area Synchronization Supports Feature Integration in a Biophysical Network Model of Working Memory. Front Neural Circuits 2021; 15:716965. [PMID: 34616279 PMCID: PMC8489684 DOI: 10.3389/fncir.2021.716965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Working memory function is severely limited. One key limitation that constrains the ability to maintain multiple items in working memory simultaneously is so-called swap errors. These errors occur when an inaccurate response is in fact accurate relative to a non-target stimulus, reflecting the failure to maintain the appropriate association or "binding" between the features that define one object (e.g., color and location). The mechanisms underlying feature binding in working memory remain unknown. Here, we tested the hypothesis that features are bound in memory through synchrony across feature-specific neural assemblies. We built a biophysical neural network model composed of two one-dimensional attractor networks - one for color and one for location - simulating feature storage in different cortical areas. Within each area, gamma oscillations were induced during bump attractor activity through the interplay of fast recurrent excitation and slower feedback inhibition. As a result, different memorized items were held at different phases of the network's oscillation. These two areas were then reciprocally connected via weak cortico-cortical excitation, accomplishing binding between color and location through the synchronization of pairs of bumps across the two areas. Encoding and decoding of color-location associations was accomplished through rate coding, overcoming a long-standing limitation of binding through synchrony. In some simulations, swap errors arose: "color bumps" abruptly changed their phase relationship with "location bumps." This model, which leverages the explanatory power of similar attractor models, specifies a plausible mechanism for feature binding and makes specific predictions about swap errors that are testable at behavioral and neurophysiological levels.
Collapse
Affiliation(s)
- Joao Barbosa
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Supérieure – PSL Research University, Paris, France
| | - Vahan Babushkin
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ainsley Temudo
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Albert Compte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
35
|
Mamashli F, Khan S, Hämäläinen M, Jas M, Raij T, Stufflebeam SM, Nummenmaa A, Ahveninen J. Synchronization patterns reveal neuronal coding of working memory content. Cell Rep 2021; 36:109566. [PMID: 34433024 PMCID: PMC8428113 DOI: 10.1016/j.celrep.2021.109566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal oscillations are suggested to play an important role in auditory working memory (WM), but their contribution to content-specific representations has remained unclear. Here, we measure magnetoencephalography during a retro-cueing task with parametric ripple-sound stimuli, which are spectrotemporally similar to speech but resist non-auditory memory strategies. Using machine learning analyses, with rigorous between-subject cross-validation and non-parametric permutation testing, we show that memorized sound content is strongly represented in phase-synchronization patterns between subregions of auditory and frontoparietal cortices. These phase-synchronization patterns predict the memorized sound content steadily across the studied maintenance period. In addition to connectivity-based representations, there are indices of more local, “activity silent” representations in auditory cortices, where the decoding accuracy of WM content significantly increases after task-irrelevant “impulse stimuli.” Our results demonstrate that synchronization patterns across auditory sensory and association areas orchestrate neuronal coding of auditory WM content. This connectivity-based coding scheme could also extend beyond the auditory domain. Mamashli et al. use machine learning analyses of human magnetoencephalography (MEG) recordings to study “working memory,” maintenance of information in mind over brief periods of time. Their results show that the human brain maintains working memory content in transient functional connectivity patterns across sensory and association areas.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Departments of Physical Medicine and Rehabilitation and Neurobiology, Northwestern University, 710 North Lake Shore Drive, Chicago, IL 60611, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Liu J, Yu T, Wu J, Pan Y, Tan Z, Liu R, Wang X, Ren L, Wang L. Anterior thalamic stimulation improves working memory precision judgments. Brain Stimul 2021; 14:1073-1080. [PMID: 34284167 DOI: 10.1016/j.brs.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The anterior nucleus of thalamus (ANT) has been suggested as an extended hippocampal system. The circuit of ANT and hippocampus has been widely demonstrated to be associated with memory function. Both lesions to each region and disrupting inter-regional information flow can induce working memory impairment. However, the role of this circuit in working memory precision remains unknown. OBJECTIVE To test the role of the hippocampal-anterior thalamic pathway in working memory precision, we delivered intracranially electrical stimulation to the ANT. We hypothesize that ANT stimulation can improve working memory precision. METHODS Presurgical epilepsy patients with depth electrodes in ANT and hippocampus were recruited to perform a color-recall working memory task. Participants were instructed to point out the color they were supposed to recall by clicking a point on the color wheel, while the intracranial EEG data were synchronously recorded. For randomly selected half trials, a bipolar electrical stimulation was delivered to the ANT electrodes. RESULTS We found that compared to non-stimulation trials, working memory precision judgements were significantly improved for stimulation trials. ANT electrical stimulation significantly increased spectral power of gamma (30-100 Hz) oscillations and decreased interictal epileptiform discharges (IED) in the hippocampus. Moreover, the increased gamma power during the pre-stimulus and retrieval period predicted the improvement of working memory precision judgements. CONCLUSION ANT electrical stimulation can improve working memory precision judgements and modulate hippocampal gamma activity, providing direct evidence on the role of the human hippocampal-anterior thalamic axis in working memory precision.
