1
|
Mishra A, Wang F, Chen LM, Gore JC. Machine Learning-Based Clustering of Layer-Resolved fMRI Activation and Functional Connectivity Within the Primary Somatosensory Cortex in Nonhuman Primates. Hum Brain Mapp 2025; 46:e70193. [PMID: 40095731 PMCID: PMC11912181 DOI: 10.1002/hbm.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Delineating the functional organization of mesoscale cortical columnar structure is essential for understanding brain function. We have previously demonstrated a high spatial correspondence between BOLD fMRI and LFP responses to tactile stimuli in the primary somatosensory cortex area 3b of nonhuman primates. This study aims to explore how 2D spatial profiles of the functional column vary across cortical layers (defined by three cortical depths) in both tactile stimulation and resting states using fMRI. At 9.4 T, we acquired submillimeter-resolution oblique fMRI data from cortical areas 3b and 1 of anesthetized squirrel monkeys and obtained fMRI signals from three cortical layers. In both areas 3b and 1, the tactile stimulus-evoked fMRI activation foci were fitted with point spread functions (PSFs), from which shape parameters, including full width at half maximum (FWHM), were derived. Seed-based resting-state fMRI data analysis was then performed to measure the spatial profiles of resting-state connectivity within and between areas 3b and 1. We found that the tactile-evoked fMRI response and local resting-state functional connectivity were elongated at the superficial layer, with the major axes oriented in lateral to medial (from digit 1 to digit 5) direction. This elongation was significantly reduced in the deeper (middle and bottom) layers. To assess the robustness of these spatial profiles in distinguishing cortical layers, shape parameters describing the spatial extents of activation and resting-state connectivity profiles were used to classify the layers via self-organizing maps (SOM). A minimal overall classification error (~13%) was achieved, effectively classifying the layers into two groups: the superficial layer exhibited distinct features from the two deeper layers in the rsfMRI data. Our results support distinct 2D spatial profiles for superficial versus deeper cortical layers and reveal similarities between stimulus-evoked and resting-state configurations.
Collapse
Affiliation(s)
- Arabinda Mishra
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Feng Wang
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Li Min Chen
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - John C. Gore
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
2
|
Ai H, Lin W, Liu C, Chen N, Zhang P. Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area. eLife 2025; 13:RP93171. [PMID: 40111254 PMCID: PMC11925451 DOI: 10.7554/elife.93171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Although parallel processing has been extensively studied in the low-level geniculostriate pathway and the high-level dorsal and ventral visual streams, less is known at the intermediate-level visual areas. In this study, we employed high-resolution fMRI at 7T to investigate the columnar and laminar organizations for color, disparity, and naturalistic texture in the human secondary visual cortex (V2), and their informational connectivity with lower- and higher-order visual areas. Although fMRI activations in V2 showed reproducible interdigitated color-selective thin and disparity-selective thick 'stripe' columns, we found no clear evidence of columnar organization for naturalistic textures. Cortical depth-dependent analyses revealed the strongest color-selectivity in the superficial layers of V2, along with both feedforward and feedback informational connectivity with V1 and V4. Disparity selectivity was similar across different cortical depths of V2, which showed significant feedforward and feedback connectivity with V1 and V3ab. Interestingly, the selectivity for naturalistic texture was strongest in the deep layers of V2, with significant feedback connectivity from V4. Thus, while local circuitry within cortical columns is crucial for processing color and disparity information, feedback signals from V4 are involved in generating the selectivity for naturalistic textures in area V2.
Collapse
Affiliation(s)
- Hailin Ai
- Department of Psychological and Cognitive Sciences, Tsinghua UniversityBeijingChina
| | - Weiru Lin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChangshaChina
| | - Chengwen Liu
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal UniversityHunanChina
- Center for Mind & Brain Sciences, Hunan Normal UniversityChangshChina
| | - Nihong Chen
- Department of Psychological and Cognitive Sciences, Tsinghua UniversityBeijingChina
- THU-IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChangshaChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
| |
Collapse
|
3
|
Zamboni E, Watson I, Stirnberg R, Huber L, Formisano E, Goebel R, Kennerley AJ, Morland AB. Mapping curvature domains in human V4 using CBV-sensitive layer-fMRI at 3T. Front Neurosci 2025; 19:1537026. [PMID: 40078711 PMCID: PMC11897262 DOI: 10.3389/fnins.2025.1537026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction A full understanding of how we see our world remains a fundamental research question in vision neuroscience. While topographic profiling has allowed us to identify different visual areas, the exact functional characteristics and organization of areas up in the visual hierarchy (beyond V1 & V2) is still debated. It is hypothesized that visual area V4 represents a vital intermediate stage of processing spatial and curvature information preceding object recognition. Advancements in magnetic resonance imaging hardware and acquisition techniques (e.g., non-BOLD functional MRI) now permits the capture of cortical layer-specific functional properties and organization of the human brain (including the visual system) at high precision. Methods Here, we use functional cerebral blood volume measures to study the modularity in how responses to contours (curvature) are organized within area V4 of the human brain. To achieve this at 3 Tesla (a clinically relevant field strength) we utilize optimized high-resolution 3D-Echo Planar Imaging (EPI) Vascular Space Occupancy (VASO) measurements. Results Data here provide the first evidence of curvature domains in human V4 that are consistent with previous findings from non-human primates. We show that VASO and BOLD tSNR maps for functional imaging align with high field equivalents, with robust time series of changes to visual stimuli measured across the visual cortex. V4 curvature preference maps for VASO show strong modular organization compared to BOLD imaging contrast. It is noted that BOLD has a much lower sensitivity (due to known venous vasculature weightings) and specificity to stimulus contrast. We show evidence that curvature domains persist across the cortical depth. The work advances our understanding of the role of mid-level area V4 in human processing of curvature and shape features. Impact Knowledge of how the functional architecture and hierarchical integration of local contours (curvature) contribute to formation of shapes can inform computational models of object recognition. Techniques described here allow for quantification of individual differences in functional architecture of mid-level visual areas to help drive a better understanding of how changes in functional brain organization relate to difference in visual perception.
Collapse
Affiliation(s)
- Elisa Zamboni
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
- York Neuroimaging Centre, University of York, York, United Kingdom
| | - Isaac Watson
- York Neuroimaging Centre, University of York, York, United Kingdom
- Biomedical Imaging Science Department, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Aneurin J. Kennerley
- Institute of Sport, Department of Sports and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Antony B. Morland
- York Neuroimaging Centre, University of York, York, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
4
|
Song J, Brown JM. The influence of "advancing" and "receding" colors on figure-ground perception under monocular and binocular viewing. Atten Percept Psychophys 2024; 86:2707-2720. [PMID: 39349921 DOI: 10.3758/s13414-024-02956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 12/18/2024]
Abstract
Research on figure-ground perception has consistently found that red images are more likely to be perceived as figure/nearer, yet the mechanisms behind this are not completely clear. The primary theories have pointed to optical chromatic aberrations or cortical mechanisms, such as the antagonistic interactions of the magno-/parvocellular (M/P) systems. Our study explored this color-biased figure-ground perception by examining the duration for which a region was perceived as figure under both binocular and monocular conditions, using all combinations of red, blue, green, and gray. In Experiment 1, we used figure-ground ambiguous Maltese crosses, composed of left- and right-tilting sectors of equal area. In Experiment 2, the crosses were figure-ground biased with size and orientation cues. Here, small sectors of cardinal orientations, likely perceived as figure, were contrasted with larger, obliquely oriented sectors, likely perceived as ground. Under monocular conditions, the results aligned with chromatic aberration predictions: red advanced and blue receded, regardless of size and orientation. However, under binocular conditions, the advancing effect of red continued, but the receding effect of blue was generally not observed. Notably, blue, along with red and green, was more frequently perceived as figure compared to gray. The results under binocular viewing are in line with the expectations of the antagonistic M/P system interactions theory, likely due to the collective input from both eyes, facilitating the anticipated effects. Our findings suggest that color-biased figure-ground perception may arise from the synergistic effect of antagonistic M/P system interactions and other optical and cortical mechanisms, together compensating for chromatic aberrations.
Collapse
Affiliation(s)
- Jaeseon Song
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA.
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - James M Brown
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Aganj I, Nasr S. Selective Functional Connectivity between Ocular Dominance Columns in the Primary Visual Cortex. OPHTHALMIC MEDICAL IMAGE ANALYSIS : 11TH INTERNATIONAL WORKSHOP, OMIA 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 10, 2024, PROCEEDINGS. OMIA (WORKSHOP) (11TH : 2024 : MARRAKECH, MOROCCO) 2024; 15188:1-10. [PMID: 39524213 PMCID: PMC11541787 DOI: 10.1007/978-3-031-73119-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The primary visual cortex (V1) in humans and many animals is comprised of fine-scale neuronal ensembles that respond preferentially to the stimulation of one eye over the other, also known as the ocular dominance columns (ODCs). Despite its importance in shaping our perception, to date, the nature of the functional interactions between ODCs has remained poorly understood. In this work, we aimed to improve our understanding of the interaction mechanisms between fine-scale neuronal structures distributed within V1. To that end, we applied high-resolution functional MRI to study mechanisms of functional connectivity between ODCs. Using this technique, we quantified the level of functional connectivity between ODCs as a function of the ocular preference of ODCs, showing that alike ODCs are functionally more connected compared to unalike ones. Through these experiments, we aspired to contribute to filling the gap in our knowledge of the functional connectivity of ODCs in humans as compared to animals.
