1
|
Lehmann KS, Hupp MT, Abalde-Atristain L, Jefferson A, Cheng YC, Sheehan AE, Kang Y, Freeman MR. Astrocyte-dependent local neurite pruning in Beat-Va neurons. J Cell Biol 2025; 224:e202312043. [PMID: 39652106 PMCID: PMC11627112 DOI: 10.1083/jcb.202312043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Developmental neuronal remodeling is extensive and mechanistically diverse across the nervous system. We sought to identify Drosophila pupal neurons that underwent mechanistically new types of neuronal remodeling and describe remodeling Beat-VaM and Beat-VaL neurons. We show that Beat-VaM neurons produce highly branched neurites in the CNS during larval stages that undergo extensive local pruning. Surprisingly, although the ecdysone receptor (EcR) is essential for pruning in all other cell types studied, Beat-VaM neurons remodel their branches extensively despite cell autonomous blockade EcR or caspase signaling. Proper execution of local remodeling in Beat-VaM neurons instead depends on extrinsic signaling from astrocytes converging with intrinsic and less dominant EcR-regulated mechanisms. In contrast, Beat-VaL neurons undergo steroid hormone-dependent, apoptotic cell death, which we show relies on the segment-specific expression of the Hox gene Abd-B. Our work provides new cell types in which to study neuronal remodeling, highlights an important role for astrocytes in activating local pruning in Drosophila independent of steroid signaling, and defines a Hox gene-mediated mechanism for segment-specific cell elimination.
Collapse
Affiliation(s)
| | - Madison T. Hupp
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Amanda Jefferson
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ya-Chen Cheng
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Liu S, Alexander KD, Francis MM. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates. J Dev Biol 2024; 12:27. [PMID: 39449319 PMCID: PMC11503349 DOI: 10.3390/jdb12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
As nervous systems mature, neural circuit connections are reorganized to optimize the performance of specific functions in adults. This reorganization of connections is achieved through a remarkably conserved phase of developmental circuit remodeling that engages neuron-intrinsic and neuron-extrinsic molecular mechanisms to establish mature circuitry. Abnormalities in circuit remodeling and maturation are broadly linked with a variety of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Here, we aim to provide an overview of recent advances in our understanding of the molecular processes that govern neural circuit remodeling and maturation. In particular, we focus on intriguing mechanistic insights gained from invertebrate systems, such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We discuss how transcriptional control mechanisms, synaptic activity, and glial engulfment shape specific aspects of circuit remodeling in worms and flies. Finally, we highlight mechanistic parallels across invertebrate and mammalian systems, and prospects for further advances in each.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne D. Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Kostyuchenko RP, Nikanorova DD, Amosov AV. Germ Line/Multipotency Genes Show Differential Expression during Embryonic Development of the Annelid Enchytraeus coronatus. BIOLOGY 2023; 12:1508. [PMID: 38132334 PMCID: PMC10740902 DOI: 10.3390/biology12121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Germ line development and the origin of the primordial germ cells (PGCs) are very variable and may occur across a range of developmental stages and in several developmental contexts. In establishing and maintaining germ line, a conserved set of genes is involved. On the other hand, these genes are expressed in multipotent/pluripotent cells that may give rise to both somatic and germline cells. To begin elucidating mechanisms by which the germ line is specified in Enchytraeus coronatus embryos, we identified twenty germline/multipotency genes, homologs of Vasa, PL10, Piwi, Nanos, Myc, Pumilio, Tudor, Boule, and Bruno, using transcriptome analysis and gene cloning, and characterized their expression by whole-mount in situ hybridization. To answer the question of the possible origin of PGCs in this annelid, we carried out an additional description of the early embryogenesis. Our results suggest that PGCs derive from small cells originating at the first two divisions of the mesoteloblasts. PGCs form two cell clusters, undergo limited proliferation, and migrate to the developing gonadal segments. In embryos and juvenile E. coronatus, homologs of the germline/multipotency genes are differentially expressed in both germline and somatic tissue including the presumptive germ cell precursors, posterior growth zone, developing foregut, and nervous system.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia; (D.D.N.); (A.V.A.)
| | | | | |
Collapse
|
4
|
Kozlov EN, Tokmatcheva EV, Khrustaleva AM, Grebenshchikov ES, Deev RV, Gilmutdinov RA, Lebedeva LA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. Long-Term Memory Formation in Drosophila Depends on the 3'UTR of CPEB Gene orb2. Cells 2023; 12:cells12020318. [PMID: 36672258 PMCID: PMC9856895 DOI: 10.3390/cells12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Activation of local translation in neurites in response to stimulation is an important step in the formation of long-term memory (LTM). CPEB proteins are a family of translation factors involved in LTM formation. The Drosophila CPEB protein Orb2 plays an important role in the development and function of the nervous system. Mutations of the coding region of the orb2 gene have previously been shown to impair LTM formation. We found that a deletion of the 3'UTR of the orb2 gene similarly results in loss of LTM in Drosophila. As a result of the deletion, the content of the Orb2 protein remained the same in the neuron soma, but significantly decreased in synapses. Using RNA immunoprecipitation followed by high-throughput sequencing, we detected more than 6000 potential Orb2 mRNA targets expressed in the Drosophila brain. Importantly, deletion of the 3'UTR of orb2 mRNA also affected the localization of the Csp, Pyd, and Eya proteins, which are encoded by putative mRNA targets of Orb2. Therefore, the 3'UTR of the orb2 mRNA is important for the proper localization of Orb2 and other proteins in synapses of neurons and the brain as a whole, providing a molecular basis for LTM formation.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
| | - Anastasia M. Khrustaleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Eugene S. Grebenshchikov
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lyubov A. Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
6
|
Boulanger A, Dura JM. Neuron-glia crosstalk in neuronal remodeling and degeneration: Neuronal signals inducing glial cell phagocytic transformation in Drosophila. Bioessays 2022; 44:e2100254. [PMID: 35315125 DOI: 10.1002/bies.202100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Neuronal remodeling is a conserved mechanism that eliminates unwanted neurites and can include the loss of cell bodies. In these processes, a key role for glial cells in events from synaptic pruning to neuron elimination has been clearly identified in the last decades. Signals sent from dying neurons or neurites to be removed are received by appropriate glial cells. After receiving these signals, glial cells infiltrate degenerating sites and then, engulf and clear neuronal debris through phagocytic mechanisms. There are few identified or proposed signals and receptors involved in neuron-glia crosstalk, which induces the transformation of glial cells to phagocytes during neuronal remodeling in Drosophila. Many of these signaling pathways are conserved in mammals. Here, we particularly emphasize the role of Orion, a recently identified neuronal CX3 C chemokine-like secreted protein, which induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Although, chemokine signaling was not described previously in insects we propose that chemokine-like involvement in neuron/glial cell interaction is an evolutionarily ancient mechanism.