Collapse
Affiliation(s)
- Jiali Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinfeng Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yali Pan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Zheng Tan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruobing Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
37
|
Neurocognitive subprocesses of working memory performance. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:1130-1152. [PMID: 34155599 PMCID: PMC8563426 DOI: 10.3758/s13415-021-00924-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 11/08/2022]
Abstract
Working memory (WM) has been defined as the active maintenance and flexible updating of goal-relevant information in a form that has limited capacity and resists interference. Complex measures of WM recruit multiple subprocesses, making it difficult to isolate specific contributions of putatively independent subsystems. The present study was designed to determine whether neurophysiological indicators of proposed subprocesses of WM predict WM performance. We recruited 200 individuals defined by care-seeking status and measured neural responses using electroencephalography (EEG), while participants performed four WM tasks. We extracted spectral and time-domain EEG features from each task to quantify each of the hypothesized WM subprocesses: maintenance (storage of content), goal maintenance, and updating. We then used EEG measures of each subprocess as predictors of task performance to evaluate their contribution to WM. Significant predictors of WM capacity included contralateral delay activity and frontal theta, features typically associated with maintenance (storage of content) processes. In contrast, significant predictors of reaction time and its variability included contingent negative variation and the P3b, features typically associated with goal maintenance and updating. Broadly, these results suggest two principal dimensions that contribute to WM performance, tonic processes during maintenance contributing to capacity, and phasic processes during stimulus processing that contribute to response speed and variability. The analyses additionally highlight that reliability of features across tasks was greater (and comparable to that of WM performance) for features associated with stimulus processing (P3b and alpha), than with maintenance (gamma, theta and cross-frequency coupling).
Collapse
|
38
|
Yagura H, Tanaka H, Kinoshita T, Watanabe H, Motomura S, Sudoh K, Nakamura S. Selective Attention Measurement of Experienced Simultaneous Interpreters Using EEG Phase-Locked Response. Front Hum Neurosci 2021; 15:581525. [PMID: 34163336 PMCID: PMC8215497 DOI: 10.3389/fnhum.2021.581525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
We quantified the electroencephalogram signals associated with the selective attention processing of experienced simultaneous interpreters and calculated the phase-locked responses evoked by a 40-Hz auditory steady-state response (40-Hz ASSR) and the values of robust inter-trial coherence (ITC) for environmental changes. Since we assumed that an interpreter's attention ability improves with an increase in the number of years of experience of simultaneous interpretation, we divided the participants into two groups based on their simultaneous interpretation experience: experts with more than 15 years of experience (E group; n = 7) and beginners with <1 year (B group; n = 15). We also compared two conditions: simultaneous interpretation (SI) and shadowing (SH). We found a significant interaction in the ITC between years of SI experience (E and B groups) and tasks (SI and SH). This result demonstrates that the number of years of SI experience influences selective attention during interpretation.
Collapse
Affiliation(s)
- Haruko Yagura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Tanaka
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Taiki Kinoshita
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Watanabe
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Shunnosuke Motomura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Katsuhito Sudoh
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Satoshi Nakamura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
39
|
Jun S, Kim JS, Chung CK. Prediction of Successful Memory Encoding Based on Lateral Temporal Cortical Gamma Power. Front Neurosci 2021; 15:517316. [PMID: 34113226 PMCID: PMC8185029 DOI: 10.3389/fnins.2021.517316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Prediction of successful memory encoding is important for learning. High-frequency activity (HFA), such as gamma frequency activity (30–150 Hz) of cortical oscillations, is induced during memory tasks and is thought to reflect underlying neuronal processes. Previous studies have demonstrated that medio-temporal electrophysiological characteristics are related to memory formation, but the effects of neocortical neural activity remain underexplored. The main aim of the present study was to evaluate the ability of gamma activity in human electrocorticography (ECoG) signals to differentiate memory processes into remembered and forgotten memories. A support vector machine (SVM) was employed, and ECoG recordings were collected from six subjects during verbal memory recognition task performance. Two-class classification using an SVM was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies (low gamma, 30–60 Hz; high gamma, 60–150 Hz) at time points during pre- and during stimulus intervals. The SVM classifier distinguished memory performance between remembered and forgotten trials with a mean maximum accuracy of 87.5% using temporal cortical gamma activity during the 0- to 1-s interval. Our results support the functional relevance of ECoG for memory formation and suggest that lateral temporal cortical HFA may be utilized for memory prediction.
Collapse
Affiliation(s)
- Soyeon Jun
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - June Sic Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
40
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
41
|
Novikov N, Zakharov D, Moiseeva V, Gutkin B. Activity Stabilization in a Population Model of Working Memory by Sinusoidal and Noisy Inputs. Front Neural Circuits 2021; 15:647944. [PMID: 33967703 PMCID: PMC8096914 DOI: 10.3389/fncir.2021.647944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/19/2021] [Indexed: 01/22/2023] Open
Abstract
According to mechanistic theories of working memory (WM), information is retained as stimulus-dependent persistent spiking activity of cortical neural networks. Yet, how this activity is related to changes in the oscillatory profile observed during WM tasks remains a largely open issue. We explore joint effects of input gamma-band oscillations and noise on the dynamics of several firing rate models of WM. The considered models have a metastable active regime, i.e., they demonstrate long-lasting transient post-stimulus firing rate elevation. We start from a single excitatory-inhibitory circuit and demonstrate that either gamma-band or noise input could stabilize the active regime, thus supporting WM retention. We then consider a system of two circuits with excitatory intercoupling. We find that fast coupling allows for better stabilization by common noise compared to independent noise and stronger amplification of this effect by in-phase gamma inputs compared to anti-phase inputs. Finally, we consider a multi-circuit system comprised of two clusters, each containing a group of circuits receiving a common noise input and a group of circuits receiving independent noise. Each cluster is associated with its own local gamma generator, so all its circuits receive gamma-band input in the same phase. We find that gamma-band input differentially stabilizes the activity of the "common-noise" groups compared to the "independent-noise" groups. If the inter-cluster connections are fast, this effect is more pronounced when the gamma-band input is delivered to the clusters in the same phase rather than in the anti-phase. Assuming that the common noise comes from a large-scale distributed WM representation, our results demonstrate that local gamma oscillations can stabilize the activity of the corresponding parts of this representation, with stronger effect for fast long-range connections and synchronized gamma oscillations.
Collapse
Affiliation(s)
- Nikita Novikov
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia
| | - Denis Zakharov
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia
| | - Victoria Moiseeva
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia
| | - Boris Gutkin
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia.,Group for Neural Theory, LNC2 INSERM U960, Départment d'Études Cognitives, École Normale Supérieure, PSL Research Université, Paris, France
| |
Collapse
|
42
|
Akella S, Mohebi A, Principe JC, Oweiss K. Marked point process representation of oscillatory dynamics underlying working memory. J Neural Eng 2021; 18. [DOI: 10.1088/1741-2552/abd577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Computational models of neural activity at the meso-scale suggest the involvement of discrete oscillatory bursts as constructs of cognitive processing during behavioral tasks. Classical signal processing techniques that attempt to infer neural correlates of behavior from meso-scale activity employ spectral representations of the signal, exploiting power spectral density techniques and time–frequency (T–F) energy distributions to capture band power features. However, such analyses demand more specialized methods that incorporate explicitly the concepts of neurophysiological signal generation and time resolution in the tens of milliseconds. This paper focuses on working memory (WM), a complex cognitive process involved in encoding, storing and retrieving sensory information, which has been shown to be characterized by oscillatory bursts in the beta and gamma band. Employing a generative model for oscillatory dynamics, we present a marked point process (MPP) representation of bursts during memory creation and readout. We show that the markers of the point process quantify specific neural correlates of WM. Approach. We demonstrate our results on field potentials recorded from the prelimbic and secondary motor cortices of three rats while performing a WM task. The generative model for single channel, band-passed traces of field potentials characterizes with high-resolution, the timings and amplitudes of transient neuromodulations in the high gamma (80–150 Hz, γ) and beta (10–30 Hz, β) bands as an MPP. We use standard hypothesis testing methods on the MPP features to check for significance in encoding of task variables, sensory stimulus and executive control while comparing encoding capabilities of our model with other T–F methods. Main Results. Firstly, the advantages of an MPP approach in deciphering encoding mechanisms at the meso-scale is demonstrated. Secondly, the nature of state encoding by neuromodulatory events is determined. Third, we demonstrate the necessity of a higher time resolution alternative to conventionally employed T–F methods. Finally, our results underscore the novelty in interpreting oscillatory dynamics encompassed by the marked features of the point process. Significance. An MPP representation of meso-scale activity not just enables a rich, high-resolution parameter space for analysis but also presents a novel tool for diverse neural applications.
Collapse
|
43
|
Syrjälä J, Basti A, Guidotti R, Marzetti L, Pizzella V. Decoding working memory task condition using magnetoencephalography source level long-range phase coupling patterns. J Neural Eng 2021; 18:016027. [PMID: 33624612 DOI: 10.1088/1741-2552/abcefe] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The objective of the study is to identify phase coupling patterns that are shared across subjects via a machine learning approach that utilises source space magnetoencephalography (MEG) phase coupling data from a working memory (WM) task. Indeed, phase coupling of neural oscillations is putatively a key factor for communication between distant brain areas and is therefore crucial in performing cognitive tasks, including WM. Previous studies investigating phase coupling during cognitive tasks have often focused on a few a priori selected brain areas or a specific frequency band, and the need for data-driven approaches has been recognised. Machine learning techniques have emerged as valuable tools for the analysis of neuroimaging data since they catch fine-grained differences in the multivariate signal distribution. Here, we expect that these techniques applied to MEG phase couplings can reveal WM-related processes that are shared across individuals. APPROACH We analysed WM data collected as part of the Human Connectome Project. The MEG data were collected while subjects (n = 83) performed N-back WM tasks in two different conditions, namely 2-back (WM condition) and 0-back (control condition). We estimated phase coupling patterns (multivariate phase slope index) for both conditions and for theta, alpha, beta, and gamma bands. The obtained phase coupling data were then used to train a linear support vector machine in order to classify which task condition the subject was performing with an across-subject cross-validation approach. The classification was performed separately based on the data from individual frequency bands and with all bands combined (multiband). Finally, we evaluated the relative importance of the different features (phase couplings) for classification by the means of feature selection probability. MAIN RESULTS The WM condition and control condition were successfully classified based on the phase coupling patterns in the theta (62% accuracy) and alpha bands (60% accuracy) separately. Importantly, the multiband classification showed that phase coupling patterns not only in the theta and alpha but also in the gamma bands are related to WM processing, as testified by improvement in classification performance (71%). SIGNIFICANCE Our study successfully decoded WM tasks using MEG source space functional connectivity. Our approach, combining across-subject classification and a multidimensional metric recently developed by our group, is able to detect patterns of connectivity that are shared across individuals. In other words, the results are generalisable to new individuals and allow meaningful interpretation of task-relevant phase coupling patterns.
