1
|
Qi G, Jiang Z, Niu J, Jiang C, Zhang J, Pei J, Wang X, An S, Yu T, Wang X, Zhang Y, Ma T, Zhang X, Yuan G, Wang Z. SrHPO 4-coated Mg alloy implant attenuates postoperative pain by suppressing osteoclast-induced sensory innervation in osteoporotic fractures. Mater Today Bio 2024; 28:101227. [PMID: 39290467 PMCID: PMC11405936 DOI: 10.1016/j.mtbio.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Osteoporotic fractures have become a common public health problem and are usually accompanied by chronic pain. Mg and Mg-based alloys are considered the next-generation orthopedic implants for their excellent osteogenic inductivity, biocompatibility, and biodegradability. However, Mg-based alloy can initiate aberrant activation of osteoclasts and modulate sensory innervation into bone callus resulting in postoperative pain at the sequential stage of osteoporotic fracture healing. Its mechanism is going to be investigated. Strontium hydrogen phosphate (SrHPO4) coating to delay the Mg-based alloy degradation, can reduce the osteoclast formation and inhibit the growth of sensory nerves into bone callus, dorsal root ganglion hyperexcitability, and pain hypersensitivity at the early stage. Liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis of bone marrow-derived macrophages (BMMs) treated with SrHPO4-coated Mg alloy extracts shows the potential effect of increased metabolite levels of AICAR (an activator of the AMPK pathway). We demonstrate a possible modulated secretion of AICAR and osteoclast differentiation from BMMs, which inhibits sensory innervation and postoperative pain through the AMPK/mTORc1/S6K pathway. Importantly, supplementing with AICAR in Mg-activated osteoclasts attenuates postoperative pain. These results suggest that Mg-induced postoperative pain is related to the osteoclastogenesis and sensory innervation at the early stage in the osteoporotic fractures and the SrHPO4 coating on Mg-based alloys can reduce the pain by upregulating AICAR secretion from BMMs or preosteoclasts.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhang
- Shanghai Innovation Medical Technology Co., Ltd, 600 Xinyuan South Road, Lingang New Area, Pudong New District, Shanghai, 201306, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated to Zhoupu Hospital, Shanghai, 201318, China
| | - Yueqi Zhang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tianle Ma
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaotian Zhang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Wang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
2
|
Shah PW, Reinberger T, Hashmi S, Aherrahrou Z, Erdmann J. MRAS in coronary artery disease-Unchartered territory. IUBMB Life 2024; 76:300-312. [PMID: 38251784 DOI: 10.1002/iub.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
Genome-wide association studies (GWAS) have identified coronary artery disease (CAD) susceptibility locus on chromosome 3q22.3. This locus contains a cluster of several genes that includes muscle rat sarcoma virus (MRAS). Common MRAS variants are also associated with CAD causing risk factors such as hypertension, dyslipidemia, obesity, and type II diabetes. The MRAS gene is an oncogene that encodes a membrane-bound small GTPase. It is involved in a variety of signaling pathways, regulating cell differentiation and cell survival (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase) as well as acute phase response signaling (tumor necrosis factor [TNF] and interleukin 6 [IL6] signaling). In this review, we will summarize the role of genetic MRAS variants in the etiology of CAD and its comorbidities with the focus on tissue distribution of MRAS isoforms, cell type/tissue specificity, and mode of action of single nucleotide variants in MRAS associated complex traits. Finally, we postulate that CAD risk variants in the MRAS locus are specific to smooth muscle cells and lead to higher levels of MRAS, particularly in arterial and cardiac tissue, resulting in MAPK-dependent tissue hypertrophy or hyperplasia.
Collapse
Affiliation(s)
- Pashmina Wiqar Shah
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Abushalbaq O, Baek J, Yaron A, Tran TS. Balancing act of small GTPases downstream of plexin-A4 signaling motifs promotes dendrite elaboration in mammalian cortical neurons. Sci Signal 2024; 17:eadh7673. [PMID: 38227686 DOI: 10.1126/scisignal.adh7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The precise development of neuronal morphologies is crucial to the establishment of synaptic circuits and, ultimately, proper brain function. Signaling by the axon guidance cue semaphorin 3A (Sema3A) and its receptor complex of neuropilin-1 and plexin-A4 has multifunctional outcomes in neuronal morphogenesis. Downstream activation of the RhoGEF FARP2 through interaction with the lysine-arginine-lysine motif of plexin-A4 and consequent activation of the small GTPase Rac1 promotes dendrite arborization, but this pathway is dispensable for axon repulsion. Here, we investigated the interplay of small GTPase signaling mechanisms underlying Sema3A-mediated dendritic elaboration in mouse layer V cortical neurons in vitro and in vivo. Sema3A promoted the binding of the small GTPase Rnd1 to the amino acid motif lysine-valine-serine (LVS) in the cytoplasmic domain of plexin-A4. Rnd1 inhibited the activity of the small GTPase RhoA and the kinase ROCK, thus supporting the activity of the GTPase Rac1, which permitted the growth and branching of dendrites. Overexpression of a dominant-negative RhoA, a constitutively active Rac1, or the pharmacological inhibition of ROCK activity rescued defects in dendritic elaboration in neurons expressing a plexin-A4 mutant lacking the LVS motif. Our findings provide insights into the previously unappreciated balancing act between Rho and Rac signaling downstream of specific motifs in plexin-A4 to mediate Sema3A-dependent dendritic elaboration in mammalian cortical neuron development.