Collapse
Affiliation(s)
- Ana Boulanger
- IGH, Université de Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
7
|
Chou YH, Yang CJ, Huang HW, Liou NF, Panganiban MR, Luginbuhl D, Yin Y, Taisz I, Liang L, Jefferis GSXE, Luo L. Mating-driven variability in olfactory local interneuron wiring. SCIENCE ADVANCES 2022; 8:eabm7723. [PMID: 35179957 PMCID: PMC8856614 DOI: 10.1126/sciadv.abm7723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Variations in neuronal connectivity occur widely in nervous systems from invertebrates to mammals. Yet, it is unclear how neuronal variability originates, to what extent and at what time scales it exists, and what functional consequences it might carry. To assess inter- and intraindividual neuronal variability, it would be ideal to analyze the same identified neuron across different brain hemispheres and individuals. Here, using genetic labeling and electron microscopy connectomics, we show that an identified inhibitory olfactory local interneuron, TC-LN, exhibits extraordinary variability in its glomerular innervation patterns. Moreover, TC-LN's innervation of the VL2a glomerulus, which processes food signals and modulates mating behavior, is sexually dimorphic, is influenced by female's courtship experience, and correlates with food intake in mated females. Mating also affects output connectivity of TC-LN to specific local interneurons. We propose that mating-associated variability of TC-LNs regulates how food odor is interpreted by an inhibitory network to modulate feeding.
Collapse
Affiliation(s)
- Ya-Hui Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Jen Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hao-Wei Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nan-Fu Liou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - David Luginbuhl
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yijie Yin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Istvan Taisz
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Liang Liang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gregory S. X. E. Jefferis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Axonal chemokine-like Orion induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Nat Commun 2021; 12:1849. [PMID: 33758182 PMCID: PMC7988174 DOI: 10.1038/s41467-021-22054-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
The remodeling of neurons is a conserved fundamental mechanism underlying nervous system maturation and function. Astrocytes can clear neuronal debris and they have an active role in neuronal remodeling. Developmental axon pruning of Drosophila memory center neurons occurs via a degenerative process mediated by infiltrating astrocytes. However, how astrocytes are recruited to the axons during brain development is unclear. Using an unbiased screen, we identify the gene requirement of orion, encoding for a chemokine-like protein, in the developing mushroom bodies. Functional analysis shows that Orion is necessary for both axonal pruning and removal of axonal debris. Orion performs its functions extracellularly and bears some features common to chemokines, a family of chemoattractant cytokines. We propose that Orion is a neuronal signal that elicits astrocyte infiltration and astrocyte-driven axonal engulfment required during neuronal remodeling in the Drosophila developing brain. Astrocytes can engulf axonal debris in the developing brain. However, the mechanisms regulating astrocyte recruitment to the proper axons is unclear. Here, the authors identify Orion as a signal for astrocyte infiltration and engulfment to the mushroom bodies in the Drosophila developing brain.
Collapse
|
9
|
Kurmangaliyev YZ, Yoo J, Valdes-Aleman J, Sanfilippo P, Zipursky SL. Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron 2020; 108:1045-1057.e6. [PMID: 33125872 DOI: 10.1016/j.neuron.2020.10.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022]
Abstract
Precise patterns of synaptic connections between neurons are encoded in their genetic programs. Here, we use single-cell RNA sequencing to profile neuronal transcriptomes at multiple stages in the developing Drosophila visual system. We devise an efficient strategy for profiling neurons at multiple time points in a single pool, thereby minimizing batch effects and maximizing the reliability of time-course data. A transcriptional atlas spanning multiple stages is generated, including more than 150 distinct neuronal populations; of these, 88 are followed through synaptogenesis. This analysis reveals a common (pan-neuronal) program unfolding in highly coordinated fashion in all neurons, including genes encoding proteins comprising the core synaptic machinery and membrane excitability. This program is overlaid by cell-type-specific programs with diverse cell recognition molecules expressed in different combinations and at different times. We propose that a pan-neuronal program endows neurons with the competence to form synapses and that cell-type-specific programs control synaptic specificity.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juyoun Yoo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier Valdes-Aleman
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Piero Sanfilippo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Krämer R, Rode S, Rumpf S. Rab11 is required for neurite pruning and developmental membrane protein degradation in Drosophila sensory neurons. Dev Biol 2019; 451:68-78. [DOI: 10.1016/j.ydbio.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
|
12
|
Alyagor I, Berkun V, Keren-Shaul H, Marmor-Kollet N, David E, Mayseless O, Issman-Zecharya N, Amit I, Schuldiner O. Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Dev Cell 2019; 47:38-52.e6. [PMID: 30300589 PMCID: PMC6179959 DOI: 10.1016/j.devcel.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Developmental neuronal remodeling is an evolutionarily conserved mechanism required for precise wiring of nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the underlying mechanisms are largely unknown. Here, we uncover the fine temporal transcriptional landscape of Drosophila mushroom body γ neurons undergoing stereotypical remodeling. Our data reveal rapid and dramatic changes in the transcriptional landscape during development. Focusing on DNA binding proteins, we identify eleven that are required for remodeling. Furthermore, we sequence developing γ neurons perturbed for three key transcription factors required for pruning. We describe a hierarchical network featuring positive and negative feedback loops. Superimposing the perturbation-seq on the developmental expression atlas highlights a framework of transcriptional modules that together drive remodeling. Overall, this study provides a broad and detailed molecular insight into the complex regulatory dynamics of developmental remodeling and thus offers a pipeline to dissect developmental processes via RNA profiling.
Collapse
Affiliation(s)
- Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel; Life Science Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | - Neta Marmor-Kollet
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Noa Issman-Zecharya
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel.
| |
Collapse
|
13
|
Differential Requirement for Translation Initiation Factor Pathways during Ecdysone-Dependent Neuronal Remodeling in Drosophila. Cell Rep 2018; 24:2287-2299.e4. [DOI: 10.1016/j.celrep.2018.07.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022] Open
|
14
|
Regulatory Mechanisms of Metamorphic Neuronal Remodeling Revealed Through a Genome-Wide Modifier Screen in Drosophila melanogaster. Genetics 2017; 206:1429-1443. [PMID: 28476867 PMCID: PMC5500141 DOI: 10.1534/genetics.117.200378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 02/01/2023] Open
Abstract
During development, neuronal remodeling shapes neuronal connections to establish fully mature and functional nervous systems. Our previous studies have shown that the RNA-binding factor alan shepard (shep) is an important regulator of neuronal remodeling during metamorphosis in Drosophila melanogaster, and loss of shep leads to smaller soma size and fewer neurites in a stage-dependent manner. To shed light on the mechanisms by which shep regulates neuronal remodeling, we conducted a genetic modifier screen for suppressors of shep-dependent wing expansion defects and cellular morphological defects in a set of peptidergic neurons, the bursicon neurons, that promote posteclosion wing expansion. Out of 702 screened deficiencies that covered 86% of euchromatic genes, we isolated 24 deficiencies as candidate suppressors, and 12 of them at least partially suppressed morphological defects in shep mutant bursicon neurons. With RNA interference and mutant alleles of individual genes, we identified Daughters against dpp (Dad) and Olig family (Oli) as shep suppressor genes, and both of them restored the adult cellular morphology of shep-depleted bursicon neurons. Dad encodes an inhibitory Smad protein that inhibits bone morphogenetic protein (BMP) signaling, raising the possibility that shep interacted with BMP signaling through antagonism of Dad. By manipulating expression of the BMP receptor tkv, we found that activated BMP signaling was sufficient to rescue loss-of-shep phenotypes. These findings reveal mechanisms of shep regulation during neuronal development, and they highlight a novel genetic shep interaction with the BMP signaling pathway that controls morphogenesis in mature, terminally differentiated neurons during metamorphosis.
Collapse
|
15
|
Wang Y, Zhang H, Shi M, Liou YC, Lu L, Yu F. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons. Development 2017; 144:1851-1862. [DOI: 10.1242/dev.146175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023]
Abstract
Pruning, whereby neurons eliminate their exuberant neurites, is central for the maturation of the nervous system. In Drosophila, sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell adhesion molecule Neuroglian (Nrg).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
| | - Meng Shi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857
| |
Collapse
|
16
|
Yaniv SP, Schuldiner O. A fly's view of neuronal remodeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:618-35. [PMID: 27351747 PMCID: PMC5086085 DOI: 10.1002/wdev.241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618–635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website
Collapse
Affiliation(s)
- Shiri P Yaniv
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Schuldiner
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Ahmadivand S, Farahmand H, Teimoori-Toolabi L, Mirvaghefi A, Eagderi S, Geerinckx T, Shokrpoor S, Rahmati-Holasoo H. Boule gene expression underpins the meiotic arrest in spermatogenesis in male rainbow trout (Oncorhynchus mykiss) exposed to DEHP and butachlor. Gen Comp Endocrinol 2016; 225:235-241. [PMID: 26027538 DOI: 10.1016/j.ygcen.2015.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 02/03/2023]
Abstract
Boule, the ancestor of the DAZ (Deleted in AZoospermia) gene family, in most organisms is mainly involved in male meiosis. The present study investigates the effects of the plasticizer DEHP (50mg/kg body weight) and herbicide butachlor (0.39mg/L) on male rainbow trout (Oncorhynchus mykiss) for a 10-day period in two independent experiments. The results showed that plasma testosterone (T) concentrations were significantly lower in fish exposed to either DEHP or butachlor compared to the control fish (P<0.05). Fish showed a significantly elevated hepatosomatic index (HSI) in the butachlor treatment (P<0.05). However, no significant difference was observed in HSI values in the DEHP treatment (P>0.05). In addition, no significant differences were found in the gonadosomatic index (GSI) in both DEHP and butachlor treatments (P>0.05). Histologically, testes of male trout in the control groups were well differentiated and filled with large numbers of cystic structures containing spermatozoa. In contrast, the testes of male trout contained mostly spermatocytes with few spermatozoa in both treated group, suggesting that DEHP and butachlor may inhibit the progression of meiosis. Also, boule gene expression was significantly lower in the testes of male trout affected by DEHP and butachlor in comparison with their control groups (P<0.05), which confirmed the meiotic arrest in affected trout. Based on the results, the present study demonstrated that DEHP and butachlor can inhibit the progression of spermatogenesis in male trout, potentially by causing an arrest of meiosis, maybe due to down-regulation of boule gene expression through T and/or IGF1 via ERK1/2 signaling in T-independent pathways. In addition, these results confirmed that boule can be considered as a predictive marker to assess meiotic efficiency.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran.
| | - Hamid Farahmand
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, P.O. Box: 13169-43551, Tehran, Iran
| | - Alireza Mirvaghefi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, Iran
| | - Soheil Eagderi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, Iran
| | - Tom Geerinckx
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University (UGent), 9000 Ghent, Belgium
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| |
Collapse
|
18
|
Lin T, Pan PY, Lai YT, Chiang KW, Hsieh HL, Wu YP, Ke JM, Lee MC, Liao SS, Shih HT, Tang CY, Yang SB, Cheng HC, Wu JT, Jan YN, Lee HH. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons. PLoS Genet 2015; 11:e1005642. [PMID: 26540204 PMCID: PMC4634852 DOI: 10.1371/journal.pgen.1005642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/11/2015] [Indexed: 11/18/2022] Open
Abstract
During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.
Collapse
Affiliation(s)
- Tzu Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yuan Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wen Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Lun Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Ming Ke
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Myong-Chol Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Sian Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Bing Yang
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Kanamori T, Togashi K, Koizumi H, Emoto K. Dendritic Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:1-25. [DOI: 10.1016/bs.ircmb.2015.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Boulanger A, Dura JM. Nuclear receptors and Drosophila neuronal remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:187-95. [PMID: 24882358 DOI: 10.1016/j.bbagrm.2014.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
During the development of both vertebrates and invertebrates, neurons undergo a crucial remodeling process that is necessary for their new function. Neuronal remodeling is composed of two stages: first, axons and dendrites are pruned without the loss of the cell body; later, this process is most commonly followed by a regrowth step. Holometabolous insects like the fruitfly Drosophila exhibit striking differences between their larval and adult stages. These neuronal remodeling processes occur during metamorphosis, the period of transformation from a larva to an adult. All axon and dendrite pruning events ultimately depend on the EcR nuclear receptor. Its ligand, the steroid molting hormone ecdysone, binds to heteromeric receptors comprising the nuclear receptor ECR and USP, and this complex regulates target genes involved in neuronal remodeling. Here we review the nuclear receptor-mediated genetic control of the main neuronal remodeling events described so far in Drosophila. These events consist of neurite degeneration in the mushroom bodies (MBs: the brain memory center) and in the dendritic arborizing sensory neurons, of neurite retraction or small scale elimination in the thoracic ventral neurosecretory cells, in the olfactory circuits and in the neuromuscular junction. MB axon regrowth after pruning and the role of MB neuron remodeling in memory formation are also reviewed. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Ana Boulanger
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| | - Jean-Maurice Dura
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
21
|
Drosophila Valosin-Containing Protein is required for dendrite pruning through a regulatory role in mRNA metabolism. Proc Natl Acad Sci U S A 2014; 111:7331-6. [PMID: 24799714 DOI: 10.1073/pnas.1406898111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dendritic arbors of the larval Drosophila peripheral class IV dendritic arborization neurons degenerate during metamorphosis in an ecdysone-dependent manner. This process-also known as dendrite pruning-depends on the ubiquitin-proteasome system (UPS), but the specific processes regulated by the UPS during pruning have been largely elusive. Here, we show that mutation or inhibition of Valosin-Containing Protein (VCP), a ubiquitin-dependent ATPase whose human homolog is linked to neurodegenerative disease, leads to specific defects in mRNA metabolism and that this role of VCP is linked to dendrite pruning. Specifically, we find that VCP inhibition causes an altered splicing pattern of the large pruning gene molecule interacting with CasL and mislocalization of the Drosophila homolog of the human RNA-binding protein TAR-DNA-binding protein of 43 kilo-Dalton (TDP-43). Our data suggest that VCP inactivation might lead to specific gain-of-function of TDP-43 and other RNA-binding proteins. A similar combination of defects is also seen in a mutant in the ubiquitin-conjugating enzyme ubcD1 and a mutant in the 19S regulatory particle of the proteasome, but not in a 20S proteasome mutant. Thus, our results highlight a proteolysis-independent function of the UPS during class IV dendritic arborization neuron dendrite pruning and link the UPS to the control of mRNA metabolism.
Collapse
|
22
|
Yu F, Schuldiner O. Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol 2014; 27:192-8. [PMID: 24793180 DOI: 10.1016/j.conb.2014.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 01/05/2023]
Abstract
Pruning, a process by which neurons selectively remove exuberant or unnecessary processes without causing cell death, is crucial for the establishment of mature neural circuits during animal development. Yet relatively little is known about molecular and cellular mechanisms that govern neuronal pruning. Holometabolous insects, such as Drosophila, undergo complete metamorphosis and their larval nervous systems are replaced with adult-specific ones, thus providing attractive models for studying neuronal pruning. Drosophila mushroom body and dendritic arborization neurons have been utilized as two appealing systems to elucidate the underlying mechanisms of axon and dendrite pruning, respectively. In this review we highlight recent developments and discuss some similarities and differences in the mechanisms that regulate these two distinct modes of neuronal pruning in Drosophila.
Collapse
Affiliation(s)
- Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel.
| |
Collapse
|
23
|
Cipressa F, Cenci G. Effete, an E2 ubiquitin-conjugating enzyme with multiple roles in Drosophila development and chromatin organization. Fly (Austin) 2013; 7:256-62. [PMID: 24088712 DOI: 10.4161/fly.26567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila effete gene encodes an extremely conserved class I E2 ubiquitin-conjugating enzyme. Growing evidence indicates that Eff is involved in many cellular processes including eye development, maintenance of female germline stem cells, and regulation of apoptosis. Eff is also a major component of Drosophila chromatin and it is particularly enriched in chromatin with repressive properties. In addition, Eff is required for telomere protection and to prevent telomere fusion. Consistent with its multiple roles in chromatin maintenance, Eff is also one of the rare factors that modulate both telomere-induced and heterochromatin-induced position effect variegation.
Collapse
Affiliation(s)
- Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| |
Collapse
|
24
|
Wong JJL, Li S, Lim EKH, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F. A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol 2013; 11:e1001657. [PMID: 24068890 PMCID: PMC3775723 DOI: 10.1371/journal.pbio.1001657] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.
Collapse
Affiliation(s)
- Jack Jing Lin Wong
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
| | - Song Li
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
| | - Edwin Kok Hao Lim
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Cheng Wang
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Daniel Kirilly
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Chunlai Wu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
| | - Hongyan Wang
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
25
|
Veverytsa L, Allan DW. Subtype-specific neuronal remodeling during Drosophila metamorphosis. Fly (Austin) 2013; 7:78-86. [PMID: 23579264 DOI: 10.4161/fly.23969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During metamorphosis in holometabolous insects, the nervous system undergoes dramatic remodeling as it transitions from its larval to its adult form. Many neurons are generated through post-embryonic neurogenesis to have adult-specific roles, but perhaps more striking is the dramatic remodeling that occurs to transition neurons from functioning in the larval to the adult nervous system. These neurons exhibit a remarkable degree of plasticity during this transition; many subsets undergo programmed cell death, others remodel their axonal and dendritic arbors extensively, whereas others undergo trans-differentiation to alter their terminal differentiation gene expression profiles. Yet other neurons appear to be developmentally frozen in an immature state throughout larval life, to be awakened at metamorphosis by a process we term temporally-tuned differentiation. These multiple forms of remodeling arise from subtype-specific responses to a single metamorphic trigger, ecdysone. Here, we discuss recent progress in Drosophila melanogaster that is shedding light on how subtype-specific programs of neuronal remodeling are generated during metamorphosis.
Collapse
Affiliation(s)
- Lyubov Veverytsa
- Department of Cellular and Physiological Sciences, Life Sciences Centre, Health Sciences Mall, University of British Columbia, Vancouver, BC Canada
| | | |
Collapse
|
26
|
Fang Y, Bonini NM. Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol 2012; 28:575-97. [PMID: 22831639 DOI: 10.1146/annurev-cellbio-101011-155836] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axon degeneration is the pivotal pathological event of acute traumatic neural injury as well as many chronic neurodegenerative diseases. It is an active cellular program and yet molecularly distinct from cell death. Much effort is devoted toward understanding the nature of axon degeneration and promoting axon regeneration. However, the fundamental mechanisms of self-destruction of damaged axons remain unclear, and there are still few treatments for traumatic brain injury (TBI) or spinal cord injury (SCI). Genetically approachable model organisms such as Drosophila melanogaster, the fruit fly, have proven exceptionally successful in modeling human neurodegenerative diseases. More recently, this success has been extended into the field of acute axon injury and regeneration. In this review, we discuss recent findings, focusing on how these models hold promise for accelerating mechanistic insight into axon injury and identifying potential therapeutic targets for TBI and SCI.
Collapse
Affiliation(s)
- Yanshan Fang
- Howard Hughes Medical Institute and Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | | |
Collapse
|
27
|
Kim K, Kim SH, Kim J, Kim H, Yim J. Glutathione s-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease. J Biol Chem 2012; 287:6628-41. [PMID: 22219196 PMCID: PMC3307323 DOI: 10.1074/jbc.m111.291179] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A loss-of-function mutation in the gene parkin causes a common neurodegenerative disease that may be caused by mitochondrial dysfunction. Glutathione S-transferase Omega (GSTO) is involved in cell defense mechanisms, but little is known about the role of GSTO in the progression of Parkinson disease. Here, we report that restoration of Drosophila GSTO1 (DmGSTO1), which is down-regulated in parkin mutants, alleviates some of the parkin pathogenic phenotypes and that the loss of DmGSTO1 function enhances parkin mutant phenotypes. We further identified the ATP synthase β subunit as a novel in vivo target of DmGSTO1. We found that glutathionylation of the ATP synthase β subunit is rescued by DmGSTO1 and that the expression of DmGSTO1 partially restores the activity and assembly of the mitochondrial F(1)F(0)-ATP synthase in parkin mutants. Our results suggest a novel mechanism for the protective role of DmGSTO1 in parkin mutants, through the regulation of ATP synthase activity, and provide insight into potential therapies for Parkinson disease neurodegeneration.
Collapse
Affiliation(s)
- Kiyoung Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
28
|
Kuales G, De Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, Berezikov E, Salzburger W, Ladurner P. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev Biol 2011; 357:117-32. [PMID: 21740899 PMCID: PMC3158854 DOI: 10.1016/j.ydbio.2011.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
Members of the DAZ (Deleted in AZoospermia) gene family are important players in the process of gametogenesis and their dysregulation accounts for 10% of human male infertility. Boule, the ancestor of the family, is mainly involved in male meiosis in most organisms. With the exception of Drosophila and C. elegans, nothing is known on the function of boule in non-vertebrate animals. In the present study, we report on three boule orthologues in the flatworm Macrostomum lignano. We demonstrate that macbol1 and macbol2 are expressed in testes whilst macbol3 is expressed in ovaries and developing eggs. Macbol1 RNAi blocked spermatocyte differentiation whereas macbol2 showed no effect upon RNAi treatment. Macbol3 RNAi resulted in aberrant egg maturation and led to female sterility. We further demonstrated the evolutionary functional conservation of macbol1 by introducing this gene into Drosophila bol(1) mutants. Macbol1 was able to rescue the progression of fly meiotic divisions. In summary, our findings provide evidence for an involvement of boule genes in male and female gamete development in one organism. Furthermore, boule gene function is shown here for the first time in a lophotrochozoan. Our results point to a more diverse functional assignment of boule genes. Therefore, a better understanding of boule function in flatworms can help to elucidate the molecular mechanisms of and concomitant infertility in higher organisms including humans.
Collapse
Affiliation(s)
- Georg Kuales
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Katrien De Mulder
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jade Glashauser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Willi Salvenmoser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Shigeo Takashima
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Volker Hartenstein
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Eugene Berezikov
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Walter Salzburger
- University of Basel, Zoological Institute, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter Ladurner
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| |
Collapse
|
29
|
Hong YS, Kang S, Han M, Gobert GN, Jones MK. High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy. Parasit Vectors 2011; 4:83. [PMID: 21595925 PMCID: PMC3121693 DOI: 10.1186/1756-3305-4-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 11/24/2022] Open
Abstract
Background Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti. Results Total RNA was isolated from Ae. aegypti midguts that were either fresh-frozen or fixed with histological fixatives. Generally, fresh-frozen tissue sections are a common source of quality LMM-derived RNA; however, our aim was to develop an LMM protocol that could inactivate pathogenic viruses by fixation, while simultaneously preserving RNA from arbovirus-infected mosquitoes. Three groups (10 - 15 mosquitoes per group) of female Ae. aegypti at 24 or 48-hours post-blood meal were intrathoracically injected with one of seven common fixatives (Bouin's, Carnoy's, Formoy's, Cal-Rite, 4% formalin, 10% neutral buffered formalin, or zinc formalin) to evaluate their effect on RNA quality. Total RNA was isolated from the fixed abdomens using a Trizol® method. The results indicated that RNA from Carnoy's and Bouin's fixative samples was comparable to that of fresh frozen midguts (control) in duplicate experiments. When Carnoy's and Bouin's were used to fix the midguts for the LMM procedure, however, Carnoy's-fixed RNA clearly showed much less degradation than Bouin's-fixed RNA. In addition, a sample of 5 randomly chosen transcripts were amplified more efficiently using the Carnoy's treated LMM RNA than Bouin's-fixed RNA in quantitative real-time PCR (qRT-PCR) assays, suggesting there were more intact target mRNAs in the Carnoy's fixed RNA. The yields of total RNA ranged from 0.3 to 19.0 ng per ~3.0 × 106 μm2 in the LMM procedure. Conclusions Carnoy's fixative was found to be highly compatible with LMM, producing high quality RNA from Ae. aegypti midguts while inactivating viral pathogens. Our findings suggest that LMM in conjunction with Carnoy's fixation can be applied to studies in Ae. aegypti infected with arboviruses without compromising biosafety and RNA quality. This LMM method should be applicable to other mosquito vector studies.
Collapse
Affiliation(s)
- Young S Hong
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
30
|
Tuxworth RI, Chen H, Vivancos V, Carvajal N, Huang X, Tear G. The Batten disease gene CLN3 is required for the response to oxidative stress. Hum Mol Genet 2011; 20:2037-47. [PMID: 21372148 PMCID: PMC3080613 DOI: 10.1093/hmg/ddr088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early onset neurodegenerative disorder. JNCL is the most common of the NCLs, a group of disorders with infant or childhood onset that are caused by single gene mutations. The NCLs, although relatively rare, share many pathological and clinical similarities with the more common late-onset neurodegenerative disorders, while their simple genetic basis makes them an excellent paradigm. The early onset and rapid disease progression in the NCLs suggests that one or more key cellular processes are severely compromised. To identify the functional pathways compromised in JNCL, we have performed a gain-of-function modifier screen in Drosophila. We find that CLN3 interacts genetically with the core stress signalling pathways and components of stress granules, suggesting a function in stress responses. In support of this, we find that Drosophila lacking CLN3 function are hypersensitive to oxidative stress yet they respond normally to other physiological stresses. Overexpression of CLN3 is sufficient to confer increased resistance to oxidative stress. We find that CLN3 mutant flies perceive conditions of increased oxidative stress correctly but are unable to detoxify reactive oxygen species, suggesting that their ability to respond is compromised. Together, our data suggest that the lack of CLN3 function leads to a failure to manage the response to oxidative stress and this may be the key deficit in JNCL that leads to neuronal degeneration.
Collapse
Affiliation(s)
- Richard I Tuxworth
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
31
|
Vangompel MJW, Xu EY. The roles of the DAZ family in spermatogenesis: More than just translation? SPERMATOGENESIS 2011; 1:36-46. [PMID: 22523742 PMCID: PMC3329454 DOI: 10.4161/spmg.1.1.14659] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The DAZ family of genes are important fertility factors in animals, including humans. The family consists of Y-linked DAZ, and autosomal homologs Boule and Dazl. All three genes encode RNA-binding proteins that are nearly exclusively expressed in germ cells. The DAZ family is highly conserved, with ancestral Boule present in sea anemones through humans, Dazl conserved among vertebrates, and DAZ present only in higher primates. Here we review studies on DAZ family genes from multiple organisms, and summarize the common features of each DAZ gene and their roles during spermatogenesis in animals. DAZ family proteins are thought to activate the translation of RNA targets, but recent work has uncovered additional functions. Boule, Dazl, and DAZ likely function through similar mechanisms, and we present known functions of the DAZ family in spermatogenesis, and discuss possible mechanisms in addition to translation activation.
Collapse
Affiliation(s)
- Michael J W Vangompel
- Department of Obstetrics and Gynecology; Division of Reproductive Biology Research and Center for Genetic Medicine; Northwestern University; Chicago, IL USA
| | | |
Collapse
|
32
|
Boulanger A, Clouet-Redt C, Farge M, Flandre A, Guignard T, Fernando C, Juge F, Dura JM. ftz-f1 and Hr39 opposing roles on EcR expression during Drosophila mushroom body neuron remodeling. Nat Neurosci 2010; 14:37-44. [DOI: 10.1038/nn.2700] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/20/2010] [Indexed: 11/09/2022]
|
33
|
Hou Q, Jiang H, Zhang X, Guo C, Huang B, Wang P, Wang T, Wu K, Li J, Gong Z, Du L, Liu Y, Liu L, Chen C. Nitric oxide metabolism controlled by formaldehyde dehydrogenase (fdh, homolog of mammalian GSNOR) plays a crucial role in visual pattern memory in Drosophila. Nitric Oxide 2010; 24:17-24. [PMID: 20932929 DOI: 10.1016/j.niox.2010.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 09/17/2010] [Accepted: 09/30/2010] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) plays an important role in learning and memory which is essential for animals to adapt to the external environment. However, little is known about the role of NO metabolism in this process. S-nitrosoglutathione reductase (GSNOR) is a key protein in the control of NO metabolism and protein S-nitrosation. To study the relationship between NO metabolism and learning and memory, the expression of gene fdh which is homolog to mammalian GSNOR was modulated by the Gal4/UAS system in Drosophila. The over-expression of the fdh in the central nervous system significantly increased GSNOR activity and induced visual pattern memory defects of Drosophila. The role of fdh in learning and memory was independent of development and was neuron-specific: over-expression of the fdh in the fan-shaped body induced memory defect, while over-expression in the mushroom body did not. The visual pattern memory defect could be rescued by co-expression with exogenous cGMP-dependent protein kinase (PKG). Moreover, fdh over-expression resulted in denitrosation of multiple proteins functionally enriched in vesicle-mediated transport, which is important for learning and memory. These results showed that regulation of NO metabolism plays an important role in learning and memory, and the mechanism may involve both NO-cGMP-PKG signaling pathway and S-nitrosation modification.
Collapse
Affiliation(s)
- Qinlong Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shah C, VanGompel MJW, Naeem V, Chen Y, Lee T, Angeloni N, Wang Y, Xu EY. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function. PLoS Genet 2010; 6:e1001022. [PMID: 20657660 PMCID: PMC2904765 DOI: 10.1371/journal.pgen.1001022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022] Open
Abstract
Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eugene Yujun Xu
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Axon pruning and neuronal cell death constitute two major regressive events that enable the establishment of fully mature brain architecture and connectivity. Although the cellular mechanisms for these two events are thought to be distinct, recent evidence has indicated the direct involvement of axon guidance molecules, including semaphorins, netrins, and ephrins, in controlling both processes. Here, we review how axon guidance cues regulate regressive events in paradigmatic models of neural development, from early control of apoptosis of neural progenitors, to later maintenance of neuronal survival and stereotyped pruning of axonal branches. These new findings are also discussed in the context of neural diseases and the potential links between axon pruning and degeneration.
Collapse
|
36
|
Abstract
The dendritic arborization (da) neurons of the Drosophila peripheral nervous system (PNS) provide an excellent model system in which to investigate the molecular mechanisms underlying class-specific dendrite morphogenesis. To facilitate molecular analyses of class-specific da neuron development, it is vital to obtain these cells in a pure population. Although a range of different cell, and tissue-specific RNA isolation techniques exist for Drosophila cells, including magnetic bead based cell purification, Fluorescent Activated Cell Sorting (FACS), and RNA binding protein based strategies, none of these methods can be readily utilized for isolating single or multiple class-specific Drosophila da neurons with a high degree of spatial precision. Laser Capture Microdissection (LCM) has emerged as an extremely powerful tool that can be used to isolate specific cell types from tissue sections with a high degree of spatial resolution and accuracy. RNA obtained from isolated cells can then be used for analyses including qRT-PCR and microarray expression profiling within a given cell type. To date, LCM has not been widely applied in the analysis of Drosophila tissues and cells, including da neurons at the third instar larval stage of development. Here we present our optimized protocol for isolation of Drosophila da neurons using the infrared (IR) class of LCM. This method allows for the capture of single, class-specific or multiple da neurons with high specificity and spatial resolution. Age-matched third instar larvae expressing a UAS-mCD8::GFP transgene under the control of either the class IV da neuron specific ppk-GAL4 driver or the pan-da neuron specific 21-7-GAL4 driver were used for these experiments. RNA obtained from the isolated da neurons is of very high quality and can be directly used for downstream applications, including qRT-PCR or microarray analyses. Furthermore, this LCM protocol can be readily adapted to capture other Drosophila cell types a various stages of development dependent upon the cell type specific, GAL4-driven expression pattern of GFP.
Collapse
|
37
|
Schurko AM, Mazur DJ, Logsdon JM. Inventory and phylogenomic distribution of meiotic genes in Nasonia vitripennis and among diverse arthropods. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:165-180. [PMID: 20167026 DOI: 10.1111/j.1365-2583.2009.00948.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The parasitoid jewel wasp Nasonia vitripennis reproduces by haplodiploidy (arrhenotokous parthenogenesis). In diploid females, meiosis occurs during oogenesis, but in haploid males spermatogenesis is ameiotic and involves a single equational division. Here we describe the phylogenomic distribution of meiotic genes in N. vitripennis and in 10 additional arthropods. Homologues for 39 meiosis-related genes (including seven meiosis-specific genes) were identified in N. vitripennis. The meiotic genes missing from N. vitripennis are also sporadically absent in other arthropods, suggesting that certain meiotic genes are dispensable for meiosis. Among an additional set of 15 genes thought to be specific for male meiosis in Drosophila, two genes (bol and crl) were identified in N. vitripennis and Apis mellifera (both for which canonical meiosis is absent in males) and in other arthropods. The distribution of meiotic genes across arthropods and the impact of gene duplications and reproductive modes on meiotic gene evolution are discussed.
Collapse
Affiliation(s)
- A M Schurko
- Roy J. Carver Center for Comparative Genomics and Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
38
|
Spokony RF, Restifo LL. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster. J Comp Neurol 2009; 517:15-36. [PMID: 19711379 DOI: 10.1002/cne.22119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, Arizona 85721-0108, USA.
| | | |
Collapse
|
39
|
Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat Neurosci 2009; 13:60-8. [PMID: 19966839 PMCID: PMC3878269 DOI: 10.1038/nn.2451] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/19/2009] [Indexed: 11/08/2022]
Abstract
Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits.
Collapse
|
40
|
Dalton JE, Lebo MS, Sanders LE, Sun F, Arbeitman MN. Ecdysone receptor acts in fruitless- expressing neurons to mediate drosophila courtship behaviors. Curr Biol 2009; 19:1447-52. [PMID: 19646872 DOI: 10.1016/j.cub.2009.06.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 11/15/2022]
Abstract
In Drosophila melanogaster, fruitless (fru) encodes male-specific transcription factors (FRU(M); encoded by fru P1) required for courtship behaviors (reviewed in). However, downstream effectors of FRU(M) throughout development are largely unknown. During metamorphosis the nervous system is remodeled for adult function, the timing of which is coordinated by the steroid hormone 20-hydroxyecdysone (ecdysone) through the ecdysone receptor, a heterodimer of the nuclear receptors EcR (isoforms are EcR-A, EcR-B1, or EcR-B2) and Ultraspiracle (USP) (reviewed in). Here, we show that genes identified as regulated downstream of FRU(M) during metamorphosis are significantly overrepresented with genes known to be regulated in response to ecdysone or EcR. FRU(M) and EcR isoforms are coexpressed in neurons in the CNS during metamorphosis in an isoform-specific manner. Reduction of EcR-A levels in fru P1-expressing neurons of males caused a significant increase in male-male courtship activity and significant reduction in size of two antennal lobe glomeruli. Additional genes were identified that are regulated downstream of EcR-A in fru P1-expressing neurons. Thus, EcR-A is required in fru P1-expressing neurons for wild-type male courtship behaviors and the establishment of male-specific neuronal architecture.
Collapse
Affiliation(s)
- Justin E Dalton
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
41
|
Brook M, Smith JWS, Gray NK. The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 2009; 137:595-617. [DOI: 10.1530/rep-08-0524] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gametogenesis is a highly complex process that requires the exquisite temporal, spatial and amplitudinal regulation of gene expression at multiple levels. Translational regulation is important in a wide variety of cell types but may be even more prevalent in germ cells, where periods of transcriptional quiescence necessitate the use of post-transcriptional mechanisms to effect changes in gene expression. Consistent with this, studies in multiple animal models have revealed an essential role for mRNA translation in the establishment and maintenance of reproductive competence. While studies in humans are less advanced, emerging evidence suggests that translational regulation plays a similarly important role in human germ cells and fertility. This review highlights specific mechanisms of translational regulation that play critical roles in oogenesis by activating subsets of mRNAs. These mRNAs are activated in a strictly determined temporal manner via elements located within their 3′UTR, which serve as binding sites fortrans-acting factors. While we concentrate on oogenesis, these regulatory events also play important roles during spermatogenesis. In particular, we focus on the deleted in azoospermia-like (DAZL) family of proteins, recently implicated in the translational control of specific mRNAs in germ cells; their relationship with the general translation initiation factor poly(A)-binding protein (PABP) and the process of cytoplasmic mRNA polyadenylation.
Collapse
|
42
|
Hovhanyan A, Raabe T. Structural brain mutants: mushroom body defect (mud): a case study. J Neurogenet 2008; 23:42-7. [PMID: 19107630 DOI: 10.1080/01677060802471700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-gene mutants of Drosophila have not only increased our understanding of the biochemical processes underlying learning and memory processes, but also established structure-function relationships. The first relevant mutants were identified by Martin Heisenberg nearly 30 years ago in a screen for altered adult brain structure and were used to link the mushroom bodies in the central brain with olfactory learning and memory processes. Because the observed structural defects in the adult are the consequence of deregulated developmental processes, the characterization of these mutants can also provide insight into the genetic programs underlying the establishment, maintenance, and remodeling of functional neuronal circuits. As an example for the value of this approach, we trace the history of mushroom body defect (mud), from the original anatomical description of the mutation to most recent insights of the function of the protein as a regulator of neuronal progenitor cell division.
Collapse
Affiliation(s)
- Anna Hovhanyan
- Institute of Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|