Collapse
Affiliation(s)
- Jaakko Syrjälä
- Department of Neuroscience, Imaging and Clinical Sciences, 'Gabriele d'Annunzio' University of Chieti-Pescara, Chieti 66013, Italy
| | | | | | | | | |
Collapse
|
44
|
Is Activity Silent Working Memory Simply Episodic Memory? Trends Cogn Sci 2021; 25:284-293. [PMID: 33551266 DOI: 10.1016/j.tics.2021.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022]
Abstract
Working memory (WM) maintains task-relevant information in a state ready for processing. While traditional theories assume that sustained neuronal activity is responsible for WM, the Activity Silent WM (ASWM) account proposes that maintenance can also be supported by short-term synaptic weight changes. Here, we argue that the evidence for ASWM can be explained more parsimoniously by the involvement of episodic memory (EM) in WM tasks. Like ASWM, EM relies on rapid synaptic modification that is also activity silent; however, while ASWM posits transient synaptic modifications, EM traces persist over longer time periods. We discuss how, despite this difference, well-established EM mechanisms can account for the key findings attributed to ASWM, and describe predictions of this account.
Collapse
|
45
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
46
|
Arski ON, Young JM, Smith ML, Ibrahim GM. The Oscillatory Basis of Working Memory Function and Dysfunction in Epilepsy. Front Hum Neurosci 2021; 14:612024. [PMID: 33584224 PMCID: PMC7874181 DOI: 10.3389/fnhum.2020.612024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.
Collapse
Affiliation(s)
- Olivia N. Arski
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Julia M. Young
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Mary-Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - George M. Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Dabaghian Y. From Topological Analyses to Functional Modeling: The Case of Hippocampus. Front Comput Neurosci 2021; 14:593166. [PMID: 33505262 PMCID: PMC7829363 DOI: 10.3389/fncom.2020.593166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Topological data analyses are widely used for describing and conceptualizing large volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal ensembles and thus understanding the functions of the corresponding networks. Below we discuss an approach in which convergent topological analyses produce insights into how information may be processed in mammalian hippocampus—a brain part that plays a key role in learning and memory. The resulting functional model provides a unifying framework for integrating spiking data at different timescales and following the course of spatial learning at different levels of spatiotemporal granularity. This approach allows accounting for contributions from various physiological phenomena into spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization by different brain waves, the roles played by synaptic efficacies and so forth. In particular, it is possible to demonstrate that networks with plastic and transient synaptic architectures can encode stable cognitive maps, revealing the characteristic timescales of memory processing.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
48
|
Chen Z, Grayden DB, Burkitt AN, Seneviratne U, D'Souza WJ, French C, Karoly PJ, Dell K, Leyde K, Cook MJ, Maturana MI. Spatiotemporal Patterns of High-Frequency Activity (80-170 Hz) in Long-Term Intracranial EEG. Neurology 2020; 96:e1070-e1081. [PMID: 33361261 DOI: 10.1212/wnl.0000000000011408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/15/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the utility of high-frequency activity (HFA) and epileptiform spikes as biomarkers for epilepsy, we examined the variability in their rates and locations using long-term ambulatory intracranial EEG (iEEG) recordings. METHODS This study used continuous iEEG recordings obtained over an average of 1.4 years from 15 patients with drug-resistant focal epilepsy. HFA was defined as 80- to 170-Hz events with amplitudes clearly larger than the background, which was automatically detected with a custom algorithm. The automatically detected HFA was compared with visually annotated high-frequency oscillations (HFOs). The variations of HFA rates were compared with spikes and seizures on patient-specific and electrode-specific bases. RESULTS HFA included manually annotated HFOs and high-amplitude events occurring in the 80- to 170-Hz range without observable oscillatory behavior. HFA and spike rates had high amounts of intrapatient and interpatient variability. Rates of HFA and spikes had large variability after electrode implantation in most of the patients. Locations of HFA and spikes varied up to weeks in more than one-third of the patients. Both HFA and spike rates showed strong circadian rhythms in all patients, and some also showed multiday cycles. Furthermore, the circadian patterns of HFA and spike rates had patient-specific correlations with seizures, which tended to vary across electrodes. CONCLUSION Analysis of HFA and epileptiform spikes should consider postimplantation variability. HFA and epileptiform spikes, like seizures, show circadian rhythms. However, the circadian profiles can vary spatially within patients, and their correlations to seizures are patient-specific.
Collapse
Affiliation(s)
- Zhuying Chen
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - David B Grayden
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Anthony N Burkitt
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Udaya Seneviratne
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Wendyl J D'Souza
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Chris French
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Philippa J Karoly
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Katrina Dell
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Kent Leyde
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Mark J Cook
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Matias I Maturana
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| |
Collapse
|
49
|
Exact neural mass model for synaptic-based working memory. PLoS Comput Biol 2020; 16:e1008533. [PMID: 33320855 PMCID: PMC7771880 DOI: 10.1371/journal.pcbi.1008533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/29/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023] Open
Abstract
A synaptic theory of Working Memory (WM) has been developed in the last decade as a possible alternative to the persistent spiking paradigm. In this context, we have developed a neural mass model able to reproduce exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity allows us to gain insight of the Local Field Potential and electroencephalographic signals measured during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent activity. Memory access and loading are related to stimulus-locked transient oscillations followed by a steady-state activity in the β-γ band, thus resembling what is observed in the cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already by loading only two items. However more items can be stored in WM by considering neural architectures composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean membrane potential turns out to be a suitable proxy to measure the memory load, analogously to event driven potentials in experiments on humans. Finally we show that the γ power increases with the number of loaded items, as reported in many experiments, while θ and β power reveal non monotonic behaviours. In particular, β and γ rhythms are crucially sustained by the inhibitory activity, while the θ rhythm is controlled by excitatory synapses. Working Memory (WM) is the ability to temporarily store and manipulate stimuli representations that are no longer available to the senses. We have developed an innovative coarse-grained population model able to mimic several operations associated to WM. The novelty of the model consists in reproducing exactly the dynamics of spiking neural networks with realistic synaptic plasticity composed of hundreds of thousands of neurons in terms of a few macroscopic variables. These variables give access to experimentally measurable quantities such as local field potentials and electroencephalographic signals. Memory operations are joined to sustained or transient oscillations emerging in different frequency bands, in accordance with experimental results for primate and humans performing WM tasks. We have designed an architecture composed of many excitatory populations and a common inhibitory pool able to store and retain several memory items. The capacity of our multi-item architecture is around 3–5 items, a value similar to the WM capacities measured in many experiments. Furthermore, the maximal capacity is achievable only for presentation rates within an optimal frequency range. Finally, we have defined a measure of the memory load analogous to the event-related potentials employed to test humans’ WM capacity during visual memory tasks.
Collapse
|
50
|
Elzoheiry S, Lewen A, Schneider J, Both M, Hefter D, Boffi JC, Hollnagel JO, Kann O. Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J Cereb Blood Flow Metab 2020; 40:2401-2415. [PMID: 31842665 PMCID: PMC7820691 DOI: 10.1177/0271678x19892657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.
Collapse
Affiliation(s)
- Shehabeldin Elzoheiry
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Dimitri Hefter
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.,RG Animal Models in Psychiatry, Clinic of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Juan Carlos Boffi
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|