Collapse
Affiliation(s)
- Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Aganj I, Nasr S. Selective Functional Connectivity between Ocular Dominance Columns in the Primary Visual Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595395. [PMID: 38826279 PMCID: PMC11142215 DOI: 10.1101/2024.05.22.595395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The primary visual cortex (V1) in humans and many animals is comprised of fine-scale neuronal ensembles that respond preferentially to the stimulation of one eye over the other, also known as the ocular dominance columns (ODCs). Despite its importance in shaping our perception, to date, the nature of the functional interactions between ODCs has remained poorly understood. In this work, we aimed to improve our understanding of the interaction mechanisms between fine-scale neuronal structures distributed within V1. To that end, we applied high-resolution functional MRI to study mechanisms of functional connectivity between ODCs. Using this technique, we quantified the level of functional connectivity between ODCs as a function of the ocular preference of ODCs, showing that alike ODCs are functionally more connected compared to unalike ones. Through these experiments, we aspired to contribute to filling the gap in our knowledge of the functional connectivity of ODCs in humans as compared to animals.
Collapse
Affiliation(s)
- Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Wang T, Dai W, Wu Y, Li Y, Yang Y, Zhang Y, Zhou T, Sun X, Wang G, Li L, Dou F, Xing D. Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates. Nat Commun 2024; 15:4005. [PMID: 38740786 DOI: 10.1038/s41467-024-48379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The neocortex comprises six cortical layers that play a crucial role in information processing; however, it remains unclear whether laminar processing is consistent across all regions within a single cortex. In this study, we demonstrate diverse laminar response patterns in the primary visual cortex (V1) of three male macaque monkeys when exposed to visual stimuli at different spatial frequencies (SFs). These response patterns can be categorized into two groups. One group exhibit suppressed responses in the output layers for all SFs, while the other type shows amplified responses specifically at high SFs. Further analysis suggests that both magnocellular (M) and parvocellular (P) pathways contribute to the suppressive effect through feedforward mechanisms, whereas amplification is specific to local recurrent mechanisms within the parvocellular pathway. These findings highlight the non-uniform distribution of neural mechanisms involved in laminar processing and emphasize how pathway-specific amplification selectively enhances representations of high-SF information in primate V1.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tingting Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100005, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Song J, Breitmeyer BG, Brown JM. Further Examination of the Pulsed- and Steady-Pedestal Paradigms under Hypothetical Parvocellular- and Magnocellular-Biased Conditions. Vision (Basel) 2024; 8:28. [PMID: 38804349 PMCID: PMC11130818 DOI: 10.3390/vision8020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
The pulsed- and steady-pedestal paradigms were designed to track increment thresholds (ΔC) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively. These paradigms produce contrasting results: linear relationships between ΔC and C are observed in the pulsed-pedestal paradigm, indicative of the P system's processing, while the steady-pedestal paradigm reveals nonlinear functions, characteristic of the M system's response. However, we recently found the P model fits better than the M model for both paradigms, using Gabor stimuli biased towards the M or P systems based on their sensitivity to color and spatial frequency. Here, we used two-square pedestals under green vs. red light in the lower-left vs. upper-right visual fields to bias processing towards the M vs. P system, respectively. Based on our previous findings, we predicted the following: (1) steeper ΔC vs. C functions with the pulsed than the steady pedestal due to different task demands; (2) lower ΔCs in the upper-right vs. lower-left quadrant due to its bias towards P-system processing there; (3) no effect of color, since both paradigms track the P-system; and, most importantly (4) contrast gain should not be higher for the steady than for the pulsed pedestal. In general, our predictions were confirmed, replicating our previous findings and providing further evidence questioning the general validity of using the pulsed- and steady-pedestal paradigms to differentiate the P and M systems.
Collapse
Affiliation(s)
- Jaeseon Song
- Department of Psychology, University of Georgia, Athens, GA 30602, USA;
| | | | - James M. Brown
- Department of Psychology, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
9
|
Wang J, Du X, Yao S, Li L, Tanigawa H, Zhang X, Roe AW. Mesoscale organization of ventral and dorsal visual pathways in macaque monkey revealed by 7T fMRI. Prog Neurobiol 2024; 234:102584. [PMID: 38309458 DOI: 10.1016/j.pneurobio.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In human and nonhuman primate brains, columnar (mesoscale) organization has been demonstrated to underlie both lower and higher order aspects of visual information processing. Previous studies have focused on identifying functional preferences of mesoscale domains in specific areas; but there has been little understanding of how mesoscale domains may cooperatively respond to single visual stimuli across dorsal and ventral pathways. Here, we have developed ultrahigh-field 7 T fMRI methods to enable simultaneous mapping, in individual macaque monkeys, of response in both dorsal and ventral pathways to single simple color and motion stimuli. We provide the first evidence that anatomical V2 cytochrome oxidase-stained stripes are well aligned with fMRI maps of V2 stripes, settling a long-standing controversy. In the ventral pathway, a systematic array of paired color and luminance processing domains across V4 was revealed, suggesting a novel organization for surface information processing. In the dorsal pathway, in addition to high quality motion direction maps of MT, MST and V3A, alternating color and motion direction domains in V3 are revealed. As well, submillimeter motion domains were observed in peripheral LIPd and LIPv. In sum, our study provides a novel global snapshot of how mesoscale networks in the ventral and dorsal visual pathways form the organizational basis of visual objection recognition and vision for action.
Collapse
Affiliation(s)
- Jianbao Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Xiao Du
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songping Yao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Lihui Li
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Ingvaldsen SH, Jørgensen AP, Grøtting A, Sand T, Eikenes L, Håberg AK, Indredavik MS, Lydersen S, Austeng D, Morken TS, Evensen KAI. Visual outcomes and their association with grey and white matter microstructure in adults born preterm with very low birth weight. Sci Rep 2024; 14:2624. [PMID: 38297018 PMCID: PMC10831077 DOI: 10.1038/s41598-024-52836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Individuals born with very low birth weight (VLBW; < 1500 g) have a higher risk of reduced visual function and brain alterations. In a longitudinal cohort study, we assessed differences in visual outcomes and diffusion metrics from diffusion tensor imaging (DTI) at 3 tesla in the visual white matter pathway and primary visual cortex at age 26 in VLBW adults versus controls and explored whether DTI metrics at 26 years was associated with visual outcomes at 32 years. Thirty-three VLBW adults and 50 term-born controls was included in the study. Visual outcomes included best corrected visual acuity, contrast sensitivity, P100 latency, and retinal nerve fibre layer thickness. Mean diffusivity, axial diffusivity, radial diffusivity, and fractional anisotropy was extracted from seven regions of interest in the visual pathway: splenium, genu, and body of corpus callosum, optic radiations, lateral geniculate nucleus, inferior-fronto occipital fasciculus, and primary visual cortex. On average the VLBW group had lower contrast sensitivity, a thicker retinal nerve fibre layer and higher axial diffusivity and radial diffusivity in genu of corpus callosum and higher radial diffusivity in optic radiations than the control group. Higher fractional anisotropy in corpus callosum areas were associated with better visual function in the VLBW group but not the control group.
Collapse
Affiliation(s)
- Sigrid Hegna Ingvaldsen
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Anna Perregaard Jørgensen
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnstein Grøtting
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Radiology and Nuclear Medicine, MR-Center, Trondheim University Hospital, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, MR-Center, Trondheim University Hospital, Trondheim, Norway
| | - Marit S Indredavik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dordi Austeng
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora Sund Morken
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
11
|
Song J, Breitmeyer BG, Brown JM. Examining Increment thresholds as a function of pedestal contrast under hypothetical parvo- and magnocellular-biased conditions. Atten Percept Psychophys 2024; 86:213-220. [PMID: 38030820 DOI: 10.3758/s13414-023-02819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Theoretically, the pulsed- and steady-pedestal paradigms are thought to track contrast-increment thresholds (ΔC) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively, yielding linear ΔC versus C functions for the pulsed- and nonlinear functions for the steady-pedestal paradigm. A recent study utilizing these paradigms to isolate the P and M systems reported no evidence of the M system being suppressed by red light, contrary to previous physiological and psychophysical findings. Curious as to why this may have occurred, we examined how ΔC varies with C for the P and M systems using the pulsed- and steady-pedestal paradigms and stimuli biased towards the P or M systems based on their sensitivity to spatial frequency (SF) and color. We found no effect of color and little influence of SF. To explain this lack of color effects, we used a quantitative model of ΔC (as it changes with C) to obtain Csat and contrast-gain values. The contrast-gain values (i) contradicted the hypothesis that the steady-pedestal paradigm tracks the M-system response, and (ii) our obtained Csat values indicated strongly that both pulsed- and steady-pedestal paradigms track primarily the P-system response.
Collapse
Affiliation(s)
- Jaeseon Song
- Department of Psychology, University of Georgia, Athens, GA, 30602-3013, USA.
| | - Bruno G Breitmeyer
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - James M Brown
- Department of Psychology, University of Georgia, Athens, GA, 30602-3013, USA
| |
Collapse
|
12
|
Martínez A, Hillyard SA, Javitt DC. Visual Neurophysiological Biomarkers for Patient Stratification and Treatment Development Across Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 40:757-799. [PMID: 39562463 DOI: 10.1007/978-3-031-69491-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The human visual system begins in the retina and projects to cortex through both the thalamocortical and retinotectal visual pathways. The thalamocortical system is divided into separate magnocellular and parvocellular divisions, which engage separate layers of the lateral geniculate nucleus (LGN) and project preferentially to the dorsal and ventral visual streams, respectively. The retinotectal system, in contrast, projects to the superior colliculus, pulvinar nucleus of the thalamus and amygdala. The pulvinar nucleus also plays a critical role in the integration of information processing across early visual regions.The functions of the visual system can be assessed using convergent EEG- and functional brain imaging approaches, increasingly supplemented by simultaneously collected eye-tracking information. These approaches may be used for tracing the flow of information from retina through early visual regions, as well as the contribution of these regions to higher-order cognitive processing. A pathway of increasing interest in relationship to neuropsychiatric disorders is the primate-specific "third visual pathway" that relies extensively on motion-related input and contributes preferentially to social information processing. Thus, disturbances in the brain's responsiveness to motion stimuli may be especially useful as biomarkers for early visual dysfunction related to impaired social cognition.Visual event-related potentials (ERPs) can be collected with high-fidelity and have proven effective for the study of neuropsychiatric disorders such as schizophrenia and Alzheimer's disease, in which alterations in visual processing may occur early in the disorder, andautism-spectrum disorder (ASD), in which abnormal persistence of early childhood patterns may persist into adulthood, leading to impaired functioning of visual social pathways. The utility of visual ERPs as biomarkers for larger clinical studies is limited at present by the need for standardization of visual stimuli across laboratories, which requires specialized protocols and equipment. The development of optimized stimulation protocols as well as newer headset-based systems may increase the clinical utility of present stimulation approaches.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Jia K, Goebel R, Kourtzi Z. Ultra-High Field Imaging of Human Visual Cognition. Annu Rev Vis Sci 2023; 9:479-500. [PMID: 37137282 DOI: 10.1146/annurev-vision-111022-123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
Collapse
Affiliation(s)
- Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
14
|
Gaglianese A, Fracasso A, Fernandes FG, Harvey B, Dumoulin SO, Petridou N. Mechanisms of speed encoding in the human middle temporal cortex measured by 7T fMRI. Hum Brain Mapp 2023; 44:2050-2061. [PMID: 36637226 PMCID: PMC9980888 DOI: 10.1002/hbm.26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 01/14/2023] Open
Abstract
Perception of dynamic scenes in our environment results from the evaluation of visual features such as the fundamental spatial and temporal frequency components of a moving object. The ratio between these two components represents the object's speed of motion. The human middle temporal cortex hMT+ has a crucial biological role in the direct encoding of object speed. However, the link between hMT+ speed encoding and the spatiotemporal frequency components of a moving object is still under explored. Here, we recorded high resolution 7T blood oxygen level-dependent BOLD responses to different visual motion stimuli as a function of their fundamental spatial and temporal frequency components. We fitted each hMT+ BOLD response with a 2D Gaussian model allowing for two different speed encoding mechanisms: (1) distinct and independent selectivity for the spatial and temporal frequencies of the visual motion stimuli; (2) pure tuning for the speed of motion. We show that both mechanisms occur but in different neuronal groups within hMT+, with the largest subregion of the complex showing separable tuning for the spatial and temporal frequency of the visual stimuli. Both mechanisms were highly reproducible within participants, reconciling single cell recordings from MT in animals that have showed both encoding mechanisms. Our findings confirm that a more complex process is involved in the perception of speed than initially thought and suggest that hMT+ plays a primary role in the evaluation of the spatial features of the moving visual input.
Collapse
Affiliation(s)
- Anna Gaglianese
- The Laboratory for Investigative Neurophysiology (The LINE), Department of RadiologyUniversity Hospital Center and University of LausanneLausanneSwitzerland
- Department of Neurosurgery and Neurology, UMC Utrecht Brain CenterUniversity Medical CenterUtrechtNetherlands
- Department of Radiology, Center for Image SciencesUniversity Medical CenterUtrechtNetherlands
| | - Alessio Fracasso
- Department of Radiology, Center for Image SciencesUniversity Medical CenterUtrechtNetherlands
- University of GlasgowSchool of Psychology and NeuroscienceGlasgowUK
- Spinoza Center for NeuroimagingAmsterdamNetherlands
| | - Francisco G. Fernandes
- Department of Neurosurgery and Neurology, UMC Utrecht Brain CenterUniversity Medical CenterUtrechtNetherlands
| | - Ben Harvey
- Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtNetherlands
| | - Serge O. Dumoulin
- Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtNetherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image SciencesUniversity Medical CenterUtrechtNetherlands
| |
Collapse
|
15
|
Haenelt D, Trampel R, Nasr S, Polimeni JR, Tootell RBH, Sereno MI, Pine KJ, Edwards LJ, Helbling S, Weiskopf N. High-resolution quantitative and functional MRI indicate lower myelination of thin and thick stripes in human secondary visual cortex. eLife 2023; 12:e78756. [PMID: 36888685 PMCID: PMC9995117 DOI: 10.7554/elife.78756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.
Collapse
Affiliation(s)
- Daniel Haenelt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and PlasticityLeipzigGermany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Roger BH Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Martin I Sereno
- Department of Psychology, College of Sciences, San Diego State UniversitySan DiegoUnited States
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Saskia Helbling
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Poeppel Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurt am MainGermany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig UniversityLeipzigGermany
| |
Collapse
|
16
|
Vannuscorps G, Galaburda A, Caramazza A. From intermediate shape-centered representations to the perception of oriented shapes: response to commentaries. Cogn Neuropsychol 2023; 40:71-94. [PMID: 37642330 DOI: 10.1080/02643294.2023.2250511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
In this response paper, we start by addressing the main points made by the commentators on the target article's main theoretical conclusions: the existence and characteristics of the intermediate shape-centered representations (ISCRs) in the visual system, their emergence from edge detection mechanisms operating on different types of visual properties, and how they are eventually reunited in higher order frames of reference underlying conscious visual perception. We also address the much-commented issue of the possible neural mechanisms of the ISCRs. In the final section, we address more specific and general comments, questions, and suggestions which, albeit very interesting, were less directly focused on the main conclusions of the target paper.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Institute of Psychological Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albert Galaburda
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Center for Mind/Brain Sciences (CIMeC), Università degli Studi di Trento, Rovereto, Italy
| |
Collapse
|
17
|
Kennedy B, Bex P, Hunter DG, Nasr S. Two fine-scale channels for encoding motion and stereopsis within the human magnocellular stream. Prog Neurobiol 2023; 220:102374. [PMID: 36403864 PMCID: PMC9832588 DOI: 10.1016/j.pneurobio.2022.102374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In humans and non-human primates (NHPs), motion and stereopsis are processed within fine-scale cortical sites, including V2 thick stripes and their extensions into areas V3 and V3A that are believed to be under the influence of magnocellular stream. However, in both species, the relative functional organization (overlapping vs. none overlapping) of these sites remains unclear. Using high-resolution functional MRI (fMRI), we found evidence for two minimally-overlapping channels within human extrastriate areas that contribute to processing motion and stereopsis. Across multiple experiments that included different stimuli (random dots, gratings, and natural scenes), the functional selectivity of these channels for motion vs. stereopsis remained consistent. Furthermore, an analysis of resting-state functional connectivity revealed stronger functional connectivity within the two channels rather than between them. This finding provides a new perspective toward the mesoscale organization of the magnocellular stream within the human extrastriate visual cortex, beyond our previous understanding based on animal models.
Collapse
Affiliation(s)
- B Kennedy
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - P Bex
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - D G Hunter
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Boston's Children Hospital, Boston, MA, United States
| | - S Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
18
|
Tootell RBH, Nasiriavanaki Z, Babadi B, Greve DN, Nasr S, Holt DJ. Interdigitated Columnar Representation of Personal Space and Visual Space in Human Parietal Cortex. J Neurosci 2022; 42:9011-9029. [PMID: 36198501 PMCID: PMC9732835 DOI: 10.1523/jneurosci.0516-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023] Open
Abstract
Personal space (PS) is the space around the body that people prefer to maintain between themselves and unfamiliar others. Intrusion into personal space evokes discomfort and an urge to move away. Physiologic studies in nonhuman primates suggest that defensive responses to intruding stimuli involve the parietal cortex. We hypothesized that the spatial encoding of interpersonal distance is initially transformed from purely sensory to more egocentric mapping within human parietal cortex. This hypothesis was tested using 7 Tesla (7T) fMRI at high spatial resolution (1.1 mm isotropic), in seven subjects (four females, three males). In response to visual stimuli presented at a range of virtual distances, we found two categories of distance encoding in two corresponding radially-extending columns of activity within parietal cortex. One set of columns (P columns) responded selectively to moving and stationary face images presented at virtual distances that were nearer (but not farther) than each subject's behaviorally-defined personal space boundary. In most P columns, BOLD response amplitudes increased monotonically and nonlinearly with increasing virtual face proximity. In the remaining P columns, BOLD responses decreased with increasing proximity. A second set of parietal columns (D columns) responded selectively to disparity-based distance cues (near or far) in random dot stimuli, similar to disparity-selective columns described previously in occipital cortex. Critically, in parietal cortex, P columns were topographically interdigitated (nonoverlapping) with D columns. These results suggest that visual spatial information is transformed from visual to body-centered (or person-centered) dimensions in multiple local sites within human parietal cortex.SIGNIFICANCE STATEMENT Recent COVID-related social distancing practices highlight the need to better understand brain mechanisms which regulate "personal space" (PS), which is defined by the closest interpersonal distance that is comfortable for an individual. Using high spatial resolution brain imaging, we tested whether a map of external space is transformed from purely visual (3D-based) information to a more egocentric map (related to personal space) in human parietal cortex. We confirmed this transformation and further showed that it was mediated by two mutually segregated sets of columns: one which encoded interpersonal distance and another that encoded visual distance. These results suggest that the cortical transformation of sensory-centered to person-centered encoding of space near the body involves short-range communication across interdigitated columns within parietal cortex.
Collapse
Affiliation(s)
- Roger B H Tootell
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Zahra Nasiriavanaki
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Harvard Medical School, Boston, Massachusetts 02115
| | - Baktash Babadi
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Harvard Medical School, Boston, Massachusetts 02115
| | - Douglas N Greve
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Shahin Nasr
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
| |
Collapse
|
19
|
Yan Z, Liao H, Deng C, Zhong Y, Mayeesa TZ, Zhuo Y. DNA damage and repair in the visual center in the rhesus monkey model of glaucoma. Exp Eye Res 2022; 219:109031. [DOI: 10.1016/j.exer.2022.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 11/04/2022]
|
20
|
Kaneko T, Komatsu M, Yamamori T, Ichinohe N, Okano H. Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets. Commun Biol 2022; 5:108. [PMID: 35115680 PMCID: PMC8814246 DOI: 10.1038/s42003-022-03052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Numerous studies have shown that the visual system consists of functionally distinct ventral and dorsal streams; however, its exact spatial-temporal dynamics during natural visual behavior remain to be investigated. Here, we report cerebral neural dynamics during active visual exploration recorded by an electrocorticographic array covering the entire lateral surface of the marmoset cortex. We found that the dorsal stream was activated before the primary visual cortex with saccades and followed by the alteration of suppression and activation signals along the ventral stream. Similarly, the signal that propagated from the dorsal to ventral visual areas was accompanied by a travelling wave of low frequency oscillations. Such signal dynamics occurred at an average of 220 ms after saccades, which corresponded to the timing when whole-brain activation returned to background levels. We also demonstrated that saccades could occur at any point of signal flow, indicating the parallel computation of motor commands. Overall, this study reveals the neural dynamics of active vision, which are efficiently linked to the natural rhythms of visual exploration.
Collapse
Affiliation(s)
- Takaaki Kaneko
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan.
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
21
|
Klimova M, Ling S. Davida reorients intermediate visual processing. Cogn Neuropsychol 2022; 39:88-91. [PMID: 35588248 PMCID: PMC10928806 DOI: 10.1080/02643294.2022.2052719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Michaela Klimova
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| |
Collapse
|
22
|
Soto-Icaza P, Beffara-Bret B, Vargas L, Aboitiz F, Billeke P. Differences in cortical processing of facial emotions in broader autism phenotype. PLoS One 2022; 17:e0262004. [PMID: 35041646 PMCID: PMC8765621 DOI: 10.1371/journal.pone.0262004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous condition that affects face perception. Evidence shows that there are differences in face perception associated with the processing of low spatial frequency (LSF) and high spatial frequency (HSF) of visual stimuli between non-symptomatic relatives of individuals with autism (broader autism phenotype, BAP) and typically developing individuals. However, the neural mechanisms involved in these differences are not fully understood. Here we tested whether face-sensitive event related potentials could serve as neuronal markers of differential spatial frequency processing, and whether these potentials could differentiate non-symptomatic parents of children with autism (pASD) from parents of typically developing children (pTD). To this end, we performed electroencephalographic recordings of both groups of parents while they had to recognize emotions of face pictures composed of the same or different emotions (happiness or anger) presented in different spatial frequencies. We found no significant differences in the accuracy between groups but lower amplitude modulation in the Late Positive Potential activity in pASD. Source analysis showed a difference in the right posterior part of the superior temporal region that correlated with ASD symptomatology of the child. These results reveal differences in brain processing of recognition of facial emotion in BAP that could be a precursor of ASD.
Collapse
Affiliation(s)
- Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | | | | | - Francisco Aboitiz
- Laboratorio de Neurociencias Cognitivas, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
23
|
Westerberg JA, Sigworth EA, Schall JD, Maier A. Pop-out search instigates beta-gated feature selectivity enhancement across V4 layers. Proc Natl Acad Sci U S A 2021; 118:e2103702118. [PMID: 34893538 PMCID: PMC8685673 DOI: 10.1073/pnas.2103702118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Visual search is a workhorse for investigating how attention interacts with processing of sensory information. Attentional selection has been linked to altered cortical sensory responses and feature preferences (i.e., tuning). However, attentional modulation of feature selectivity during search is largely unexplored. Here we map the spatiotemporal profile of feature selectivity during singleton search. Monkeys performed a search where a pop-out feature determined the target of attention. We recorded laminar neural responses from visual area V4. We first identified "feature columns" which showed preference for individual colors. In the unattended condition, feature columns were significantly more selective in superficial relative to middle and deep layers. Attending a stimulus increased selectivity in all layers but not equally. Feature selectivity increased most in the deep layers, leading to higher selectivity in extragranular layers as compared to the middle layer. This attention-induced enhancement was rhythmically gated in phase with the beta-band local field potential. Beta power dominated both extragranular laminar compartments, but current source density analysis pointed to an origin in superficial layers, specifically. While beta-band power was present regardless of attentional state, feature selectivity was only gated by beta in the attended condition. Neither the beta oscillation nor its gating of feature selectivity varied with microsaccade production. Importantly, beta modulation of neural activity predicted response times, suggesting a direct link between attentional gating and behavioral output. Together, these findings suggest beta-range synaptic activation in V4's superficial layers rhythmically gates attentional enhancement of feature tuning in a way that affects the speed of attentional selection.
Collapse
Affiliation(s)
- Jacob A Westerberg
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240;
| | | | - Jeffrey D Schall
- Centre for Vision Research, Vision: Science to Applications Program, Department of Biology and Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Alexander Maier
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
24
|
Fracasso A, Dumoulin SO, Petridou N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex. Prog Neurobiol 2021; 207:102187. [PMID: 34798198 DOI: 10.1016/j.pneurobio.2021.102187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Columns and layers are fundamental organizational units of the brain. Well known examples of cortical columns are the ocular dominance columns (ODCs) in primary visual cortex and the column-like stripe-based arrangement in the second visual area V2. The spatial scale of columns and layers is beyond the reach of conventional neuroimaging, but the advent of high field magnetic resonance imaging (MRI) scanners (UHF, 7 Tesla and above) has opened the possibility to acquire data at this spatial scale, in-vivo and non-invasively in humans. The most prominent non-invasive technique to measure brain function is blood oxygen level dependent (BOLD) fMRI, measuring brain activity indirectly, via changes in hemodynamics. A key determinant of the ability of high-resolution BOLD fMRI to accurately resolve columns and layers is the point-spread function (PSF) of the BOLD response in relation to the spatial extent of neuronal activity. In this study we take advantage of the stripe-based arrangement present in visual area V2, coupled with sub-millimetre anatomical and gradient-echo BOLD (GE BOLD) acquisition at 7 T to obtain PSF estimates and along cortical depth in human participants. Results show that the BOLD PSF is maximal in the superficial part of the cortex (1.78 mm), and it decreases with increasing cortical depth (0.83 mm close to white matter).
Collapse
Affiliation(s)
- Alessio Fracasso
- University of Glasgow, Institute of Neuroscience and Psychology, Glasgow, Scotland, United Kingdom.
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands; Spinoza Center for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University Amsterdam, the Netherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
25
|
de Zwart JA, van Gelderen P, Duyn JH. Sensitivity limitations of high-resolution perfusion-based human fMRI at 7 Tesla. Magn Reson Imaging 2021; 84:135-144. [PMID: 34624401 DOI: 10.1016/j.mri.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
The study of the brain's functional organization at laminar and columnar level of the cortex with blood oxygenation-level dependent (BOLD) functional MRI (fMRI) is affected by the contribution of large veins downstream from the microvascular response to brain activity. Blood volume- and especially perfusion-based techniques may reduce this problem because of their reduced sensitivity to venous effects, but may not allow the same spatial resolution because of smaller signal changes associated with brain activity. Here we investigated the practical resolution limits of perfusion-weighted fMRI in human visual stimulation experiments. For this purpose, we used a highly sensitive, single-shot perfusion labeling (SSPL) technique at 7 T and compared sensitivity to detect visual activation at low (2 mm, n = 10) and high (1 mm, n = 8) nominal isotropic spatial, and 3 s temporal, resolution with BOLD in 5½-minute-long experiments. Despite the smaller absolute signal change with activation, 2 mm resolution SSPL yielded comparable sensitivity to BOLD. This was attributed to a superior suppression of physiological noise with SSPL. However, at 1 mm nominal resolution, SSPL sensitivity fell on average at least 42% below that of BOLD, and detection of visual activation was compromised. This is explained by the fact that at high resolution, with both techniques, typically thermal noise rather than physiological noise dominates sensitivity. The observed sensitivity loss implies that to perform 1-mm resolution, perfusion weighted fMRI with a robustness similar to BOLD, scan times that are almost 3 times longer than the comparable BOLD experiment are required. This is in line with or slightly better than previous comparisons between perfusion-weighted fMRI and BOLD. The lower sensitivity has to be weighed against the spatial fidelity advantages of high-resolution perfusion-weighted fMRI.
Collapse
Affiliation(s)
- Jacco A de Zwart
- Advanced MRI section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Peter van Gelderen
- Advanced MRI section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeff H Duyn
- Advanced MRI section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Ultra-High-Field Neuroimaging Reveals Fine-Scale Processing for 3D Perception. J Neurosci 2021; 41:8362-8374. [PMID: 34413206 PMCID: PMC8496197 DOI: 10.1523/jneurosci.0065-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Binocular disparity provides critical information about three-dimensional (3D) structures to support perception and action. In the past decade significant progress has been made in uncovering human brain areas engaged in the processing of binocular disparity signals. Yet, the fine-scale brain processing underlying 3D perception remains unknown. Here, we use ultra-high-field (7T) functional imaging at submillimeter resolution to examine fine-scale BOLD fMRI signals involved in 3D perception. In particular, we sought to interrogate the local circuitry involved in disparity processing by sampling fMRI responses at different positions relative to the cortical surface (i.e., across cortical depths corresponding to layers). We tested for representations related to 3D perception by presenting participants (male and female, N = 8) with stimuli that enable stable stereoscopic perception [i.e., correlated random dot stereograms (RDS)] versus those that do not (i.e., anticorrelated RDS). Using multivoxel pattern analysis (MVPA), we demonstrate cortical depth-specific representations in areas V3A and V7 as indicated by stronger pattern responses for correlated than for anticorrelated stimuli in upper rather than deeper layers. Examining informational connectivity, we find higher feedforward layer-to-layer connectivity for correlated than anticorrelated stimuli between V3A and V7. Further, we observe disparity-specific feedback from V3A to V1 and from V7 to V3A. Our findings provide evidence for the role of V3A as a key nexus for disparity processing, which is implicated in feedforward and feedback signals related to the perceptual estimation of 3D structures.SIGNIFICANCE STATEMENT Binocular vision plays a significant role in supporting our interactions with the surrounding environment. The fine-scale neural mechanisms that underlie the brain's skill in extracting 3D structures from binocular signals are poorly understood. Here, we capitalize on recent advances in ultra-high-field functional imaging to interrogate human brain circuits involved in 3D perception at submillimeter resolution. We provide evidence for the role of area V3A as a key nexus for disparity processing, which is implicated in feedforward and feedback signals related to the perceptual estimation of 3D structures from binocular signals. These fine-scale measurements help bridge the gap between animal neurophysiology and human fMRI studies investigating cross-scale circuits, from micro circuits to global brain networks for 3D perception.
Collapse
|
27
|
Werth R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci 2021; 11:1313. [PMID: 34679378 PMCID: PMC8534212 DOI: 10.3390/brainsci11101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Haydnstrasse 5, D-80336 Munich, Germany
| |
Collapse
|
28
|
Vannuscorps G, Galaburda A, Caramazza A. Shape-centered representations of bounded regions of space mediate the perception of objects. Cogn Neuropsychol 2021; 39:1-50. [PMID: 34427539 DOI: 10.1080/02643294.2021.1960495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the study of a woman who perceives 2D bounded regions of space ("shapes") defined by sharp edges of medium to high contrast as if they were rotated by 90, 180 degrees around their centre, mirrored across their own axes, or both. In contrast, her perception of 3D, strongly blurred or very low contrast shapes, and of stimuli emerging from a collection of shapes, is intact. This suggests that a stage in the process of constructing the conscious visual representation of a scene consists of representing mutually exclusive bounded regions extracted from the initial retinotopic space in "shape-centered" frames of reference. The selectivity of the disorder to shapes originally biased toward the parvocellular subcortical pathway, and the absence of any other type of error, additionally invite new hypotheses about the operations involved in computing these "intermediate shape-centered representations" and in mapping them onto higher frames for perception and action.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Department of Psychology, Harvard University, Cambridge, MA, USA.,Institute of Psychological Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albert Galaburda
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA, USA.,Center for Mind/Brain Sciences (CIMeC), Università degli Studi di Trento, Rovereto, Italy
| |
Collapse
|
29
|
Alvarez I, Hurley SA, Parker AJ, Bridge H. Human primary visual cortex shows larger population receptive fields for binocular disparity-defined stimuli. Brain Struct Funct 2021; 226:2819-2838. [PMID: 34347164 PMCID: PMC8541985 DOI: 10.1007/s00429-021-02351-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
The visual perception of 3D depth is underpinned by the brain's ability to combine signals from the left and right eyes to produce a neural representation of binocular disparity for perception and behaviour. Electrophysiological studies of binocular disparity over the past 2 decades have investigated the computational role of neurons in area V1 for binocular combination, while more recent neuroimaging investigations have focused on identifying specific roles for different extrastriate visual areas in depth perception. Here we investigate the population receptive field properties of neural responses to binocular information in striate and extrastriate cortical visual areas using ultra-high field fMRI. We measured BOLD fMRI responses while participants viewed retinotopic mapping stimuli defined by different visual properties: contrast, luminance, motion, correlated and anti-correlated stereoscopic disparity. By fitting each condition with a population receptive field model, we compared quantitatively the size of the population receptive field for disparity-specific stimulation. We found larger population receptive fields for disparity compared with contrast and luminance in area V1, the first stage of binocular combination, which likely reflects the binocular integration zone, an interpretation supported by modelling of the binocular energy model. A similar pattern was found in region LOC, where it may reflect the role of disparity as a cue for 3D shape. These findings provide insight into the binocular receptive field properties underlying processing for human stereoscopic vision.
Collapse
Affiliation(s)
- Ivan Alvarez
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Samuel A Hurley
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Radiology, University of Wisconsin, Madison, WI, 53705, USA
| | - Andrew J Parker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Institut für Biologie, Otto-von-Guericke Universität, 39120, Magdeburg, Germany
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
30
|
Taylor-Cooke PA, Chacko JG, Chelette K, Mennemeier MS. Lateralized Effects in Troxler Fading and Parvo and Magnocellular Processing Tasks after Localized 1Hz rTMS. FRONTIERS IN NEUROLOGY AND NEUROSCIENCE RESEARCH 2021; 2:100013. [PMID: 34296218 PMCID: PMC8294715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Troxler Fading (TF) is a complex visual phenomenon with uncertain mechanisms. This study was performed to test hypotheses concerning the contributions of parvocellular and magnocelluar processing in extrastriate pathways to TF. The study used low-frequency, repetitive Transcranial Magnetic Stimulation (rTMS) delivered at target sites in the parietal, temporal and dorsolateral frontal cortex to alter performance on a TF paradigm and on tests sensitive to parvocellular and magnocellular processing. Nine, right-handed, healthy subjects completed 3 tasks, TF, Texture Detection (TD), and Motion Detection (MD), at baseline and after undergoing 15 minutes of low-frequency rTMS at each cortical site on separate occasions. Results revealed lateralized effects of rTMS on each test. Left temporal stimulation slowed the parvocellular, TD task and it accelerated TF. Right parietal stimulation markedly accelerated TF whereas left parietal stimulation slowed TF. Right frontal stimulation accelerated performance on the magnocellular, MD task. Taken together and in the context of other research studies, the findings suggest hemispheric specialization both for TF and for the parvocellular and magnocellular processing tasks.
Collapse
Affiliation(s)
- Patricia A. Taylor-Cooke
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, USA
| | - Joseph G. Chacko
- Departments of Ophthalmology and Neurology, University of Arkansas for Medical Sciences, USA
| | | | - Mark S. Mennemeier
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, USA
| |
Collapse
|
31
|
Fracasso A, Dumoulin SO, Petridou N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex. Prog Neurobiol 2021; 202:102034. [PMID: 33741401 DOI: 10.1016/j.pneurobio.2021.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Columns and layers are fundamental organizational units of the brain. Well known examples of cortical columns are the ocular dominance columns (ODCs) in primary visual cortex and the column-like stripe-based arrangement in the second visual area V2. The spatial scale of columns and layers is beyond the reach of conventional neuroimaging, but the advent of high field magnetic resonance imaging (MRI) scanners (UHF, 7 T and above) has opened the possibility to acquire data at this spatial scale, in-vivo and non-invasively in humans. The most prominent non-invasive technique to measure brain function is blood oxygen level dependent (BOLD) fMRI, measuring brain activity indirectly, via changes in hemodynamics. A key determinant of the ability of high-resolution BOLD fMRI to accurately resolve columns and layers is the point-spread function (PSF) of the BOLD response in relation to the spatial extent of neuronal activity. In this study we take advantage of the stripe-based arrangement present in visual area V2, coupled with sub-millimetre anatomical and gradient-echo BOLD (GE BOLD) acquisition at 7 T to obtain PSF estimates and along cortical depth in human participants. Results show that the BOLD PSF is maximal in the superficial part of the cortex (1.78 mm), and it decreases with increasing cortical depth (0.83 mm close to white matter).
Collapse
Affiliation(s)
- Alessio Fracasso
- University of Glasgow, Institute of Neuroscience and Psychology, Glasgow, Scotland, United Kingdom.
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands; Spinoza Center for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University Amsterdam, the Netherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Hever F, Sahin D, Aschenbrenner S, Bossert M, Herwig K, Wirtz G, Oelkers-Ax R, Weisbrod M, Sharma A. Visual N80 latency as a marker of neuropsychological performance in schizophrenia: Evidence for bottom-up cognitive models. Clin Neurophysiol 2021; 132:872-885. [PMID: 33636604 DOI: 10.1016/j.clinph.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cognitive deficits and visual impairment in the magnocellular (M) pathway, have been independently reported in schizophrenia. The current study examined the association between neuropsychological (NPS) performance and visual evoked potentials (VEPs: N80/P1 to M- and P(parvocellular)-biased visual stimuli) in schizophrenia and healthy controls. METHODS NPS performance and VEPs were measured in n = 44 patients and n = 34 matched controls. Standardized NPS-scores were combined into Domains and a PCA (Principal Component Analysis) generated Composite. Group differences were assessed via (M)ANOVAs, association between NPS and VEP parameters via PCA, Pearson's coefficient and bootstrapping. Logistic regression was employed to assess classification power. RESULTS Patients showed general cognitive impairment, whereas group differences for VEP-parameters were non-significant. In patients, N80 latency across conditions loaded onto one factor with cognitive composite, showed significant negative correlations of medium effect sizes with NPS performance for M/P mixed stimuli and classified low and high performance with 70% accuracy. CONCLUSION The study provides no evidence for early visual pathway impairment but suggests a heightened association between early visual processing and cognitive performance in schizophrenia. SIGNIFICANCE Our results lend support to bottom-up models of cognitive function in schizophrenia and implicate visual N80 latency as a potential biomarker of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Felix Hever
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| | - Derya Sahin
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Magdalena Bossert
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Kerstin Herwig
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Gustav Wirtz
- SRH RPK Karlsbad, Psychiatric Rehabilitation, Karlsbad-Langensteinbach, Germany
| | - Rieke Oelkers-Ax
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Matthias Weisbrod
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Anuradha Sharma
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
33
|
Creupelandt C, Maurage P, Lenoble Q, Lambot C, Geus C, D'Hondt F. Magnocellular and Parvocellular Mediated Luminance Contrast Discrimination in Severe Alcohol Use Disorder. Alcohol Clin Exp Res 2021; 45:375-385. [PMID: 33349930 DOI: 10.1111/acer.14541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Severe alcohol use disorder (SAUD) is associated with widespread cognitive impairments, including low-level visual processing deficits that persist after prolonged abstinence. However, the extent and characteristics of these visual deficits remain largely undetermined, impeding the identification of their underlying mechanisms and influence on higher-order processing. In particular, little work has been conducted to assess the integrity of the magnocellular (MC) and parvocellular (PC) visual pathways, namely the 2 main visual streams that convey information from the retina up to striate, extrastriate, and dorsal/ventral cerebral regions. METHODS We investigated achromatic luminance contrast processing mediated by inferred MC and PC pathways in 33 patients with SAUD and 32 matched healthy controls using 2 psychophysical pedestal contrast discrimination tasks that promote responses of inferred MC or PC pathways. We relied on a staircase procedure to assess participants' ability to detect small changes in luminance within an array of 4 gray squares that were either continuously presented (steady pedestal, MC-biased) or briefly flashed (pulsed pedestal, PC-biased). RESULTS We replicated the expected pattern of MC and PC contrast responses in healthy controls. We found preserved dissociation of MC and PC contrast signatures in SAUD but higher MC-mediated mean contrast discrimination thresholds combined with a steeper PC-mediated contrast discrimination slope compared with healthy controls. CONCLUSION These findings indicate altered MC-mediated contrast sensitivity and PC-mediated contrast gain, confirming the presence of early sensory disturbances in individuals with SAUD. Such low-level deficits, while usually overlooked, might influence higher-order abilities (e.g., memory, executive functions) in SAUD by disturbing the "coarse-to-fine" tuning of the visual system, which relies on the distinct functional properties of MC and PC pathways and ensures proper and efficient monitoring of the environment.