Collapse
Affiliation(s)
- Oday Abushalbaq
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Jiyeon Baek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Thompson D, Odufuwa AE, Brissette CA, Watt JA. Transcriptome and methylome of the supraoptic nucleus provides insights into the age-dependent loss of neuronal plasticity. Front Aging Neurosci 2023; 15:1223273. [PMID: 37711995 PMCID: PMC10498476 DOI: 10.3389/fnagi.2023.1223273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
The age-dependent loss of neuronal plasticity is a well-known phenomenon that is poorly understood. The loss of this capacity for axonal regeneration is emphasized following traumatic brain injury, which is a major cause of disability and death among adults in the US. We have previously shown the intrinsic capacity of magnocellular neurons within the supraoptic nucleus to undergo axonal regeneration following unilateral axotomization in an age-dependent manner. The aim of this research was to determine the age-dependent molecular mechanisms that may underlie this phenomenon. As such, we characterized the transcriptome and DNA methylome of the supraoptic nucleus in uninjured 35-day old rats and 125-day old rats. Our data indicates the downregulation of a large number of axonogenesis related transcripts in 125-day old rats compared to 35-day old rats. Specifically, several semaphorin and ephrin genes were downregulated, as well as growth factors including FGF's, insulin-like growth factors (IGFs), and brain-derived neurotrophic factor (BDNF). Differential methylation analysis indicates enrichment of biological processes involved in axonogenesis and axon guidance. Conversely, we observed a robust and specific upregulation of MHCI related transcripts. This may involve the activator protein 1 (AP-1) transcription factor complex as motif analysis of differentially methylated regions indicate enrichment of AP-1 binding sites in hypomethylated regions. Together, our data suggests a loss of pro-regenerative capabilities with age which would prevent axonal growth and appropriate innervation following injury.
Collapse
Affiliation(s)
| | | | | | - John A. Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
5
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
6
|
Guidance landscapes unveiled by quantitative proteomics to control reinnervation in adult visual system. Nat Commun 2022; 13:6040. [PMID: 36229455 PMCID: PMC9561644 DOI: 10.1038/s41467-022-33799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
In the injured adult central nervous system (CNS), activation of pro-growth molecular pathways in neurons leads to long-distance regeneration. However, most regenerative fibers display guidance defects, which prevent reinnervation and functional recovery. Therefore, the molecular characterization of the proper target regions of regenerative axons is essential to uncover the modalities of adult reinnervation. In this study, we use mass spectrometry (MS)-based quantitative proteomics to address the proteomes of major nuclei of the adult visual system. These analyses reveal that guidance-associated molecules are expressed in adult visual targets. Moreover, we show that bilateral optic nerve injury modulates the expression of specific proteins. In contrast, the expression of guidance molecules remains steady. Finally, we show that regenerative axons are able to respond to guidance cues ex vivo, suggesting that these molecules possibly interfere with brain target reinnervation in adult. Using a long-distance regeneration model, we further demonstrate that the silencing of specific guidance signaling leads to rerouting of regenerative axons in vivo. Altogether, our results suggest ways to modulate axon guidance of regenerative neurons to achieve circuit repair in adult.
Collapse
|
7
|
Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, Kigerl KA, Hall JCE, Godbout JP, Fischer AJ, McTigue DM, He Z, Ma Q, Popovich PG. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 2022; 13:4096. [PMID: 35835751 PMCID: PMC9283484 DOI: 10.1038/s41467-022-31797-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia. We show that microglia are vital for SCI recovery and coordinate injury responses in CNS-resident glia and infiltrating leukocytes. Depleting microglia exacerbates tissue damage and worsens functional recovery. Conversely, restoring select microglia-dependent signaling axes, identified through sequencing data, in microglia depleted mice prevents secondary damage and promotes recovery. Additional bioinformatics analyses reveal that optimal repair after SCI might be achieved by co-opting key ligand-receptor interactions between microglia, astrocytes and MDMs.
Collapse
Affiliation(s)
- Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yang Li
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Qi Guo
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nicole Pukos
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Warren A Campbell
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhen Guan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Welch BA, Cho HJ, Ucakturk SA, Farmer SM, Cetinkaya S, Abaci A, Akkus G, Simsek E, Kotan LD, Turan I, Gurbuz F, Yuksel B, Wray S, Kemal Topaloglu A. PLXNB1 mutations in the etiology of idiopathic hypogonadotropic hypogonadism. J Neuroendocrinol 2022; 34:e13103. [PMID: 35170806 PMCID: PMC11370887 DOI: 10.1111/jne.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) comprises a group of rare genetic disorders characterized by pubertal failure caused by gonadotropin-releasing hormone (GnRH) deficiency. Genetic factors involved in semaphorin/plexin signaling have been identified in patients with IHH. PlexinB1, a member of the plexin family receptors, serves as the receptor for semaphorin 4D (Sema4D). In mice, perturbations in Sema4D/PlexinB1 signaling leads to improper GnRH development, highlighting the importance of investigating PlexinB1 mutations in IHH families. In total, 336 IHH patients (normosmic IHH, n = 293 and Kallmann syndrome, n = 43) from 290 independent families were included in the present study. Six PLXNB1 rare sequence variants (p.N361S, p.V608A, p.R636C, p.V672A, p.R1031H, and p.C1318R) are described in eight normosmic IHH patients from seven independent families. These variants were examined using bioinformatic modeling and compared to mutants reported in PLXNA1. Based on these analyses, the variant p.R1031H was assayed for alterations in cell morphology, PlexinB1 expression, and migration using a GnRH cell line and Boyden chambers. Experiments showed reduced membrane expression and impaired migration in cells expressing this variant compared to the wild-type. Our results provide clinical, genetic, molecular/cellular, and modeling evidence to implicate variants in PLXNB1 in the etiology of IHH.
Collapse
Affiliation(s)
- Bradley A. Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hyun-ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - Seyit Ahmet Ucakturk
- Division of Pediatric Endocrinology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Stephen Matthew Farmer
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - Semra Cetinkaya
- Division of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayhan Abaci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gamze Akkus
- Division of Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Enver Simsek
- Division of Pediatric Endocrinology, Faculty of Medicine, Eskisehir Osman Gazi University, Eskisehir, Turkey
| | - Leman Damla Kotan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Bilgin Yuksel
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - A. Kemal Topaloglu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
9
|
Molecular mechanisms regulating the spatial configuration of neurites. Semin Cell Dev Biol 2022; 129:103-114. [PMID: 35248463 DOI: 10.1016/j.semcdb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Precise neural networks, composed of axons and dendrites, are the structural basis for information processing in the brain. Therefore, the correct formation of neurites is critical for accurate neural function. In particular, the three-dimensional structures of dendrites vary greatly among neuron types, and the unique shape of each dendrite is tightly linked to specific synaptic connections with innervating axons and is correlated with its information processing. Although many systems are involved in neurite formation, the developmental mechanisms that control the orientation, size, and arborization pattern of neurites definitively defines their three-dimensional structure in tissues. In this review, we summarize these regulatory mechanisms that establish proper spatial configurations of neurites, especially dendrites, in invertebrates and vertebrates.
Collapse
|
10
|
Garcia-Martin G, Sanz-Rodriguez M, Alcover-Sanchez B, Pereira MP, Wandosell F, Cubelos B. R-Ras1 and R-Ras2 Expression in Anatomical Regions and Cell Types of the Central Nervous System. Int J Mol Sci 2022; 23:978. [PMID: 35055164 PMCID: PMC8781598 DOI: 10.3390/ijms23020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Since the optic nerve is one of the most myelinated tracts in the central nervous system (CNS), many myelin diseases affect the visual system. In this sense, our laboratory has recently reported that the GTPases R-Ras1 and R-Ras2 are essential for oligodendrocyte survival and maturation. Hypomyelination produced by the absence of one or both proteins triggers axonal degeneration and loss of visual and motor function. However, little is known about R-Ras specificity and other possible roles that they could play in the CNS. In this work, we describe how a lack of R-Ras1 and/or R-Ras2 could not be compensated by increased expression of the closely related R-Ras3 or classical Ras. We further studied R-Ras1 and R-Ras2 expression within different CNS anatomical regions, finding that both were more abundant in less-myelinated regions, suggesting their expression in non-oligodendroglial cells. Finally, using confocal immunostaining colocalization, we report for the first time that R-Ras2 is specifically expressed in neurons. Neither microglia nor astrocytes expressed R-Ras1 or R-Ras2. These results open a new avenue for the study of neuronal R-Ras2's contribution to the process of myelination.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Miriam Sanz-Rodriguez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Marta P. Pereira
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
11
|
Weber SM, Carroll SL. The Role of R-Ras Proteins in Normal and Pathologic Migration and Morphologic Change. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1499-1510. [PMID: 34111428 PMCID: PMC8420862 DOI: 10.1016/j.ajpath.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems. These changes include regulating the migration and homing of mature and immature immune cells, vascular stabilization, clotting, and axonal and dendritic outgrowth during nervous system development. Dysregulated R-Ras signaling has also been linked to the pathogenesis of cardiovascular disease, intellectual disabilities, and human cancers. This review discusses the structure and regulation of R-Ras proteins and our current understanding of the signaling pathways that they regulate. It explores the phenotype of NS patients and their implications for the R-Ras subfamily functions. Next, it covers recent discoveries regarding physiological and pathologic R-Ras functions in key organ systems. Finally, it discusses how R-Ras signaling is dysregulated in cancers and mechanisms by which this may promote neoplasia.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
12
|
Aihara S, Fujimoto S, Sakaguchi R, Imai T. BMPR-2 gates activity-dependent stabilization of primary dendrites during mitral cell remodeling. Cell Rep 2021; 35:109276. [PMID: 34161760 DOI: 10.1016/j.celrep.2021.109276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Developing neurons initially form excessive neurites and then remodel them based on molecular cues and neuronal activity. Developing mitral cells in the olfactory bulb initially extend multiple primary dendrites. They then stabilize single primary dendrites while eliminating others. However, the mechanisms underlying selective dendrite remodeling remain elusive. Using CRISPR-Cas9-based knockout screening combined with in utero electroporation, we identify BMPR-2 as a key regulator for selective dendrite stabilization. Bmpr2 knockout and its rescue experiments show that BMPR-2 inhibits LIMK without ligands and thereby permits dendrite destabilization. In contrast, the overexpression of antagonists and agonists indicates that ligand-bound BMPR-2 stabilizes dendrites, most likely by releasing LIMK. Using genetic and FRET imaging experiments, we demonstrate that free LIMK is activated by NMDARs via Rac1, facilitating dendrite stabilization through F-actin formation. Thus, the selective stabilization of primary dendrites is ensured by concomitant inputs of BMP ligands and neuronal activity.
Collapse
Affiliation(s)
- Shuhei Aihara
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Richi Sakaguchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Can V, Cakmak HA, Vatansever F, Kanat S, Ekizler FA, Huysal K, Demir M. Assessment of the relationship between semaphorin4D level and recurrence after catheter ablation in paroxysmal atrial fibrillation. Biomarkers 2021; 26:468-476. [PMID: 33910443 DOI: 10.1080/1354750x.2021.1917664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Semaphorin4D (Sema4D), a novel integral membrane glycoprotein, plays a role in atherosclerosis, angiogenesis and chronic inflammation. Elevated levels of sema4D were presented in myocardial infarction, heart failure and atrial fibrillation. Aim of the study was to investigate the relation between sema4D and recurrence after catheter ablation (CA) in paroxysmal AF. METHODS The present study included 161 paroxysmal AF patients (PAF) (101 patients undergone CA) and 60 healthy subjects. Serum levels of sema4D were measured and study participants were followed-up for 3 months and 1 year since CA in terms of recurrence respectively. RESULTS Sema4D levels were significantly elevated in the recurrent group compared to the non-recurrent PAF patients (p < 0.001). Sema4D was importantly positively correlated with both left atrial volume index (r = 0.51, p < 0.013) and high sensitive C-reactive protein (r = 0.38), p < 0.011). In multivariate analysis, sema4D [odds ratio (OR) = 1.23, 95% CI 1.11-1.42; p < 0.001] and left atrial diameter (OR = 1.13, 95% CI 1.02-1.23; p = 0.012) were found to be significant independent risk parameters for recurrence. CONCLUSIONS Sema4D is a novel biomarker that may help to identify individuals with recurrence after CA procedure in long term period in PAF.
Collapse
Affiliation(s)
- Veysi Can
- Department of Cardiology, Bursa High Education Training and Research Hospital, Health Science University, Bursa, Turkey
| | | | - Fahriye Vatansever
- Department of Cardiology, Bursa High Education Training and Research Hospital, Health Science University, Bursa, Turkey
| | - Selcuk Kanat
- Department of Cardiology, Bursa High Education Training and Research Hospital, Health Science University, Bursa, Turkey
| | | | - Kagan Huysal
- Department of Biochemistry, Bursa High Education Training and Research Hospital, Health Science University, Bursa, Turkey
| | - Mehmet Demir
- Department of Cardiology, Bursa High Education Training and Research Hospital, Health Science University, Bursa, Turkey
| |
Collapse
|
14
|
Systematic analysis to identify transcriptome-wide dysregulation of Alzheimer's disease in genes and isoforms. Hum Genet 2020; 140:609-623. [PMID: 33140241 DOI: 10.1007/s00439-020-02230-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegeneration diseases caused by multiple factors. The mechanistic insight of AD remains limited. To disclose molecular mechanisms of AD, many studies have been proposed from transcriptome analyses. However, no analysis across multiple levels of transcription has been conducted to discover co-expression networks of AD. We performed gene-level and isoform-level analyses of RNA sequencing (RNA-seq) data from 544 brain tissues of AD patients, mild cognitive impaired (MCI) patients, and healthy controls. Gene and isoform levels of co-expression modules were constructed by RNA-seq data. The associations of modules with AD were evaluated by integrating cognitive scores of patients, Genome-wide association studies (GWAS), alternative splicing analysis, and dementia-related genes expressed in brain tissues. Totally, 29 co-expression modules were found with expressions significantly correlated with the cognitive scores. Among them, two isoform modules were enriched with AD-associated SNPs and genes whose mRNA splicing displayed significant alteration in relation to AD disease. These two modules were further found enriched with dementia-related genes expressed in four brain regions of 125 AD patients. Analyzing expressions of these two modules revealed expressions of 39 isoforms (corresponding to 35 genes) significantly correlated with cognitive scores of AD patients, in which 38 isoforms were significantly up-regulated in AD patients comparing to controls, and 33 isoforms (corresponding to 29 genes) were not reported as AD-related previously. Employing the co-expression modules and the drug-induced gene expression data from Connectivity Map (CMAP), 12 drugs were predicted as significant in restoring the gene expression of AD patients towards health, which include nine drugs reported for relieving AD. In comparison, four of the top 12 significant drugs were known for relieving AD if the drug prediction was performed by the genes expressed significantly different in AD and healthy controls. Analysis of multiple levels of the transcriptomic organization is useful in suggesting AD-related co-expression networks and discovering drugs.
Collapse
|
15
|
Ouyang L, Chen Y, Wang Y, Chen Y, Fu AKY, Fu WY, Ip NY. p39-associated Cdk5 activity regulates dendritic morphogenesis. Sci Rep 2020; 10:18746. [PMID: 33127972 PMCID: PMC7603351 DOI: 10.1038/s41598-020-75264-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrites, branched structures extending from neuronal cell soma, are specialized for processing information from other neurons. The morphogenesis of dendritic structures is spatiotemporally regulated by well-orchestrated signaling cascades. Dysregulation of these processes impacts the wiring of neuronal circuit and efficacy of neurotransmission, which contribute to the pathogeneses of neurological disorders. While Cdk5 (cyclin-dependent kinase 5) plays a critical role in neuronal dendritic development, its underlying molecular control is not fully understood. In this study, we show that p39, one of the two neuronal Cdk5 activators, is a key regulator of dendritic morphogenesis. Pyramidal neurons deficient in p39 exhibit aberrant dendritic morphology characterized by shorter length and reduced arborization, which is comparable to dendrites in Cdk5-deficient neurons. RNA sequencing analysis shows that the adaptor protein, WDFY1 (WD repeat and FYVE domain-containing 1), acts downstream of Cdk5/p39 to regulate dendritic morphogenesis. While WDFY1 is elevated in p39-deficient neurons, suppressing its expression rescues the impaired dendritic arborization. Further phosphoproteomic analysis suggests that Cdk5/p39 mediates dendritic morphogenesis by modulating various downstream signaling pathways, including PI3K/Akt-, cAMP-, or small GTPase-mediated signaling transduction pathways, thereby regulating cytoskeletal organization, protein synthesis, and protein trafficking.
Collapse
Affiliation(s)
- Li Ouyang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Ye Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China. .,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
16
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
17
|
Jiang T, Zhang G, Liang Y, Cai Z, Liang Z, Lin H, Tan M. PlexinA3 Interacts with CRMP2 to Mediate Sema3A Signalling During Dendritic Growth in Cultured Cerebellar Granule Neurons. Neuroscience 2020; 434:83-92. [DOI: 10.1016/j.neuroscience.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
|
18
|
Wu JH, Li YN, Chen AQ, Hong CD, Zhang CL, Wang HL, Zhou YF, Li PC, Wang Y, Mao L, Xia YP, He QW, Jin HJ, Yue ZY, Hu B. Inhibition of Sema4D/PlexinB1 signaling alleviates vascular dysfunction in diabetic retinopathy. EMBO Mol Med 2020; 12:e10154. [PMID: 31943789 PMCID: PMC7005627 DOI: 10.15252/emmm.201810154] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and leads to blindness. Anti‐VEGF is a primary treatment for DR. Its therapeutic effect is limited in non‐ or poor responders despite frequent injections. By performing a comprehensive analysis of the semaphorins family, we identified the increased expression of Sema4D during oxygen‐induced retinopathy (OIR) and streptozotocin (STZ)‐induced retinopathy. The levels of soluble Sema4D (sSema4D) were significantly increased in the aqueous fluid of DR patients and correlated negatively with the success of anti‐VEGF therapy during clinical follow‐up. We found that Sema4D/PlexinB1 induced endothelial cell dysfunction via mDIA1, which was mediated through Src‐dependent VE‐cadherin dysfunction. Furthermore, genetic disruption of Sema4D/PlexinB1 or intravitreal injection of anti‐Sema4D antibody reduced pericyte loss and vascular leakage in STZ model as well as alleviated neovascularization in OIR model. Moreover, anti‐Sema4D had a therapeutic advantage over anti‐VEGF on pericyte dysfunction. Anti‐Sema4D and anti‐VEGF also conferred a synergistic therapeutic effect in two DR models. Thus, this study indicates an alternative therapeutic strategy with anti‐Sema4D to complement or improve the current treatment of DR.
Collapse
Affiliation(s)
- Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Lin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Aier School of Ophthalmology, Wuhan Aier Eye Hospital, Central South University, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Yue
- Department of Neurology and Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Matsuda T, Oinuma I. Imaging endogenous synaptic proteins in primary neurons at single-cell resolution using CRISPR/Cas9. Mol Biol Cell 2019; 30:2838-2855. [PMID: 31509485 PMCID: PMC6789158 DOI: 10.1091/mbc.e19-04-0223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fluorescence imaging at single-cell resolution is a crucial approach to analyzing the spatiotemporal regulation of proteins within individual cells of complex neural networks. Here we present a nonviral strategy that enables the tagging of endogenous loci by CRISPR/Cas9-mediated genome editing combined with a nucleofection technique. The method allowed expression of fluorescently tagged proteins at endogenous levels, and we successfully achieved tagging of a presynaptic protein, synaptophysin (Syp), and a postsynaptic protein, PSD-95, in cultured postmitotic neurons. Superresolution fluorescence microscopy of fixed neurons confirmed the identical localization patterns of the tagged proteins to those of endogenous ones verified by immunohistochemistry. The system is also applicable for multiplexed labeling and live-cell imaging. Live imaging with total internal reflection fluorescence microscopy of a single dendritic process of a neuron double-labeled with Syp-mCherry and PSD-95-EGFP revealed the previously undescribed dynamic localization of the proteins synchronously moving along dendritic shafts. Our convenient and versatile strategy is potent for analysis of proteins whose ectopic expressions perturb cellular functions.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Matsuda T, Oinuma I. Optimized CRISPR/Cas9-mediated in vivo genome engineering applicable to monitoring dynamics of endogenous proteins in the mouse neural tissues. Sci Rep 2019; 9:11309. [PMID: 31383899 PMCID: PMC6683140 DOI: 10.1038/s41598-019-47721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
To analyze the expression, localization, and functional dynamics of target proteins in situ, especially in living cells, it is important to develop a convenient, versatile, and efficient method to precisely introduce exogenous genes into the genome, which is applicable for labeling and engineering of the endogenous proteins of interest. By combining the CRISPR/Cas9 genome editing technology with an electroporation technique, we succeeded in creating knock-in alleles, from which GFP (RFP)-tagged endogenous proteins are produced, in neurons and glial cells in vivo in the developing mouse retina and brain. Correct gene targeting was confirmed by single-cell genotyping and Western blot analysis. Several gene loci were successfully targeted with high efficiency. Moreover, we succeeded in engineering the mouse genome to express foreign genes from the endogenous gene loci using a self-cleaving 2A peptide. Our method could be used to monitor the physiological changes in localization of endogenous proteins and expression levels of both mRNA and protein at a single cell resolution. This work discloses a powerful and widely applicable approach for visualization and manipulation of endogenous proteins in neural tissues.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
21
|
sSema4D levels are increased in coronary heart disease and associated with the extent of coronary artery stenosis. Life Sci 2019; 219:329-335. [DOI: 10.1016/j.lfs.2019.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023]
|
22
|
Young LC, Rodriguez-Viciana P. MRAS: A Close but Understudied Member of the RAS Family. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033621. [PMID: 29311130 DOI: 10.1101/cshperspect.a033621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member.
Collapse
Affiliation(s)
- Lucy C Young
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94158
| | - Pablo Rodriguez-Viciana
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
The Sema3A receptor Plexin-A1 suppresses supernumerary axons through Rap1 GTPases. Sci Rep 2018; 8:15647. [PMID: 30353093 PMCID: PMC6199275 DOI: 10.1038/s41598-018-34092-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/06/2018] [Indexed: 01/14/2023] Open
Abstract
The highly conserved Rap1 GTPases perform essential functions during neuronal development. They are required for the polarity of neuronal progenitors and neurons as well as for neuronal migration in the embryonic brain. Neuronal polarization and axon formation depend on the precise temporal and spatial regulation of Rap1 activity by guanine nucleotide exchange factors (GEFs) and GTPases-activating proteins (GAPs). Several Rap1 GEFs have been identified that direct the formation of axons during cortical and hippocampal development in vivo and in cultured neurons. However little is known about the GAPs that limit the activity of Rap1 GTPases during neuronal development. Here we investigate the function of Sema3A and Plexin-A1 as a regulator of Rap1 GTPases during the polarization of hippocampal neurons. Sema3A was shown to suppress axon formation when neurons are cultured on a patterned substrate. Plexin-A1 functions as the signal-transducing subunit of receptors for Sema3A and displays GAP activity for Rap1 GTPases. We show that Sema3A and Plexin-A1 suppress the formation of supernumerary axons in cultured neurons, which depends on Rap1 GTPases.
Collapse
|
24
|
McDermott JE, Goldblatt D, Paradis S. Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus. Mol Cell Neurosci 2018; 92:50-66. [PMID: 29981480 PMCID: PMC6191356 DOI: 10.1016/j.mcn.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
To understand how proper circuit formation and function is established in the mammalian brain, it is necessary to define the genes and signaling pathways that instruct excitatory and inhibitory synapse development. We previously demonstrated that the ligand-receptor pair, Sema4D and Plexin-B1, regulates inhibitory synapse development on an unprecedentedly fast time-scale while having no effect on excitatory synapse development. Here, we report previously undescribed synaptogenic roles for Sema4A and Plexin-B2 and provide new insight into Sema4D and Plexin-B1 regulation of synapse development in rodent hippocampus. First, we show that Sema4a, Sema4d, Plxnb1, and Plxnb2 have distinct and overlapping expression patterns in neurons and glia in the developing hippocampus. Second, we describe a requirement for Plexin-B1 in both the presynaptic axon of inhibitory interneurons as well as the postsynaptic dendrites of excitatory neurons for Sema4D-dependent inhibitory synapse development. Third, we define a new synaptogenic activity for Sema4A in mediating inhibitory and excitatory synapse development. Specifically, we demonstrate that Sema4A signals through the same pathway as Sema4D, via the postsynaptic Plexin-B1 receptor, to promote inhibitory synapse development. However, Sema4A also signals through the Plexin-B2 receptor to promote excitatory synapse development. Our results shed new light on the molecular cues that promote the development of either inhibitory or excitatory synapses in the mammalian hippocampus.
Collapse
Affiliation(s)
| | - Dena Goldblatt
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
25
|
Chen X, Shibata AC, Hendi A, Kurashina M, Fortes E, Weilinger NL, MacVicar BA, Murakoshi H, Mizumoto K. Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. eLife 2018; 7:38801. [PMID: 30063210 PMCID: PMC6067881 DOI: 10.7554/elife.38801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo. Genes do more than just direct the color of our hair or eyes. They produce proteins that are involved in almost every process in the body. In humans, the majority of active genes can be found in the brain, where they help it to develop and work properly – effectively controlling how we move and behave. The brain’s functional units, the nerve cells or neurons, communicate with each other by releasing messenger molecules in the gap between them, the synapse. These molecules are then picked up from specific receptor proteins of the receiving neuron. In the nervous system, neurons only form synapses with the cells they need to connect with, even though they are surrounded by many more cells. This implies that they use specific mechanisms to stop neurons from forming synapses with incorrect target cells. This is important, because if too many synapses were present or if synapses formed with incorrect target cells, it would compromise the information flow in the nervous system. This would ultimately lead to various neurological conditions, including Autism Spectrum Disorder. In 2013, researchers found that in the roundworm Caenorhabditis elegans, a receptor protein called Plexin, is located at the surface of the neurons and can inhibit the formation of nearby synapses. Now, Chen et al. – including one author involved in the previous research – wanted to find out what genes Plexin manipulates when it stops synapses from growing. Knowing what each of those genes does can help us understand how neurons can inhibit synapses. The results revealed that Plexin appears to regulate two genes, Rap2 and TNIK. Plexin reduced the activity of Rap2 in the neuron that released the messenger, which hindered the formation of synapses. The gene TNIK and its protein on the other hand, have the ability to modify other proteins and could so inhibit the growth of synapses. When TNIK was experimentally removed, the number of synapses increased, but when its activity was increased, the number of synapses was strongly reduced. These findings could help scientists understand how mutations in Rap2 or TNIK can lead to various neurological conditions. A next step will be to test if these genes also affect the formation of synapses in other species such as mice, which have a more complex nervous system that is structurally and functionally more similar to that of humans.
Collapse
Affiliation(s)
- Xi Chen
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Akihiro Ce Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ardalan Hendi
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Ethan Fortes
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | | | - Brian A MacVicar
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
27
|
Brain specific Lamellipodin knockout results in hyperactivity and increased anxiety of mice. Sci Rep 2017; 7:5365. [PMID: 28710397 PMCID: PMC5511208 DOI: 10.1038/s41598-017-05043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/24/2017] [Indexed: 11/08/2022] Open
Abstract
Lamellipodin (Lpd) functions as an important signalling integrator downstream of growth factor and axon guidance receptors. Mechanistically, Lpd promotes actin polymerization by interacting with F-actin and the actin effectors Ena/VASP proteins and the SCAR/WAVE complex. Thereby, Lpd supports lamellipodia protrusion, cell migration and endocytosis. In the mammalian central nervous system, Lpd contributes to neuronal morphogenesis, neuronal migration during development and its C. elegans orthologue MIG-10 also supports synaptogenesis. However, the consequences of loss of Lpd in the CNS on behaviour are unknown. In our current study, we crossed our Lpd conditional knockout mice with a mouse line expressing Cre under the CNS specific Nestin promoter to restrict the genetic ablation of Lpd to the central nervous system. Detailed behavioural analysis of the resulting Nestin-Cre-Lpd knockout mouse line revealed a specific behavioural phenotype characterised by hyperactivity and increased anxiety.
Collapse
|
28
|
A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 2017; 12:54. [PMID: 28697798 PMCID: PMC5505151 DOI: 10.1186/s13024-017-0193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. METHODS Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. RESULTS Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. CONCLUSIONS Our study shows for the first time that LRRK2 activates the WNT/PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.
Collapse
|
29
|
Miller CL, Muthupalani S, Shen Z, Drees F, Ge Z, Feng Y, Chen X, Gong G, Nagar KK, Wang TC, Gertler FB, Fox JG. Lamellipodin-Deficient Mice: A Model of Rectal Carcinoma. PLoS One 2016; 11:e0152940. [PMID: 27045955 PMCID: PMC4821566 DOI: 10.1371/journal.pone.0152940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/20/2016] [Indexed: 01/27/2023] Open
Abstract
During a survey of clinical rectal prolapse (RP) cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1tm1Fbg (Lpd-/-) was documented. Upon further investigation, the Lpd-/- colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS). Lpd-/- mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd-/- mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd-/- mice with RP compared to EHS-infected, but clinically normal (CN) Lpd-/- animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd-/- mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd-/- male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.
Collapse
Affiliation(s)
- Cassandra L. Miller
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Frauke Drees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Xiaowei Chen
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Karan K. Nagar
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Frank B. Gertler
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
31
|
Gorai S, Paul D, Haloi N, Borah R, Santra MK, Manna D. Mechanistic insights into the phosphatidylinositol binding properties of the pleckstrin homology domain of lamellipodin. MOLECULAR BIOSYSTEMS 2016; 12:747-57. [DOI: 10.1039/c5mb00731c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lpd-PH domain strongly interacts with PI(3,4)P2containing liposome without any membrane penetration.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Nandan Haloi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Rituparna Borah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
32
|
Abstract
The establishment of cell-type-specific dendritic arbors is fundamental for proper neural circuit formation. Here, using temporal- and cell-specific knock-down, knock-out, and overexpression approaches, we show that multiple aspects of the dendritic organization of cerebellar Purkinje cells (PCs) are controlled by a single transcriptional factor, retinoic acid-related orphan receptor-alpha (RORα), a gene defective in staggerer mutant mice. As reported earlier, RORα was required for regression of primitive dendrites before postnatal day 4 (P4). RORα was also necessary for PCs to form a single Purkinje layer from P0 to P4. The knock-down of RORα from P4 impaired the elimination of perisomatic dendrites and maturation of single stem dendrites in PCs at P8. Filopodia and spines were also absent in these PCs. The knock-down of RORα from P8 impaired the formation and maintenance of terminal dendritic branches of PCs at P14. Finally, even after dendrite formation was completed at P21, RORα was required for PCs to maintain dendritic complexity and functional synapses, but their mature innervation pattern by single climbing fibers was unaffected. