1
|
Conoscenti MA, Weatherill DB, Huang Y, Tordjman R, Fanselow MS. Isolation of the differential effects of chronic and acute stress in a manner that is not confounded by stress severity. Neurobiol Stress 2024; 30:100616. [PMID: 38384783 PMCID: PMC10879813 DOI: 10.1016/j.ynstr.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Firm conclusions regarding the differential effects of the maladaptive consequences of acute versus chronic stress on the etiology and symptomatology of stress disorders await a model that isolates chronicity as a variable for studying the differential effects of acute versus chronic stress. This is because most previous studies have confounded chronicity with the total amount of stress. Here, we have modified the stress-enhanced fear learning (SEFL) protocol, which models some aspects of posttraumatic stress disorder (PTSD) following an acute stressor, to create a chronic variant that does not have this confound. Comparing results from this new protocol to the acute protocol, we found that chronic stress further potentiates enhanced fear-learning beyond the nonassociative enhancement induced by acute stress. This additional component is not observed when the unconditional stimulus (US) used during subsequent fear learning is distinct from the US used as the stressor, and is enhanced when glucose is administered following stressor exposure, suggesting that it is associative in nature. Furthermore, extinction of stressor-context fear blocks this additional associative component of SEFL as well as reinstatement of generalized fear, suggesting reinstatement of generalized fear may underlie this additional SEFL component.
Collapse
Affiliation(s)
- Michael A. Conoscenti
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Daniel B. Weatherill
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Yuqing Huang
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Raphael Tordjman
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Stanley S, Devarakonda K, O'Connor R, Jimenez-Gonzalez M, Alvarsson A, Hampton R, Espinoza D, Li R, Shtekler A, Conner K, Bayne M, Garibay D, Martin J, Lehmann V, Wang L, Kenny P. Amygdala-liver signaling orchestrates rapid glycemic responses to stress and drives stress-induced metabolic dysfunction. RESEARCH SQUARE 2024:rs.3.rs-2924278. [PMID: 38585822 PMCID: PMC10996786 DOI: 10.21203/rs.3.rs-2924278/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Behavioral adaptations to environmental threats are crucial for survival and necessitate rapid deployment of energy reserves. The amygdala coordinates behavioral adaptations to threats, but little is known about its involvement in underpinning metabolic adaptations. Here, we show that acute stress activates medial amygdala (MeA) neurons that innervate the ventromedial hypothalamus (MeAVMH neurons), which precipitates hyperglycemia and hypophagia. The glycemic actions of MeAVMH neurons occur independent of adrenal or pancreatic glucoregulatory hormones. Instead, using whole-body virus tracing, we identify a polysynaptic connection from MeA to the liver, which promotes the rapid synthesis of glucose by hepatic gluconeogenesis. Repeated stress exposure disrupts MeA control of blood glucose and appetite, resulting in diabetes-like dysregulation of glucose homeostasis and weight gain. Our findings reveal a novel amygdala-liver axis that regulates rapid glycemic adaptations to stress and links recurrent stress to metabolic dysfunction.
Collapse
|
3
|
Garcia-Carachure I, Lira O, Themann A, Rodriguez M, Flores-Ramirez FJ, Lobo MK, Iñiguez SD. Sex-Specific Alterations in Spatial Memory and Hippocampal AKT-mTOR Signaling in Adult Mice Pre-exposed to Ketamine and/or Psychological Stress During Adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:240-251. [PMID: 38298791 PMCID: PMC10829642 DOI: 10.1016/j.bpsgos.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ketamine (KET) is administered to manage major depression in adolescent patients. However, the long-term effects of juvenile KET exposure on memory-related tasks have not been thoroughly assessed. We examined whether exposure to KET, psychological stress, or both results in long-lasting alterations in spatial memory in C57BL/6 mice. Furthermore, we evaluated how KET and/or psychological stress history influenced hippocampal protein kinase B-mechanistic target of rapamycin (AKT-mTOR)-related signaling. Methods On postnatal day 35, male and female mice underwent vicarious defeat stress (VDS), a form of psychological stress that reduces sociability in both sexes, with or without KET exposure (20 mg/kg/day, postnatal days 35-44). In adulthood (postnatal day 70), mice were assessed for spatial memory performance on a water maze task or euthanized for hippocampal tissue collection. Results Juvenile pre-exposure to KET or VDS individually increased the latency (seconds) to locate the escape platform in adult male, but not female, mice. However, juvenile history of concomitant KET and VDS prevented memory impairment. Furthermore, individual KET or VDS pre-exposure, unlike their combined history, decreased hippocampal AKT-mTOR signaling in adult male mice. Conversely, KET pre-exposure alone increased AKT-mTOR in the hippocampus of adult female mice. Lastly, rapamycin-induced decreases of mTOR in naïve adult female mice induced spatial memory retrieval deficits, mimicking adult male mice with a history of exposure to VDS or KET. Conclusions Our preclinical model shows how KET treatment for the management of adolescent psychological stress-induced sequelae does not impair spatial memory later in life. However, juvenile recreational KET misuse, like psychological stress history, results in long-term spatial memory deficits and hippocampal AKT-mTOR signaling changes in a sex-specific manner.
Collapse
Affiliation(s)
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | | | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
4
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
5
|
Vershinina YS, Krasnov GS, Garbuz DG, Shaposhnikov MV, Fedorova MS, Pudova EA, Katunina IV, Kornev AB, Zemskaya NV, Kudryavtsev AA, Bulavkina EV, Matveeva AA, Ulyasheva NS, Guvatova ZG, Anurov AA, Moskalev AA, Kudryavtseva AV. Transcriptomic Analysis of the Effect of Torin-2 on the Central Nervous System of Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24109095. [PMID: 37240439 DOI: 10.3390/ijms24109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Torin-2, a synthetic compound, is a highly selective inhibitor of both TORC1 and TORC2 (target of rapamycin) complexes as an alternative to the well-known immunosuppressor, geroprotector, and potential anti-cancer natural compound rapamycin. Torin-2 is effective at hundreds of times lower concentrations and prevents some negative side effects of rapamycin. Moreover, it inhibits the rapamycin-resistant TORC2 complex. In this work, we evaluated transcriptomic changes in D. melanogaster heads induced with lifetime diets containing Torin-2 and suggested possible neuroprotective mechanisms of Torin-2. The analysis included D. melanogaster of three ages (2, 4, and 6 weeks old), separately for males and females. Torin-2, taken at the lowest concentration being tested (0.5 μM per 1 L of nutrient paste), had a slight positive effect on the lifespan of D. melanogaster males (+4% on the average) and no positive effect on females. At the same time, RNA-Seq analysis revealed interesting and previously undiscussed effects of Torin-2, which differed between sexes as well as in flies of different ages. Among the cellular pathways mostly altered by Torin-2 at the gene expression level, we identified immune response, protein folding (heat shock proteins), histone modification, actin cytoskeleton organization, phototransduction and sexual behavior. Additionally, we revealed that Torin-2 predominantly reduced the expression of Srr gene responsible for the conversion of L-serine to D-serine and thus regulating activity of NMDA receptor. Via western blot analysis, we showed than in old males Torin-2 tends to increase the ratio of the active phosphorylated form of ERK, the lowest node of the MAPK cascade, which may play a significant role in neuroprotection. Thus, the complex effect of Torin-2 may be due to the interplay of the immune system, hormonal background, and metabolism. Our work is of interest for further research in the field of NMDA-mediated neurodegeneration.
Collapse
Affiliation(s)
- Yulia S Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey B Kornev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nadezhda V Zemskaya
- Institute of Biology, Komi Science Center, Ural Branch of RAS, 167000 Syktyvkar, Russia
| | - Alexander A Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta V Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia S Ulyasheva
- Institute of Biology, Komi Science Center, Ural Branch of RAS, 167000 Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Artemiy A Anurov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
7
|
Cozachenco D, Ribeiro FC, Ferreira ST. Defective proteostasis in Alzheimer's disease. Ageing Res Rev 2023; 85:101862. [PMID: 36693451 DOI: 10.1016/j.arr.2023.101862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The homeostasis of cellular proteins, or proteostasis, is critical for neuronal function and for brain processes, including learning and memory. Increasing evidence indicates that defective proteostasis contributes to the progression of neurodegenerative disorders, including Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. Proteostasis comprises a set of cellular mechanisms that control protein synthesis, folding, post-translational modification and degradation, all of which are deregulated in AD. Importantly, deregulation of proteostasis plays a key role in synapse dysfunction and in memory impairment, the major clinical manifestation of AD. Here, we discuss molecular pathways involved in protein synthesis and degradation that are altered in AD, and possible pharmacological approaches to correct these defects.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Rafiee M, Nosrati R, Babaei P. Protective effect of miR-34c antagomir against STZ-induced memory impairment by targeting mTOR and PSD-95 in the hippocampus of rats. Neurosci Lett 2022; 789:136881. [PMID: 36152745 DOI: 10.1016/j.neulet.2022.136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
After long times of ongoing research, still there is no appropriate cure for Alzheimer's disease (AD). Recently, epigenetic alterations, particularly miRNA, have gotten attention in AD research. Among various miRNA, miR-34c has been addressed to be elevated in the brain of AD patients, however, its exact role and downstream mechanisms have not been elucidated yet. This study aimed to investigate the therapeutic potential of miR-34c antagomir on cognitive dysfunction induced by streptozocin (STZ), considering postsynaptic density protein 95 (PSD-95) and mammalian target of rapamycin expression (mTOR). Forty rats were cannulated intraventricularly under deep anesthesia using stereotaxic apparatus and divided into five groups: saline + saline, STZ + saline, STZ + miR-34c antagomir, STZ + lipofectamine, and STZ + scrambled, and received the related treatments for two weeks. At the end of the treatments, spatial memory and locomotor activity were assessed by Morris water maze (MWM), and open fields, respectively. Finally, PSD-95 and mTOR levels were measured by quantitative real-time PCR (qPCR) and western blotting on hippocampal samples. Results showed that miR-34c antagomir markedly ameliorated spatial learning and memory deficits induced by STZ, and significantly enhanced PSD-95 and mTOR levels in the hippocampus. In conclusion, miR-34c antagomir may be considered as a promising novel therapeutic target for AD patients.
Collapse
Affiliation(s)
- Melina Rafiee
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine,Guilan University of Medical Sciences, Rasht, Iran
| | - Rahim Nosrati
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine,Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
10
|
l-Lactate: Food for Thoughts, Memory and Behavior. Metabolites 2021; 11:metabo11080548. [PMID: 34436491 PMCID: PMC8398236 DOI: 10.3390/metabo11080548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
More and more evidence shows how brain energy metabolism is the linkage between physiological and morphological synaptic plasticity and memory consolidation. Different types of memory are associated with differential inputs, each with specific inputs that are upstream diverse molecular cascades depending on the receptor activity. No matter how heterogeneous the response is, energy availability represents the lowest common denominator since all these mechanisms are energy consuming and the brain networks adapt their performance accordingly. Astrocytes exert a primary role in this sense by acting as an energy buffer; glycogen granules, a mechanism to store glucose, are redistributed at glance and conveyed to neurons via the Astrocyte–Neuron Lactate Shuttle (ANLS). Here, we review how different types of memory relate to the mechanisms of energy delivery in the brain.
Collapse
|
11
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Zhang F, Huang S, Bu H, Zhou Y, Chen L, Kang Z, Chen L, Yan H, Yang C, Yan J, Jian X, Luo Y. Disrupting Reconsolidation by Systemic Inhibition of mTOR Kinase via Rapamycin Reduces Cocaine-Seeking Behavior. Front Pharmacol 2021; 12:652865. [PMID: 33897438 PMCID: PMC8064688 DOI: 10.3389/fphar.2021.652865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Drug addiction is considered maladaptive learning, and drug-related memories aroused by the presence of drug related stimuli (drug context or drug-associated cues) promote recurring craving and reinstatement of drug seeking. The mammalian target of rapamycin signaling pathway is involved in reconsolidation of drug memories in conditioned place preference and alcohol self-administration (SA) paradigms. Here, we explored the effect of mTOR inhibition on reconsolidation of addiction memory using cocaine self-administration paradigm. Rats received intravenous cocaine self-administration training for 10 consecutive days, during which a light/tone conditioned stimulus was paired with each cocaine infusion. After acquisition of the stable cocaine self-administration behaviors, rats were subjected to nosepoke extinction (11 days) to extinguish their behaviors, and then received a 15 min retrieval trial with or without the cocaine-paired tone/light cue delivery or without. Immediately or 6 h after the retrieval trial, rapamycin (10 mg/kg) was administered intraperitoneally. Finally, cue-induced reinstatement, cocaine-priming-induced reinstatement and spontaneous recovery of cocaine-seeking behaviors were assessed in rapamycin previously treated animals, respectively. We found that rapamycin treatment immediately after a retrieval trial decreased subsequent reinstatement of cocaine seeking induced by cues or cocaine itself, and these effects lasted at least for 28 days. In contrast, delayed intraperitoneal injection of rapamycin 6 h after retrieval or rapamycin injection without retrieval had no effects on cocaine-seeking behaviors. These findings indicated that mTOR inhibition within the reconsolidation time-window impairs the reconsolidation of cocaine associated memory, reduces cocaine-seeking behavior and prevents relapse, and these effects are retrieval-dependent and temporal-specific.
Collapse
Affiliation(s)
- Fushen Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyan Bu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yu Zhou
- Yiyang Medical College, Yiyang, China
| | - Lixiang Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ziliu Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | | | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Chang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaohong Jian
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Inhibition of mTOR signaling by genetic removal of p70 S6 kinase 1 increases anxiety-like behavior in mice. Transl Psychiatry 2021; 11:165. [PMID: 33723223 PMCID: PMC7960700 DOI: 10.1038/s41398-020-01187-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a ubiquitously expressed kinase that acts through two complexes, mTORC1 and mTORC2, to regulate protein homeostasis, as well as long lasting forms of synaptic and behavioral plasticity. Alteration of the mTOR pathway is classically involved in neurodegenerative disorders, and it has been linked to dysregulation of cognitive functions and affective states. However, information concerning the specific involvement of the p70 S6 kinase 1 (S6K1), a downstream target of the mTORC1 pathway, in learning and memory processes and in the regulation of affective states remains scant. To fill this gap, we exposed adult male mice lacking S6K1 to a battery of behavioral tests aimed at measuring their learning and memory capabilities by evaluating reference memory and flexibility with the Morris water maze, and associative memory using the contextual fear conditioning task. We also studied their anxiety-like and depression-like behaviors by, respectively, performing elevated plus maze, open field, light-dark emergence tests, and sucrose preference and forced swim tests. We found that deleting S6K1 leads to a robust anxious phenotype concomitant with associative learning deficits; these symptoms are associated with a reduction of adult neurogenesis and neuronal atrophy in the hippocampus. Collectively, these results provide grounds for the understanding of anxiety reports after treatments with mTOR inhibitors and will be critical for developing novel compounds targeting anxiety.
Collapse
|
14
|
Fadó R, Rodríguez-Rodríguez R, Casals N. The return of malonyl-CoA to the brain: Cognition and other stories. Prog Lipid Res 2020; 81:101071. [PMID: 33186641 DOI: 10.1016/j.plipres.2020.101071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracellular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food intake and energy homeostasis has been known for decades. However, recent data uncover a new role in cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) proteins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malonylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges that future research in the field could address.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
15
|
Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/mTOR/p70S6K Signaling Pathway Regulation on Neuron Remodeling Caused by Translocation Repair. Front Neurosci 2020; 14:565870. [PMID: 33132828 PMCID: PMC7550644 DOI: 10.3389/fnins.2020.565870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve injury repair has been considered a difficult problem in the field of trauma for a long time. Conventional surgical methods are not applicable in some special types of nerve injury, prompting scholars to seek to develop more effective nerve translocation repair technologies. The purpose of this study was to explore the functional state of neurons in injured lower limbs after translocation repair, with a view to preliminarily clarify the molecular mechanisms underlying this process. Eighteen Sprague–Dawley rats were divided into the normal, tibial nerve in situ repair, and common peroneal nerve transposition repair tibial nerve groups. Nerve function assessment and immunohistochemical staining of neurofilament 200 (NF-200), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) in the dorsal root ganglia were performed at 12 weeks after surgery. Tibial nerve function and neuroelectrophysiological analysis, osmic acid staining, muscle strength testing, and muscle fiber staining showed that the nerve translocation repair could restore the function of the recipient nerve to a certain extent; however, the repair was not as efficient as the in situ repair. Immunohistochemical staining showed that the translocation repair resulted in changes in the microstructure of neuronal cell bodies, and the expressions of Akt, mTOR, and p70S6K in the three dorsal root ganglia groups were significantly different (p < 0.05). This study demonstrates that the nerve translocation repair technology sets up a new reflex loop, with the corresponding neuroskeletal adjustments, in which, donor neurons dominate the recipient nerves. This indicates that nerve translocation repair technology can lead to neuronal remodeling and is important as a supplementary treatment for a peripheral nerve injury. Furthermore, the Akt/mTOR/p70S6K signaling pathway may be involved in the formation of the new neural reflex loop created as a result of the translocation repair.
Collapse
Affiliation(s)
- Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Dongdong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Department of Orthopedics, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Xuejing Kang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China.,Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Peixun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
16
|
MacCallum PE, Blundell J. The mTORC1 inhibitor rapamycin and the mTORC1/2 inhibitor AZD2014 impair the consolidation and persistence of contextual fear memory. Psychopharmacology (Berl) 2020; 237:2795-2808. [PMID: 32601986 DOI: 10.1007/s00213-020-05573-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The mechanistic target of rapamycin (mTOR) kinase mediates various long-lasting forms of synaptic and behavioural plasticity. However, there is little information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during consolidation of contextual fear memory. Moreover, the contribution of both mTOR complex 1 and 2 together or the mTOR complex 1 downstream effector p70S6K (S6K1) to consolidation of contextual fear memory is unknown. OBJECTIVE Here, we tested whether different timepoints of vulnerability to rapamycin, a first generation mTOR complex 1 inhibitor, exist for contextual fear memory consolidation and persistence. We also sought to characterize the effects of dually inhibiting mTORC1/2 as well as S6K1 on fear memory formation and persistence. METHODS Rapamycin was injected systemically to mice immediately, 3 h, or 12 h after contextual fear conditioning, and retention was measured at different timepoints thereafter. To determine the effects of a single injection of the dual mTROC1/2 inhibitor AZD2014 after learning on memory consolidation and persistence, a dose-response experiment was carried out. Memory formation and persistence was also assessed in response to the S6K1 inhibitor PF-4708671. RESULTS A single systemic injection of rapamycin immediately or 3 h, but not 12 h, after learning impaired the formation and persistence of contextual fear memory. AZD2014 was found, with limitations, to dose-dependently attenuate memory consolidation and persistence at the highest dose tested (50 mg/kg). In contrast, PF-4708671 had no effect on consolidation or persistence. CONCLUSION Our results indicate the need to further understand the role of mTORC1/2 kinase activity in the molecular mechanisms underlying memory processing and also demonstrate that the effects of mTORC1 inhibition at different timepoints well after learning on memory consolidation and persistence.
Collapse
Affiliation(s)
- Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
17
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Vijayan R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res 2020; 158:104855. [PMID: 32438036 DOI: 10.1016/j.phrs.2020.104855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Hemorphins are endogenous peptides, 4-10 amino acids long, belonging to the family of atypical opioid peptides released during the sequential cleavage of hemoglobin protein. Hemorphins have been shown to exhibit diverse therapeutic effects in both human and animal models. However, the precise cellular and molecular mechanisms involved in such effects remain elusive. In this review, we summarize and propose potential mechanisms based on studies that investigated the biological activity of hemorphins of different lengths on multiple therapeutic targets. Special emphasis is given to molecular events related to renin-angiotensin system (RAS), opioid receptors and insulin-regulated aminopeptidase receptor (IRAP). This review provides a comprehensive coverage of the molecular mechanisms that underpin the therapeutic potential of hemorphins. Furthermore, it highlights the role of various hemorphin residues in pathological conditions, which could be explored further for therapeutic purposes.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | | | - Shamma Abdulla Almutawa
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Alya Nasir Alnajjar
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
18
|
Choe HK, Cho J. Comprehensive Genome-Wide Approaches to Activity-Dependent Translational Control in Neurons. Int J Mol Sci 2020; 21:ijms21051592. [PMID: 32111062 PMCID: PMC7084349 DOI: 10.3390/ijms21051592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.
Collapse
Affiliation(s)
- Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (H.K.C.); (J.C.)
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Correspondence: (H.K.C.); (J.C.)
| |
Collapse
|
19
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Seyer B, Diwakarla S, Burns P, Hallberg A, Grӧnbladh A, Hallberg M, Chai SY. Insulin-regulated aminopeptidase inhibitor-mediated increases in dendritic spine density are facilitated by glucose uptake. J Neurochem 2019; 153:485-494. [PMID: 31556456 DOI: 10.1111/jnc.14880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density. We aimed to identify the potential mechanism by which HFI-419 enhances memory by utilizing rat primary cultures of hippocampal cells. Alterations to dendritic spine density were assessed in the presence of varying concentrations of HFI-419 at different stages of hippocampal cell development. In addition, glucose uptake and changes to spine density were assessed in the presence of indinavir, an inhibitor of the glucose transporter 4 (GLUT4 ), or the matrix metalloprotease inhibitor CAS 204140-01-2. We confirmed that inhibition of IRAP activity with HFI-419 enhanced spatial working memory in rats, and determined that this enhancement may be driven by GLUT4 -mediated changes to dendritic spine density. We observed that IRAP inhibition increased dendritic spine density prior to peak dendritic growth in hippocampal neurons, and that spine formation was inhibited when GLUT4 -mediated glucose uptake was blocked. In addition, during the peak phase of dendritic spine growth, the effect of IRAP inhibition on enhancement of dendritic spine density resulted specifically in an increase in the proportion of mushroom/stubby-like spines, a morphology associated with memory and learning. Moreover, these spines were deemed to be functional based on their expression of the pre-synaptic markers vesicular glutamate transporter 1 and synapsin. Overall, or findings suggest that IRAP inhibitors may facilitate memory by increasing hippocampal dendritic spine density via a GLUT4 -mediated mechanism. Cover Image for this issue: doi: 10.1111/jnc.14745.
Collapse
Affiliation(s)
- Benjamin Seyer
- Faculty of Biomedical and Psychological Sciences, Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Uppsala, Sweden
| | - Peta Burns
- Faculty of Biomedical and Psychological Sciences, Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Alfhild Grӧnbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Uppsala, Sweden
| | - Siew Yeen Chai
- Faculty of Biomedical and Psychological Sciences, Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
21
|
Wijtenburg SA, Kapogiannis D, Korenic SA, Mullins RJ, Tran J, Gaston FE, Chen S, Mustapic M, Hong LE, Rowland LM. Brain insulin resistance and altered brain glucose are related to memory impairments in schizophrenia. Schizophr Res 2019; 208:324-330. [PMID: 30760413 PMCID: PMC6656556 DOI: 10.1016/j.schres.2019.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/26/2023]
Abstract
Memory is robustly impaired in schizophrenia (SZ) and related to functional outcome. Memory dysfunction has been shown to be related to altered brain glucose metabolism and brain insulin resistance in animal models and human studies of Alzheimer's disease. In this study, differences in brain glucose using magnetic resonance spectroscopy (MRS) and blood Extracellular Vesicle (EV) biomarkers of neuronal insulin resistance (i.e. Akt and signaling effectors) between SZ and controls were investigated, as well as whether these measures were related to memory impairments. Neuronal insulin resistance biomarkers showed a trend for being lower in SZ compared to controls, and memory measures were lower in SZ compared to controls. Occipital cortex glucose was higher in SZ compared to controls indicating lower brain glucose utilization. Linear regression analyses revealed significant relationships between neuronal insulin resistance biomarkers, memory measures, and brain glucose. More specifically, p70S6K, an insulin signaling effector, was related to verbal learning and brain MRS glucose in the SZ group. For the first time, we show that memory impairments in SZ may be related to brain glucose and brain insulin resistance. These data suggest that brain insulin resistance may play a role in the pathophysiology of learning and memory dysfunction in SZ.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stephanie A Korenic
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joyce Tran
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Frank E Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Neuronal AMP-activated protein kinase hyper-activation induces synaptic loss by an autophagy-mediated process. Cell Death Dis 2019; 10:221. [PMID: 30833547 PMCID: PMC6399353 DOI: 10.1038/s41419-019-1464-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 02/01/2023]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by synaptic loss that leads to the development of cognitive deficits. Synapses are neuronal structures that play a crucial role in memory formation and are known to consume most of the energy used in the brain. Interestingly, AMP-activated protein kinase (AMPK), the main intracellular energy sensor, is hyper-activated in degenerating neurons in several neurodegenerative diseases, including AD. In this context, we asked whether AMPK hyper-activation could influence synapses' integrity and function. AMPK hyper-activation in differentiated primary neurons led to a time-dependent decrease in pre- and post-synaptic markers, which was accompanied by a reduction in synapses number and a loss of neuronal networks functionality. The loss of post-synaptic proteins was mediated by an AMPK-regulated autophagy-dependent pathway. Finally, this process was also observed in vivo, where AMPK hyper-activation primed synaptic loss. Overall, our data demonstrate that during energetic stress condition, AMPK might play a fundamental role in the maintenance of synaptic integrity, at least in part through the regulation of autophagy. Thus, AMPK might represent a potential link between energetic failure and synaptic integrity in neurodegenerative conditions such as AD.
Collapse
|
23
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
24
|
DeWitt DS, Hawkins BE, Dixon CE, Kochanek PM, Armstead W, Bass CR, Bramlett HM, Buki A, Dietrich WD, Ferguson AR, Hall ED, Hayes RL, Hinds SR, LaPlaca MC, Long JB, Meaney DF, Mondello S, Noble-Haeusslein LJ, Poloyac SM, Prough DS, Robertson CS, Saatman KE, Shultz SR, Shear DA, Smith DH, Valadka AB, VandeVord P, Zhang L. Pre-Clinical Testing of Therapies for Traumatic Brain Injury. J Neurotrauma 2018; 35:2737-2754. [PMID: 29756522 PMCID: PMC8349722 DOI: 10.1089/neu.2018.5778] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the large number of promising neuroprotective agents identified in experimental traumatic brain injury (TBI) studies, none has yet shown meaningful improvements in long-term outcome in clinical trials. To develop recommendations and guidelines for pre-clinical testing of pharmacological or biological therapies for TBI, the Moody Project for Translational Traumatic Brain Injury Research hosted a symposium attended by investigators with extensive experience in pre-clinical TBI testing. The symposium participants discussed issues related to pre-clinical TBI testing including experimental models, therapy and outcome selection, study design, data analysis, and dissemination. Consensus recommendations included the creation of a manual of standard operating procedures with sufficiently detailed descriptions of modeling and outcome measurement procedures to permit replication. The importance of the selection of clinically relevant outcome variables, especially related to behavior testing, was noted. Considering the heterogeneous nature of human TBI, evidence of therapeutic efficacy in multiple, diverse (e.g., diffuse vs. focused) rodent models and a species with a gyrencephalic brain prior to clinical testing was encouraged. Basing drug doses, times, and routes of administration on pharmacokinetic and pharmacodynamic data in the test species was recommended. Symposium participants agreed that the publication of negative results would reduce costly and unnecessary duplication of unsuccessful experiments. Although some of the recommendations are more relevant to multi-center, multi-investigator collaborations, most are applicable to pre-clinical therapy testing in general. The goal of these consensus guidelines is to increase the likelihood that therapies that improve outcomes in pre-clinical studies will also improve outcomes in TBI patients.
Collapse
Affiliation(s)
- Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - C. Edward Dixon
- Department of Neurological Surgery, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron R. Bass
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida
| | - Andras Buki
- Department of Neurosurgery, Medical University of Pécs, Pécs, Hungary
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, Kentucky
| | - Ronald L. Hayes
- University of Florida, Virginia Commonwealth University, Banyan Biomarkers, Inc., Alachua, Florida
| | - Sidney R. Hinds
- United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | - Joseph B. Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Linda J. Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | | | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | - Sandy R. Shultz
- Department of Medicine, Melbourne Brain Center, The University of Melbourne, Parkville, Victoria, Australia
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| |
Collapse
|
25
|
Moon HY, Javadi S, Stremlau M, Yoon KJ, Becker B, Kang SU, Zhao X, van Praag H. Conditioned media from AICAR-treated skeletal muscle cells increases neuronal differentiation of adult neural progenitor cells. Neuropharmacology 2018; 145:123-130. [PMID: 30391731 DOI: 10.1016/j.neuropharm.2018.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Exercise has profound benefits for brain function in animals and humans. In rodents, voluntary wheel running increases the production of new neurons and upregulates neurotrophin levels in the hippocampus, as well as improving synaptic plasticity, memory function and mood. The underlying cellular mechanisms, however, remain unresolved. Recent research indicates that peripheral organs such as skeletal muscle, liver and adipose tissue secrete factors during physical activity that may influence neuronal function. Here we used an in vitro cell assay and proteomic analysis to investigate the effects of proteins secreted from skeletal muscle cells on adult hippocampal neural progenitor cell (aNPC) differentiation. We also sought to identify the relevant molecules driving these effects. Specifically, we treated rat L6 skeletal muscle cells with the AMP-kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or vehicle (distilled water). We then collected the conditioned media (CM) and fractionated it using high-performance liquid chromatography (HPLC). Treatment of aNPCs with a specific fraction of the AICAR-CM upregulated expression of doublecortin (DCX) and Tuj1, markers of immature neurons. Proteomic analysis of this fraction identified proteins known to be involved in energy metabolism, cell migration, adhesion and neurogenesis. Culturing differentiating aNPCs in the presence of one of the factors, glycolytic enzyme glucose-6-phosphate isomerase (GPI), or AICAR-CM, increased the proportion of neuronal (Tuj1+) and astrocytic, glial fibrillary acidic protein (GFAP+) cells. Our study provides further evidence that proteins secreted from skeletal muscle cells may serve as a critical communication link to the brain through factors that enhance neural differentiation.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sahar Javadi
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew Stremlau
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kyeong Jin Yoon
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Benjamin Becker
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
26
|
Fanoudi S, Hosseini M, Alavi MS, Boroushaki MT, Hosseini A, Sadeghnia HR. Everolimus, a mammalian target of rapamycin inhibitor, ameliorated streptozotocin-induced learning and memory deficits via neurochemical alterations in male rats. EXCLI JOURNAL 2018; 17:999-1017. [PMID: 30564080 PMCID: PMC6295637 DOI: 10.17179/excli2018-1626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Everolimus (EVR), as a rapamycin analog, is a selective inhibitor of the mammalian target of rapamycin (mTOR) kinase and its associated signaling pathway. mTOR is a serine/threonine protein kinase and its hyperactivity is involved in the pathophysiology of Alzheimer's disease (AD) and associated cognitive deficits. The present study evaluated the impact of EVR, on cognitive functions, hippocampal cell loss, and neurochemical parameters in the intracerebroventricular streptozotocin (icv-STZ) model of AD rats. EVR (1 and 5 mg/kg) was administered for 21 days following the single administration of STZ (3 mg/kg, icv) or for 7 days on days 21-28 post-STZ injection after establishment of cognitive dysfunction. Cognitive deficits (passive avoidance and spatial memory), oxidative stress parameters, acetylcholinesterase (AChE) activity, and percentage of cell loss were evaluated in the hippocampus. Chronic administration (1 and 5 mg/kg for 21 days from the day of surgery and icv-STZ infusion) or acute injection (5 mg/kg for 7 days after establishment of cognitive impairment) of EVR significantly attenuated cognitive dysfunction, neuronal loss, oxidative stress and AChE activity in the hippocampus of STZ-AD rats. In conclusion, our study showed that EVR could prevent or improve deteriorations in behavioral, biochemical and histopathological features of the icv-STZ rat model of AD. Therefore, inhibition of the hyperactivated mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Holley AJ, Hodges SL, Nolan SO, Binder M, Okoh JT, Ackerman K, Tomac LA, Lugo JN. A single seizure selectively impairs hippocampal-dependent memory and is associated with alterations in PI3K/Akt/mTOR and FMRP signaling. Epilepsia Open 2018; 3:511-523. [PMID: 30525120 PMCID: PMC6276778 DOI: 10.1002/epi4.12273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 02/03/2023] Open
Abstract
Objective A single brief seizure before learning leads to spatial and contextual memory impairment in rodents without chronic epilepsy. These results suggest that memory can be impacted by seizure activity in the absence of epilepsy pathology. In this study, we investigated the types of memory affected by a seizure and the time course of impairment. We also examined alterations to mammalian target of rapamycin (mTOR) and fragile X mental retardation protein (FMRP) signaling, which modulate elements of the synapse and may underlie impairment. Methods We induced a single seizure and investigated hippocampal and nonhippocampal memory using trace fear conditioning, novel object recognition (NOR), and accelerating rotarod to determine the specificity of impairment in mice. We used western blot analysis to examine for changes to cellular signaling and synaptic proteins 1 h, 24 h, and 1 week after a seizure. We also included a histologic examination to determine if cell loss or gross lesions might alternatively explain memory deficits. Results Behavioral results indicated that a seizure before learning leads to impairment of trace fear memory that worsens over time. In contrast, nonhippocampal memory was unaffected by a seizure in the NOR and rotarod tasks. Western analysis indicated increased hippocampal phospho‐S6 and total FMRP 1 h following a seizure. Tissue taken 24 h after a seizure indicated increased hippocampal GluA1, suggesting increased α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor expression. Histologic analysis indicated that neither cell loss nor lesions are present after a single seizure. Significance The presence of memory impairment in the absence of damage suggests that memory impairment caused by seizure activity differs from general memory impairment in epilepsy. Instead, memory impairment after a single seizure is associated with alterations to mTOR and FMRP signaling, which leads to a disruption of synaptic proteins involved in consolidation of long‐term memory. These results have implications for understanding memory impairment in epilepsy.
Collapse
Affiliation(s)
- Andrew J Holley
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | | | - Suzanne O Nolan
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Matthew Binder
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - James T Okoh
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Kaylin Ackerman
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Lindsey A Tomac
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Joaquin N Lugo
- Institute of Biomedical Studies Baylor University Waco Texas U.S.A.,Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| |
Collapse
|
28
|
AMP-Activated Protein Kinase Is Essential for the Maintenance of Energy Levels during Synaptic Activation. iScience 2018; 9:1-13. [PMID: 30368077 PMCID: PMC6203244 DOI: 10.1016/j.isci.2018.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/01/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Although the brain accounts for only 2% of the total body mass, it consumes the most energy. Neuronal metabolism is tightly controlled, but it remains poorly understood how neurons meet their energy demands to sustain synaptic transmission. Here we provide evidence that AMP-activated protein kinase (AMPK) is pivotal to sustain neuronal energy levels upon synaptic activation by adapting the rate of glycolysis and mitochondrial respiration. Furthermore, this metabolic plasticity is required for the expression of immediate-early genes, synaptic plasticity, and memory formation. Important in this context, in neurodegenerative disorders such as Alzheimer disease, dysregulation of AMPK impairs the metabolic response to synaptic activation and processes that are central to neuronal plasticity. Altogether, our data provide proof of concept that AMPK is an essential player in the regulation of neuroenergetic metabolic plasticity induced in response to synaptic activation and that its deregulation might lead to cognitive impairments. AMPK is rapidly activated following synaptic activation AMPK stimulates neuronal glycolysis and oxidative respiration, i.e., metabolic plasticity Metabolic plasticity ensures the expression of IEGs and long-term memory formation AMPK deregulation, as in Alzheimer disease, prevents metabolic plasticity response
Collapse
|
29
|
Franz DN, Krueger DA. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:365-373. [PMID: 30307123 DOI: 10.1002/ajmg.c.31655] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/07/2022]
Abstract
Between 1993 and 2003, through experiments involving Drosophila sp., cancer biologists identified the protein kinase known as the mammalian target of rapamycin, its pathway, and its relationship to the genes responsible for tuberous sclerosis. Thereafter, clinical research has resulted in regulatory approval of mTOR inhibitors for four distinct manifestations of the disease: giant cell astrocytoma, angiomyolipoma, lymphangioleiomyomatosis, and epilepsy. These developments are summarized and the practical use of mTOR inhibitors to improve the lives of patients with tuberous sclerosis reviewed.
Collapse
Affiliation(s)
- David Neal Franz
- Department of Pediatrics, Division of Child Neurology, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Darcy Andrew Krueger
- Department of Pediatrics, Division of Child Neurology, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
30
|
Regulation of filial imprinting and structural plasticity by mTORC1 in newborn chickens. Sci Rep 2018; 8:8044. [PMID: 29795185 PMCID: PMC5966437 DOI: 10.1038/s41598-018-26479-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling leads to memory deficits and abnormal social behaviors in adults. However, whether mTORC1 is involved in critical periods of early learning remains largely unexplored. Our study addressed this question by investigating imprinting, a form of learning constrained to a sensitive period that supports filial attachment, in newborn chickens. Imprinting to virtual objects and sounds was assessed after acute manipulations of mTORC1. To further understand the role of mTORC1 during the critical period, structural plasticity was analyzed using DiOlistic labeling of dendritic spines. We found that mTORC1 is required for the emergence of experience-dependent preferences and structural plasticity within brain regions controlling behavior. Furthermore, upon critical period closure, pharmacological activation of the AKT/mTORC1 pathway was sufficient to rescue imprinting across sensory modalities. Thus, our results uncover a novel role of mTORC1 in the formation of imprinted memories and experience-dependent reorganization of neural circuits during a critical period.
Collapse
|
31
|
Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase-mTORC1 Translational Pathway. J Neurosci 2018; 38:2780-2795. [PMID: 29459374 DOI: 10.1523/jneurosci.0599-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 01/03/2018] [Accepted: 01/27/2018] [Indexed: 01/05/2023] Open
Abstract
A homozygous nonsense mutation in the cereblon (CRBN) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out (CrbnKO) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and CrbnKO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that CrbnKO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult CrbnKO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, CrbnKO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory.SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon (CRBN) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an intelligence quotient between 50 and 70 but devoid of other phenotypic features, making cereblon an ideal protein for the study of the fundamental aspects of learning and memory. Here, using the cereblon knock-out mouse model, we show that cereblon deficiency disrupts learning, memory, and synaptic function via AMP-activated protein kinase hyperactivity, downregulation of mTORC1, and dysregulation of excitatory synapses, with no changes in social or repetitive behaviors, consistent with findings in the human population. This establishes the cereblon knock-out mouse as a model of pure ID without the confounding behavioral phenotypes associated with other current models of ID.
Collapse
|
32
|
Zhang Y, Ji F, Wang G, He D, Yang L, Zhang M. BDNF Activates mTOR to Upregulate NR2B Expression in the Rostral Anterior Cingulate Cortex Required for Inflammatory Pain-Related Aversion in Rats. Neurochem Res 2018; 43:681-691. [PMID: 29353374 DOI: 10.1007/s11064-018-2470-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) has been demonstrated to mediate pain-related aversion induced by formalin in the rostral anterior cingulate cortex (rACC). However, it remains unclear the signaling pathways and regulatory proteins involved. In the rACC, brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator, has been shown to play a role in the development and persistence of chronic pain. In this study, we used a rat formalin-induced inflammatory pain model to demonstrate BDNF up-regulation in the rACC. Stimulation with exogenous BDNF up-regulated mTOR, whilst cyclotraxin B (CTX-B), a tropomyosin receptor kinase B (TrkB) antagonist, down-regulated mTOR. Our results suggest BDNF could activate an mTOR signaling pathway. Subsequently, we used formalin-induced conditioned place avoidance (F-CPA) training in rat models to investigate if mTOR activation was required for pain-related aversion. We demonstrated that BDNF/mTOR signaling could activate the NMDA receptor subunit episilon-2 (NR2B), which is required for F-CPA. Our results reveal that BDNF activates mTOR to up-regulate NR2B expression, which is required for inflammatory pain-related aversion in the rACC of rats.
Collapse
Affiliation(s)
- Yuangui Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Anesthesiology, Weifang People's Hospital, Weifang, China
| | - Fanceng Ji
- Department of Anesthesiology, Weifang People's Hospital, Weifang, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong He
- Shandong University, Jinan, China
| | - Le Yang
- Shandong University, Jinan, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
33
|
Hylin MJ, Zhao J, Tangavelou K, Rozas NS, Hood KN, MacGowan JS, Moore AN, Dash PK. A role for autophagy in long-term spatial memory formation in male rodents. J Neurosci Res 2017; 96:416-426. [PMID: 29230855 DOI: 10.1002/jnr.24121] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation.
Collapse
Affiliation(s)
- Michael J Hylin
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Karthikeyan Tangavelou
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Natalia S Rozas
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jacalyn S MacGowan
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
34
|
Wang D, Liu X, Liu Y, Li S, Wang C. The Effects of Cardiotrophin-1 on Early Synaptic Mitochondrial Dysfunction and Synaptic Pathology in APPswe/PS1dE9 Mice. J Alzheimers Dis 2017; 59:1255-1267. [DOI: 10.3233/jad-170100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Xiaozhuan Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Chenying Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| |
Collapse
|
35
|
Roesler R. Molecular mechanisms controlling protein synthesis in memory reconsolidation. Neurobiol Learn Mem 2017; 142:30-40. [DOI: 10.1016/j.nlm.2017.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
36
|
Abstract
Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are neurodegenerative disorders that are characterized by a progressive degeneration of nerve cells eventually leading to dementia. While these diseases affect different neuronal populations and present distinct clinical features, they share in common several features and signaling pathways. In particular, energy metabolism defects, oxidative stress, and excitotoxicity are commonly described and might be correlated with AMP-activated protein kinase (AMPK) deregulation. AMPK is a master energy sensor which was reported to be overactivated in the brain of patients affected by these neurodegenerative disorders. While the exact role played by AMPK in these diseases remains to be clearly established, several studies reported the implication of AMPK in various signaling pathways that are involved in these diseases' progression. In this chapter, we review the current literature regarding the involvement of AMPK in the development of these diseases and discuss the common pathways involved.
Collapse
|
37
|
Hossain MS, Oomura Y, Katafuchi T. Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Mol Neurobiol 2017; 55:3408-3425. [DOI: 10.1007/s12035-017-0578-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
|
38
|
Abstract
There is increasing evidence that an active lifestyle benefits both body and brain. However, not everyone may be able to exercise due to disease, injury or aging-related frailty. Identification of cellular targets activated by physical activity may lead to the development of new compounds that can, to some extent, mimic systemic and central effects of exercise. This review will focus on factors relevant to energy metabolism in muscle, such as the 5’ adenosine monophosphate-activated protein kinase (AMPK) - sirtuin (SIRT1) - Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, and the molecules affecting it. In particular, putative exercise-mimetics such as AICAR, metformin, and GW501516 will be discussed. Moreover, plant-derived polyphenols such as resveratrol and (-)epicatechin, with exercise-like effects on the body and brain will be evaluated.
Collapse
Affiliation(s)
- Davide Guerrieri
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Hyo Youl Moon
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
39
|
Lin AL, Jahrling JB, Zhang W, DeRosa N, Bakshi V, Romero P, Galvan V, Richardson A. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:217-226. [PMID: 26721390 PMCID: PMC5167110 DOI: 10.1177/0271678x15621575] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 12/03/2022]
Abstract
Apolipoprotein E ɛ4 allele is a common susceptibility gene for late-onset Alzheimer's disease. Brain vascular and metabolic deficits can occur in cognitively normal apolipoprotein E ɛ4 carriers decades before the onset of Alzheimer's disease. The goal of this study was to determine whether early intervention using rapamycin could restore neurovascular and neurometabolic functions, and thus impede pathological progression of Alzheimer's disease-like symptoms in pre-symptomatic Apolipoprotein E ɛ4 transgenic mice. Using in vivo, multimodal neuroimaging, we found that apolipoprotein E ɛ4 mice treated with rapamycin had restored cerebral blood flow, blood-brain barrier integrity and glucose metabolism, compared to age- and gender-matched wild-type controls. The preserved vasculature and metabolism were associated with amelioration of incipient learning deficits. We also found that rapamycin restored the levels of the proinflammatory cyclophilin A in vasculature, which may contribute to the preservation of cerebrovascular function in the apolipoprotein E ɛ4 transgenics. Our results show that rapamycin improves functional outcomes in this mouse model and may have potential as an effective intervention to block progression of vascular, metabolic and early cognitive deficits in human Apolipoprotein E ɛ4 carriers. As rapamycin is FDA-approved and neuroimaging is readily used in humans, the results of the present study may provide the basis for future Alzheimer's disease intervention studies in human subjects.
Collapse
Affiliation(s)
- Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA .,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.,Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Jordan B Jahrling
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Zhang
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Vikas Bakshi
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter Romero
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arlan Richardson
- Geriatric Medicine, University of Oklahoma Health Science Center and Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
40
|
Kreutzmann JC, Tudor JC, Angelakos CC, Abel T. The Impact of Sleep Deprivation on Molecular Mechanisms of Memory Consolidation in Rodents. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Kougias DG, Hankosky ER, Gulley JM, Juraska JM. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats. Physiol Behav 2016; 170:93-99. [PMID: 28038406 DOI: 10.1016/j.physbeh.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/03/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats.
Collapse
Affiliation(s)
- Daniel G Kougias
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Emily R Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA.
| | - Joshua M Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Janice M Juraska
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
42
|
Shahani N, Huang WC, Varnum M, Page DT, Subramaniam S. Forebrain depletion of Rheb GTPase elicits spatial memory deficits in mice. Neurobiol Aging 2016; 50:134-143. [PMID: 27960107 DOI: 10.1016/j.neurobiolaging.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/20/2016] [Accepted: 11/12/2016] [Indexed: 12/19/2022]
Abstract
The precise molecular and cellular events responsible for age-dependent cognitive dysfunctions remain unclear. We report that Rheb (ras homolog enriched in brain) GTPase, an activator of mammalian target of rapamycin (mTOR), regulates memory functions in mice. Conditional depletion of Rheb selectively in the forebrain of mice obtained from crossing Rhebf/f and CamKIICre results in spontaneous signs of age-related memory loss, that is, spatial memory deficits (T-maze, Morris water maze) without affecting locomotor (open-field test), anxiety-like (elevated plus maze), or contextual fear conditioning functions. Partial depletion of Rheb in forebrain was sufficient to elicit memory defects with little effect on the neuronal size, cortical thickness, or mammalian target of rapamycin activity. Rheb depletion, however, increased the levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein elevated in aging and Alzheimer's disease. Overall, our study demonstrates that forebrain Rheb promotes aging-associated cognitive defects. Thus, molecular understanding of Rheb pathway in brain may provide new therapeutic targets for aging and/or Alzheimer's disease-associated memory deficits.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Wen-Chin Huang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Megan Varnum
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
43
|
Shen W, Lu K, Wang J, Wu A, Yue Y. Activation of mTOR signaling leads to orthopedic surgery-induced cognitive decline in mice through β-amyloid accumulation and tau phosphorylation. Mol Med Rep 2016; 14:3925-34. [PMID: 27599409 DOI: 10.3892/mmr.2016.5700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/13/2016] [Indexed: 11/05/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a serious complication following surgery, however, the mechanism of POCD remains to be elucidated. Previous evidence has revealed that POCD may be associated with the pathogenesis of neurodegenerative processes. The mammalian target of rapamycin (mTOR) signaling pathway has been reported to be crucial in the pathophysiology of neurodegenerative diseases. However, the implications of mTOR in POCD remains to be fully elucidated. In the present study, western blotting and enzyme‑linked immunosorbent assay were used to determine the expression of mTOR and any associated downstream targets; contextual fear conditioning was used to estimate the learning and memory ability of mice. Using an animal model of orthopedic surgery, it was found that surgical injury impaired hippocampal‑dependent memory and enhanced the levels of phosphorylated mTOR at Serine‑2448, phosphorylated 70‑kDa ribosomal protein S6 kinase (p70S6K) at Threonine‑389 with accumulation of β‑amyloid (Aβ) and hyperphosphorylated tau at Serine-396, compared with the control group. Pretreatment with rapamycin, an mTOR inhibitor, restored the abnormal mTOR/p70S6K signaling induced by surgery, attenuated the accumulation of Aβ and reduced the phosphorylation of tau protein. Rapamycin also reversed the surgery‑induced cognitive dysfunction. The results of the present study suggested that the surgical stimulus activated mTOR/p70S6K signaling excessively, and that the inhibition of mTOR signaling with rapamycin may prevent postoperative cognitive deficits, partly through attenuating the accumulation of Aβ and hyperphosphorylation of tau protein.
Collapse
Affiliation(s)
- Wenzhen Shen
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Keliang Lu
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jiawan Wang
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
44
|
Patak J, Hess JL, Zhang-James Y, Glatt SJ, Faraone SV. SLC9A9 Co-expression modules in autism-associated brain regions. Autism Res 2016; 10:414-429. [PMID: 27439572 DOI: 10.1002/aur.1670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/27/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022]
Abstract
SLC9A9 is a sodium hydrogen exchanger present in the recycling endosome and highly expressed in the brain. It is implicated in neuropsychiatric disorders, including autism spectrum disorders (ASDs). Little research concerning its gene expression patterns and biological pathways has been conducted. We sought to investigate its possible biological roles in autism-associated brain regions throughout development. We conducted a weighted gene co-expression network analysis on RNA-seq data downloaded from Brainspan. We compared prenatal and postnatal gene expression networks for three ASD-associated brain regions known to have high SLC9A9 gene expression. We also performed an ASD-associated single nucleotide polymorphism enrichment analysis and a cell signature enrichment analysis. The modules showed differences in gene constituents (membership), gene number, and connectivity throughout time. SLC9A9 was highly associated with immune system functions, metabolism, apoptosis, endocytosis, and signaling cascades. Gene list comparison with co-immunoprecipitation data was significant for multiple modules. We found a disproportionately high autism risk signal among genes constituting the prenatal hippocampal module. The modules were enriched with astrocyte and oligodendrocyte markers. SLC9A9 is potentially involved in the pathophysiology of ASDs. Our investigation confirmed proposed functions for SLC9A9, such as endocytosis and immune regulation, while also revealing potential roles in mTOR signaling and cell survival.. By providing a concise molecular map and interactions, evidence of cell type and implicated brain regions we hope this will guide future research on SLC9A9. Autism Res 2017, 10: 414-429. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jameson Patak
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Jonathan L Hess
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Yanli Zhang-James
- Department of Psychiatry, Upstate Medical University, Syracuse, New York
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York.,Department of Psychiatry, Upstate Medical University, Syracuse, New York
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York.,Department of Psychiatry, Upstate Medical University, Syracuse, New York.,Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
45
|
Han Y, Luo Y, Sun J, Ding Z, Liu J, Yan W, Jian M, Xue Y, Shi J, Wang JS, Lu L. AMPK Signaling in the Dorsal Hippocampus Negatively Regulates Contextual Fear Memory Formation. Neuropsychopharmacology 2016; 41:1849-64. [PMID: 26647974 PMCID: PMC4869054 DOI: 10.1038/npp.2015.355] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energy homeostasis. However, still unknown is its role in memory formation. In the present study, we found that AMPK is primarily expressed in neurons in the hippocampus, and then we demonstrated a time-dependent decrease in AMPK activity and increase in mammalian target of rapamycin complex 1 (mTORC1) activity after contextual fear conditioning in the CA1 but not CA3 area of the dorsal hippocampus. Using pharmacological methods and adenovirus gene transfer to bidirectionally regulate AMPK activity, we found that increasing AMPK activity in the CA1 impaired the formation of long-term fear memory, and decreasing AMPK activity enhanced fear memory formation. These findings were associated with changes in the phosphorylation of AMPK and p70s6 kinase (p70s6k) and expression of BDNF and membrane GluR1 and GluR2 in the CA1. Furthermore, the prior administration of an mTORC1 inhibitor blocked the enhancing effect of AMPK inhibition on fear memory formation, suggesting that this negative regulation of contextual fear memory by AMPK in the CA1 depends on the mTORC1 signaling pathway. Finally, we found that AMPK activity regulated hippocampal spine growth associated with memory formation. In summary, our results indicate that AMPK is a key negative regulator of plasticity and fear memory formation.
Collapse
Affiliation(s)
- Ying Han
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yixiao Luo
- Department of Pharmacy, Medical College, Hunan Normal University, Changsha, China
| | - Jia Sun
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Wei Yan
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Min Jian
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ji-Shi Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang, China,Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, E-mail:
| | - Lin Lu
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Institute of Mental Health, Peking University, 51 Huayuan Bei Road, Beijing 100191, China, Tel: +86 10 82805308, Fax: +86 10 62032624, E-mail:
| |
Collapse
|
46
|
Pirbhoy PS, Farris S, Steward O. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains. ACTA ACUST UNITED AC 2016; 23:255-69. [PMID: 27194793 PMCID: PMC4880148 DOI: 10.1101/lm.041947.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.
Collapse
Affiliation(s)
- Patricia Salgado Pirbhoy
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
| | - Shannon Farris
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA Department of Neurosurgery, University of California, Irvine, California 92697, USA
| |
Collapse
|
47
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
48
|
Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E. Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev 2016; 76:363-379. [PMID: 27039345 PMCID: PMC5045786 DOI: 10.1016/j.neubiorev.2016.03.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience.
Collapse
Affiliation(s)
- Liisa A M Galea
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
49
|
Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats. Neurobiol Aging 2016; 40:78-85. [PMID: 26973106 DOI: 10.1016/j.neurobiolaging.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/22/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a supplement commonly used to maintain muscle in elderly and clinical populations, has been unexplored in the aging brain. In both healthy aging humans and rat models, there are cognitive deficits associated with age-related dendritic shrinkage within the prefrontal cortex. The present study explores the effects of relatively short- and long-term (7 and 31 weeks) oral HMB supplementation starting at 12 months of age in male and female rats on the dendritic tree of layer 5 pyramidal neurons in the medial prefrontal cortex. Since female rats continue to secrete ovarian hormones after reaching reproductive senescence, middle-aged female rats were ovariectomized to model humans. As expected, there were fewer spines and a retraction of dendritic material in the apical and basilar trees in old age controls of both sexes compared with their middle-aged counterparts. However, these losses did not occur in the HMB-treated rats in either dendrites or the total number of dendritic spines. Thus, HMB forestalled the effects of aging on the dendritic tree of this population of neurons.
Collapse
|
50
|
Stollery B, Christian L. Glucose improves object-location binding in visual-spatial working memory. Psychopharmacology (Berl) 2016; 233:529-47. [PMID: 26576942 PMCID: PMC4710657 DOI: 10.1007/s00213-015-4125-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022]
Abstract
RATIONALE There is evidence that glucose temporarily enhances cognition and that processes dependent on the hippocampus may be particularly sensitive. As the hippocampus plays a key role in binding processes, we examined the influence of glucose on memory for object-location bindings. OBJECTIVE This study aims to study how glucose modifies performance on an object-location memory task, a task that draws heavily on hippocampal function. METHODS Thirty-one participants received 30 g glucose or placebo in a single 1-h session. After seeing between 3 and 10 objects (words or shapes) at different locations in a 9 × 9 matrix, participants attempted to immediately reproduce the display on a blank 9 × 9 matrix. Blood glucose was measured before drink ingestion, mid-way through the session, and at the end of the session. RESULTS Glucose significantly improves object-location binding (d = 1.08) and location memory (d = 0.83), but not object memory (d = 0.51). Increasing working memory load impairs object memory and object-location binding, and word-location binding is more successful than shape-location binding, but the glucose improvement is robust across all difficulty manipulations. Within the glucose group, higher levels of circulating glucose are correlated with better binding memory and remembering the locations of successfully recalled objects. CONCLUSIONS The glucose improvements identified are consistent with a facilitative impact on hippocampal function. The findings are discussed in the context of the relationship between cognitive processes, hippocampal function, and the implications for glucose's mode of action.
Collapse
Affiliation(s)
- Brian Stollery
- School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK.
| | - Leonie Christian
- School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU UK
| |
Collapse
|