Collapse
Affiliation(s)
- Coralie Creupelandt
- Louvain Experimental Psychopathology Research Group (UCLEP), Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (UCLEP), Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| | - Quentin Lenoble
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Carine Lambot
- Clinique Regina Pacis, Le Beau Vallon, Saint-Servais, Belgium
| | - Christophe Geus
- Psychiatry Unit, Clinique Saint Pierre Ottignies, Ottignies, Belgium
| | - Fabien D'Hondt
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.,CHU Lille, Clinique de Psychiatrie, CURE, Lille, France.,Centre National de Ressources et de Résilience Lille-Paris (CN2R), Lille, France
| |
Collapse
|
34
|
Marcar VL, Wolf M. An investigation into the relationship between stimulus property, neural response and its manifestation in the visual evoked potential involving retinal resolution. Eur J Neurosci 2021; 53:2612-2628. [PMID: 33448503 DOI: 10.1111/ejn.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
The visual evoked potential (VEP) has been shown to reflect the size of the neural population activated by a processing mechanism selective to the temporal - and spatial luminance contrast property of a stimulus. We set out to better understand how the factors determining the neural response associated with these mechanisms. To do so we recorded the VEP from 14 healthy volunteers viewing two series of pattern reversing stimuli with identical temporal-and spatial luminance contrast properties. In one series the size of the elements increased towards the edge of the image, in the other it decreased. In the former element size was congruent with receptive field size across eccentricity, in the later it was incongruent. P100 amplitude to the incongruent series exceeded that obtained to the congruent series. Using electric dipoles due the excitatory neural response we accounted for this using dipole cancellation of electric dipoles of opposite polarity originating in supra- and infragranular layers of V1. The phasic neural response in granular lamina of V1 exhibited magnocellular characteristics, the neural response outside of the granular lamina exhibited parvocellular characteristics and was modulated by re-entrant projections. Using electric current density, we identified areas of the dorsal followed by areas of the ventral stream as the source of the re-entrant signal modulating infragranular activity. Our work demonstrates that the VEP does not signal reflect the overall level of a neural response but is the result of an interaction between electric dipoles originating from neural responses in different lamina of V1.
Collapse
Affiliation(s)
- Valentine L Marcar
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Tootell RBH, Nasr S. Scotopic Vision Is Selectively Processed in Thick-Type Columns in Human Extrastriate Cortex. Cereb Cortex 2021; 31:1163-1181. [PMID: 33073288 PMCID: PMC7786355 DOI: 10.1093/cercor/bhaa284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
In humans, visual stimuli can be perceived across an enormous range of light levels. Evidence suggests that different neural mechanisms process different subdivisions of this range. For instance, in the retina, stimuli presented at very low (scotopic) light levels activate rod photoreceptors, whereas cone photoreceptors are activated relatively more at higher (photopic) light levels. Similarly, different retinal ganglion cells are activated by scotopic versus photopic stimuli. However, in the brain, it remains unknown whether scotopic versus photopic information is: 1) processed in distinct channels, or 2) neurally merged. Using high-resolution functional magnetic resonance imaging at 7 T, we confirmed the first hypothesis. We first localized thick versus thin-type columns within areas V2, V3, and V4, based on photopic selectivity to motion versus color, respectively. Next, we found that scotopic stimuli selectively activated thick- (compared to thin-) type columns in V2 and V3 (in measurements of both overlap and amplitude) and V4 (based on overlap). Finally, we found stronger resting-state functional connections between scotopically dominated area MT with thick- (compared to thin-) type columns in areas V2, V3, and V4. We conclude that scotopic stimuli are processed in partially segregated parallel streams, emphasizing magnocellular influence, from retina through middle stages of visual cortex.
Collapse
Affiliation(s)
- Roger B H Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Abstract
Safe driving demands the coordination of multiple sensory and cognitive functions, such as vision and attention. Patients with neurologic or ophthalmic disease are exposed to selective pathophysiologic insults to driving-critical systems, placing them at a higher risk for unsafe driving and restricted driving privileges. Here, we evaluate how vision and attention contribute to unsafe driving across different patient populations. In ophthalmic disease, we focus on macular degeneration, glaucoma, diabetic retinopathy, and cataract; in neurologic disease, we focus on Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Unsafe driving is generally associated with impaired vision and attention in ophthalmic and neurologic patients, respectively. Furthermore, patients with ophthalmic disease experience some degree of impairment in attention. Similarly, patients with neurologic disease experience some degree of impairment in vision. While numerous studies have demonstrated a relationship between impaired vision and unsafe driving in neurologic disease, there remains a dearth of knowledge regarding the relationship between impaired attention and unsafe driving in ophthalmic disease. In summary, this chapter confirms-and offers opportunities for future research into-the contribution of vision and attention to safe driving.
Collapse
Affiliation(s)
- David E Anderson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deepta A Ghate
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew Rizzo
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
37
|
Zemon V, Herrera S, Gordon J, Revheim N, Silipo G, Butler PD. Contrast sensitivity deficits in schizophrenia: A psychophysical investigation. Eur J Neurosci 2020; 53:1155-1170. [DOI: 10.1111/ejn.15026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Vance Zemon
- Ferkauf Graduate School of Psychology Yeshiva University Bronx NY USA
| | - Shaynna Herrera
- Ferkauf Graduate School of Psychology Yeshiva University Bronx NY USA
| | - James Gordon
- Hunter College of the City University of New York New York NY USA
| | - Nadine Revheim
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
| | - Gail Silipo
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
| | - Pamela D. Butler
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
- Department of Psychiatry New York University School of Medicine New York NY USA
| |
Collapse
|
38
|
Navarro KT, Sanchez MJ, Engel SA, Olman CA, Weldon KB. Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2. Neuroimage 2020; 226:117520. [PMID: 33137474 PMCID: PMC7958868 DOI: 10.1016/j.neuroimage.2020.117520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
In the primate visual system, form (shape, location) and color information are processed in separate but interacting pathways. Recent access to high-resolution neuroimaging has facilitated the exploration of the structure of these pathways at the mesoscopic level in the human visual cortex. We used 7T fMRI to observe selective activation of the primary visual cortex to chromatic versus achromatic stimuli in five participants across two scanning sessions. Achromatic checkerboards with low spatial frequency and high temporal frequency targeted the color-insensitive magnocellular pathway. Chromatic checkerboards with higher spatial frequency and low temporal frequency targeted the color-selective parvocellular pathway. This work resulted in three main findings. First, responses driven by chromatic stimuli had a laminar profile biased towards superficial layers of V1, as compared to responses driven by achromatic stimuli. Second, we found stronger preference for chromatic stimuli in parafoveal V1 compared with peripheral V1. Finally, we found alternating, stimulus-selective bands stemming from the V1 border into V2 and V3. Similar alternating patterns have been previously found in both NHP and human extrastriate cortex. Together, our findings confirm the utility of fMRI for revealing details of mesoscopic neural architecture in human cortex.
Collapse
Affiliation(s)
- Karen T Navarro
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN 55455, United States.
| | - Marisa J Sanchez
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 2450 Riverside Ave f275, Minneapolis, MN 55454, United States
| | - Stephen A Engel
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN 55455, United States
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN 55455, United States; Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN 55455, United States
| | - Kimberly B Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 2450 Riverside Ave f275, Minneapolis, MN 55454, United States; Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN 55455, United States
| |
Collapse
|
39
|
When figure-ground segregation fails: Exploring antagonistic interactions in figure-ground perception. Atten Percept Psychophys 2020; 82:3618-3635. [PMID: 32686064 DOI: 10.3758/s13414-020-02097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perceptual fading of an artificial scotoma can be viewed as a failure of figure-ground segregation, providing a useful tool for investigating possible mechanisms and processes involved in figure-ground perception. Weisstein's antagonistic magnocellular/parvocellular stream figure-ground model proposes P stream activity encodes figure, and M stream activity encodes background. Where a boundary separates two regions, the region that is perceived as figure or ground is determined by the outcome of antagonism between M and P activity within each region and across the boundary between them. The region with the relatively stronger P "figure signal" is perceived as figure, and the region with the relatively stronger M "ground signal" is perceived as ground. From this perspective, fading occurs when the figure signal is overwhelmed by the ground signal. Strengthening the figure signal or weakening the ground signal should make the figure more resistant to fading. Based on research showing that red light suppresses M activity and short wavelength sensitive S-cones provide minimal input to M cells, we used red and blue light to reduce M activity in both figure and ground. The time to fade from stimulus onset until the figure completely disappeared was measured. Every combination of gray, green, red, and blue as figure and/or ground was tested. Compared with gray and green light, fade times were greatest when red or blue light either strengthened the figure signal by reducing M activity in the figure, or weakened the ground signal by reducing M activity in ground. The results support a dynamic antagonistic relationship between M and P activity contributing to figure-ground perception as envisioned in Weisstein's model.
Collapse
|
40
|
Nasr S, Rosas HD. Impact of Huntington's Disease on Mental Rotation Performance in Motor Pre-Symptomatic Individuals. J Huntingtons Dis 2020; 8:339-356. [PMID: 31306138 DOI: 10.3233/jhd-190348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic disorder known for affecting motor control. Despite evidence for the impact of HD on visual cortico-striatal loops, evidence for impaired visual perception in early symptomatic HD patients is limited; much less is known about what happens during the HD prodrome. OBJECTIVE The goals of this study were to evaluate perceptual processing in motor pre-manifest HD gene-carriers (Pre-HDs) during a visual mental rotation task. METHODS To achieve this goal, 79 participants including 24 Pre-HD participants and 55 healthy matched controls were scanned using functional MRI as they performed a mental rotation task. Another group of 36 subjects including 15 pre-HDs and 21 healthy age/gender matched controls participated in a control behavioral test of judgment of line orientation outside the scanner. RESULTS We found that, although Pre-HDs (in this stage of disease) did not demonstrate slower response times, their response accuracy was lower than controls. On the fMRI task, controls showed a significant decrease in activity in the occipito-temporal (OT) visual network and increase in activity in the caudo-fronto-parietal (CFP) network with mental rotation load. Interestingly, the amount of mental rotation-related activity decrease in the OT network was reduced in Pre-HDs compared to controls while, the level of CFP response remained unchanged between the two groups. Comparing the link between the evoked BOLD activity within these networks and response accuracy (i.e., behavior), we found that the models fit to data from controls were less accurate in predicting response accuracy of Pre-HDs. CONCLUSION These findings provide some of the earliest functional evidence of impaired visual processing and altered neural processing underlying visual perceptual decision making during the HD prodrome.
Collapse
Affiliation(s)
- Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Herminia D Rosas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Center for Neuroimaging of Aging and Neurodegenerative Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Ruiz MJ, Dojat M, Hupé JM. Multivariate pattern analysis of fMRI data for imaginary and real colours in grapheme-colour synaesthesia. Eur J Neurosci 2020; 52:3434-3456. [PMID: 32384170 DOI: 10.1111/ejn.14774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 11/29/2022]
Abstract
Grapheme-colour synaesthesia is a subjective phenomenon related to perception and imagination, in which some people involuntarily but systematically associate specific, idiosyncratic colours to achromatic letters or digits. Its investigation is relevant to unravel the neural correlates of colour perception in isolation from low-level neural processing of spectral components, as well as the neural correlates of imagination by being able to reliably trigger imaginary colour experiences. However, functional MRI studies using univariate analyses failed to provide univocal evidence of the activation of the "colour network" by synaesthesia. Applying multivariate (multivoxel) pattern analysis (MVPA) on 20 synaesthetes and 20 control participants, we tested whether the neural processing of real colours (concentric rings) and synaesthetic colours (black graphemes) shared patterns of activations. Region of interest analyses in retinotopically and anatomically defined visual areas revealed neither evidence of shared circuits for real and synaesthetic colour processing, nor processing difference between synaesthetes and controls. We also found no correlation with individual experiences, characterised by measuring the strength of synaesthetic associations. The whole brain searchlight analysis led to similar results. We conclude that revealing the neural coding of the synaesthetic experience of colours is a hard task which requires the improvement of our current methodology: for example involving more individuals and achieving higher MR signal to noise ratio and spatial resolution. So far, we have not found any evidence of the involvement of the cortical colour network in the subjective experience of synaesthetic colours.
Collapse
Affiliation(s)
- Mathieu J Ruiz
- Centre de Recherche Cerveau et Cognition, Université de Toulouse Paul Sabatier & CNRS, Toulouse, France.,Grenoble Institut des Neurosciences, Université Grenoble Alpes, INSERM & CHU Grenoble Alpes, Grenoble, France
| | - Michel Dojat
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, INSERM & CHU Grenoble Alpes, Grenoble, France
| | - Jean-Michel Hupé
- Centre de Recherche Cerveau et Cognition, Université de Toulouse Paul Sabatier & CNRS, Toulouse, France
| |
Collapse
|
42
|
Goddard E, Mullen KT. fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex. Neuroimage 2020; 215:116780. [PMID: 32276074 DOI: 10.1016/j.neuroimage.2020.116780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/23/2023] Open
Abstract
Human visual cortex is partitioned into different functional areas that, from lower to higher, become increasingly selective and responsive to complex feature dimensions. Here we use a Representational Similarity Analysis (RSA) of fMRI-BOLD signals to make quantitative comparisons across LGN and multiple visual areas of the low-level stimulus information encoded in the patterns of voxel responses. Our stimulus set was picked to target the four functionally distinct subcortical channels that input visual cortex from the LGN: two achromatic sinewave stimuli that favor the responses of the high-temporal magnocellular and high-spatial parvocellular pathways, respectively, and two chromatic stimuli isolating the L/M-cone opponent and S-cone opponent pathways, respectively. Each stimulus type had three spatial extents to sample both foveal and para-central visual field. With the RSA, we compare quantitatively the response specializations for individual stimuli and combinations of stimuli in each area and how these change across visual cortex. First, our results replicate the known response preferences for motion/flicker in the dorsal visual areas. In addition, we identify two distinct gradients along the ventral visual stream. In the early visual areas (V1-V3), the strongest differential representation is for the achromatic high spatial frequency stimuli, suitable for form vision, and a very weak differentiation of chromatic versus achromatic contrast. Emerging in ventral occipital areas (V4, VO1 and VO2), however, is an increasingly strong separation of the responses to chromatic versus achromatic contrast and a decline in the high spatial frequency representation. These gradients provide new insight into how visual information is transformed across the visual cortex.
Collapse
Affiliation(s)
- Erin Goddard
- McGill Vision Research, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, H3G1A4, Canada
| | - Kathy T Mullen
- McGill Vision Research, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, H3G1A4, Canada.
| |
Collapse
|
43
|
Elkin-Frankston S, Rushmore RJ, Valero-Cabré A. Low frequency transcranial magnetic stimulation of right posterior parietal cortex reduces reaction time to perithreshold low spatial frequency visual stimuli. Sci Rep 2020; 10:3162. [PMID: 32081939 PMCID: PMC7035391 DOI: 10.1038/s41598-020-59662-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022] Open
Abstract
Research in humans and animal models suggests that visual responses in early visual cortical areas may be modulated by top-down influences from distant cortical areas, particularly in the frontal and parietal regions. The right posterior parietal cortex is part of a broad cortical network involved in aspects of visual search and attention, but its role in modulating activity in early visual cortical areas is less well understood. This study evaluated the influence of right posterior parietal cortex (PPC) on a direct measure of visual processing in humans. Contrast sensitivity (CS) and detection response times were recorded using a visual detection paradigm to two types of centrally-presented stimuli. Participants were tested on the detection task before, after, and 1 hour after low-frequency repetitive transcranial magnetic stimulation (rTMS) to the right PPC or to the scalp vertex. Low-frequency rTMS to the right PPC did not significantly change measures of contrast sensitivity, but increased the speed at which participants responded to visual stimuli of low spatial frequency. Response times returned to baseline 1-hour after rTMS. These data indicate that low frequency rTMS to the right PPC speeds up aspects of early visual processing, likely due to a disinhibition of the homotopic left posterior parietal cortex.
Collapse
Affiliation(s)
- Seth Elkin-Frankston
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.,U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Richard J Rushmore
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, United States. .,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States.
| | - Antoni Valero-Cabré
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Cerebral Dynamics Plasticity and Rehabilitation Group, FRONTLAB Team ICM & CNRS UMR 7225, INSERM UMR 1127, Sorbone Universtité & LPNC CNRS UMR 5105-TREAT vision, Service de Neurologie, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
44
|
|
45
|
Asymmetries in Global Perception Are Represented in Near- versus Far-Preferring Clusters in Human Visual Cortex. J Neurosci 2019; 40:355-368. [PMID: 31744860 PMCID: PMC6948936 DOI: 10.1523/jneurosci.2124-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022] Open
Abstract
Human perception is more “global” when stimuli are viewed within the lower (rather than the upper) visual field. This phenomenon is typically considered as a 2-D phenomenon, likely due to differential neural processing within dorsal versus ventral cortical areas that represent lower versus upper visual fields, respectively. Here we test a novel hypothesis that this vertical asymmetry in global processing is a 3-D phenomenon associated with (1) higher ecological relevance of low-spatial frequency (SF) components in encoding near (compared with far) visual objects and (2) the fact that near objects are more frequently found in lower rather than upper visual fields. Using high-resolution fMRI, collected within an ultra-high-field (7 T) scanner, we found that the extent of vertical asymmetry in global visual processing in human subjects (n = 10) was correlated with the fMRI response evoked by disparity-varying stimuli in human cortical area V3A. We also found that near-preferring clusters in V3A, located within stereoselective cortical columns, responded more selectively than far-preferring clusters, to low-SF features. These findings support the hypothesis that vertical asymmetry in global processing is a 3-D (not a 2-D) phenomenon, associated with the function of the stereoselective columns within visual cortex, especially those located within visual area V3A. SIGNIFICANCE STATEMENT Here we test and confirm a new hypothesis: fine-scale neural mechanisms underlying the vertical asymmetry in global visual processing. According to this hypothesis, the asymmetry in global visual processing is a 3-D (rather than a 2-D) phenomenon, reflected in the function of fine-scale cortical structures (clusters and columns) underlying depth perception. Our findings highlight the importance of considering these structures, as regions of interest, in clarifying the neural mechanisms underlying visual perception. The results also highlight the importance of statistics of natural scenes in shaping human visual perception.
Collapse
|
46
|
He Z. Cellular and Network Mechanisms for Temporal Signal Propagation in a Cortical Network Model. Front Comput Neurosci 2019; 13:57. [PMID: 31507397 PMCID: PMC6718730 DOI: 10.3389/fncom.2019.00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023] Open
Abstract
The mechanisms underlying an effective propagation of high intensity information over a background of irregular firing and response latency in cognitive processes remain unclear. Here we propose a SSCCPI circuit to address this issue. We hypothesize that when a high-intensity thalamic input triggers synchronous spike events (SSEs), dense spikes are scattered to many receiving neurons within a cortical column in layer IV, many sparse spike trains are propagated in parallel along minicolumns at a substantially high speed and finally integrated into an output spike train toward or in layer Va. We derive the sufficient conditions for an effective (fast, reliable, and precise) SSCCPI circuit: (i) SSEs are asynchronous (near synchronous); (ii) cortical columns prevent both repeatedly triggering SSEs and incorrectly synaptic connections between adjacent columns; and (iii) the propagator in interneurons is temporally complete fidelity and reliable. We encode the membrane potential responses to stimuli using the non-linear autoregressive integrated process derived by applying Newton's second law to stochastic resilience systems. We introduce a multithreshold decoder to correct encoding errors. Evidence supporting an effective SSCCPI circuit includes that for the condition, (i) time delay enhances SSEs, suggesting that response latency induces SSEs in high-intensity stimuli; irregular firing causes asynchronous SSEs; asynchronous SSEs relate to healthy neurons; and rigorous SSEs relate to brain disorders. For the condition (ii) neurons within a given minicolumn are stereotypically interconnected in the vertical dimension, which prevents repeated triggering SSEs and ensures signal parallel propagation; columnar segregation avoids incorrect synaptic connections between adjacent columns; and signal propagation across layers overwhelmingly prefers columnar direction. For the condition (iii), accumulating experimental evidence supports temporal transfer precision with millisecond fidelity and reliability in interneurons; homeostasis supports a stable fixed-point encoder by regulating changes to synaptic size, synaptic strength, and ion channel function in the membrane; together all-or-none modulation, active backpropagation, additive effects of graded potentials, and response variability functionally support the multithreshold decoder; our simulations demonstrate that the encoder-decoder is temporally complete fidelity and reliable in special intervals contained within the stable fixed-point range. Hence, the SSCCPI circuit provides a possible mechanism of effective signal propagation in cortical networks.
Collapse
Affiliation(s)
- Zonglu He
- Faculty of Management and Economics, Kaetsu University, Tokyo, Japan
| |
Collapse
|
47
|
Shuai L, Leilei Z, Wen W, Shu W, Gangsheng L, Yinglong L, Guoke Y, Xinrong C, Hong L, Rongfeng L. Binocular treatment in adult amblyopia is based on parvocellular or magnocellular pathway. Eur J Ophthalmol 2019; 30:658-667. [PMID: 31014078 DOI: 10.1177/1120672119841216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Amblyopia is speculated to be an untreatable disease in the patient, who is beyond the critical period of vision; however, currently, it is treatable in adults. PURPOSE This study aimed to elucidate whether the treatment is useful in both anisometropic amblyopia and strabismic amblyopia. In addition, the differences were detected between anisometropic amblyopia and strabismic amblyopia after the same perceptual treatment and whether the suppression in anisometropic amblyopia or strabismic amblyopia could be decreased before and after the treatment. METHODS A binocular perceptual learning was applied for the treatment, the suppression was measured, and the patients were followed up for 2 months after training. Anisometropic amblyopia and strabismic amblyopia groups were subjected to the assessment of stereo, visual acuity, contrast sensitivity, and suppression before and after the training. RESULTS After 6 weeks of "Diploma Gabor Orientation Coherence" training, in the anisometropic amblyopia group, the outcomes of visual acuity (t = 3.114, p = 0.026) and contrast sensitivity (t = 7.786, p = 0.001) were increased significantly. While in the strabismic amblyopia group, the outcomes of stereo (t = 2.987, p = 0.040) and contrast sensitivity (t = 3.638, p = 0.022) were increased significantly. CONCLUSION After Diploma Gabor Orientation Coherence training in the same frequency and in the same duration, the anisometropic amblyopia group got an improvement in visual acuity, but the strabismic amblyopia group got an improvement in stereo. As there are evidences to show that anisometropic amblyopia and strabismic amblyopia were injured in different pathways, we think the diverse results might come from the different pathway injury in anisometropic amblyopia and strabismic amblyopia.
Collapse
Affiliation(s)
- Liu Shuai
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zou Leilei
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Wen Wen
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Wang Shu
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Liu Gangsheng
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Li Yinglong
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Yang Guoke
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Chang Xinrong
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Liu Hong
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Liao Rongfeng
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
48
|
Nasr S, Tootell RBH. Columnar organization of mid-spectral and end-spectral hue preferences in human visual cortex. Neuroimage 2018; 181:748-759. [PMID: 30053514 PMCID: PMC6263155 DOI: 10.1016/j.neuroimage.2018.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/21/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
Multiple color-selective areas have been described in visual cortex, in both humans and non-human primates. In macaques, hue-selective columns have been reported in several areas. In V2, it has been proposed that such hue-selective columns are mapped so as to mirror the order of wavelength through the visible spectrum, within thin-type stripes. Other studies have suggested a neural segregation of mid-spectral vs. end-spectral hue preferences (e.g. red and blue vs. green and yellow), within thin- and thick-type stripes, respectively. This latter segregation could reduce the spatial 'blur' due to chromatic aberration in the encoding of fine spatial details in the thick-type stripes. To distinguish between these and related models, we tested the organization of hue preferences in human visual cortex using fMRI at high spatial resolution. We used a high field (7T) scanner in humans (n = 7), measuring responses to four independent hues, including end-spectral (i.e. red-gray and blue-gray) and mid-spectral (i.e. green-gray and yellow-gray) isoluminant gratings, and also relative to achromatic luminance-varying (control) stimuli. In each subject, thin- and thick-type columns in V2 and V3 were localized using an independent set of stimuli and scans. We found distinct hue-selective differences along the dimension of mid-vs. end-spectral hues, in striate and early extrastriate visual cortex. First, as reported previously in macaques, V1 responded more strongly to end-spectral hues, compared to mid-spectral hues. Second, the color-selective thin-type stripes in V2 and V3 showed a greater response to end- and mid-spectral hues, relative to luminance-varying gratings. Third, thick-type stripes in V2/V3 showed a significantly stronger response to mid-spectral (compared to end-spectral) hues. Fourth, in the higher-tier color-selective area in occipital temporal cortex (n = 4), responses to all four hues were statistically equivalent to each other. These results suggest that early visual cortex segregates the processing of mid-vs. end-spectral hues, perhaps to counter the challenging optical constraint of chromatic aberration.
Collapse
Affiliation(s)
- Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Roger B H Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Vaziri-Pashkam M, Taylor J, Xu Y. Spatial Frequency Tolerant Visual Object Representations in the Human Ventral and Dorsal Visual Processing Pathways. J Cogn Neurosci 2018; 31:49-63. [PMID: 30188780 DOI: 10.1162/jocn_a_01335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Primate ventral and dorsal visual pathways both contain visual object representations. Dorsal regions receive more input from magnocellular system while ventral regions receive inputs from both magnocellular and parvocellular systems. Due to potential differences in the spatial sensitivites of manocellular and parvocellular systems, object representations in ventral and dorsal regions may differ in how they represent visual input from different spatial scales. To test this prediction, we asked observers to view blocks of images from six object categories, shown in full spectrum, high spatial frequency (SF), or low SF. We found robust object category decoding in all SF conditions as well as SF decoding in nearly all the early visual, ventral, and dorsal regions examined. Cross-SF decoding further revealed that object category representations in all regions exhibited substantial tolerance across the SF components. No difference between ventral and dorsal regions was found in their preference for the different SF components. Further comparisons revealed that, whereas differences in the SF component separated object category representations in early visual areas, such a separation was much smaller in downstream ventral and dorsal regions. In those regions, variations among the object categories played a more significant role in shaping the visual representational structures. Our findings show that ventral and dorsal regions are similar in how they represent visual input from different spatial scales and argue against a dissociation of these regions based on differential sensitivity to different SFs.
Collapse
Affiliation(s)
| | | | - Yaoda Xu
- Harvard University.,Yale University
| |
Collapse
|
50
|
Moerel M, De Martino F, Uğurbil K, Formisano E, Yacoub E. Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex. J Neurosci 2018; 38:7822-7832. [PMID: 30185539 PMCID: PMC6125808 DOI: 10.1523/jneurosci.3576-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022] Open
Abstract
Using ultra-high field fMRI, we explored the cortical depth-dependent stability of acoustic feature preference in human auditory cortex. We collected responses from human auditory cortex (subjects from either sex) to a large number of natural sounds at submillimeter spatial resolution, and observed that these responses were well explained by a model that assumes neuronal population tuning to frequency-specific spectrotemporal modulations. We observed a relatively stable (columnar) tuning to frequency and temporal modulations. However, spectral modulation tuning was variable throughout the cortical depth. This difference in columnar stability between feature maps could not be explained by a difference in map smoothness, as the preference along the cortical sheet varied in a similar manner for the different feature maps. Furthermore, tuning to all three features was more columnar in primary than nonprimary auditory cortex. The observed overall lack of overlapping columnar regions across acoustic feature maps suggests, especially for primary auditory cortex, a coding strategy in which across cortical depths tuning to some features is kept stable, whereas tuning to other features systematically varies.SIGNIFICANCE STATEMENT In the human auditory cortex, sound aspects are processed in large-scale maps. Invasive animal studies show that an additional processing organization may be implemented orthogonal to the cortical sheet (i.e., in the columnar direction), but it is unknown whether observed organizational principles apply to the human auditory cortex. Combining ultra-high field fMRI with natural sounds, we explore the columnar organization of various sound aspects. Our results suggest that the human auditory cortex contains a modular coding strategy, where, for each module, several sound aspects act as an anchor along which computations are performed while the processing of another sound aspect undergoes a transformation. This strategy may serve to optimally represent the content of our complex acoustic natural environment.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology and
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Elia Formisano
- Maastricht Centre for Systems Biology and
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|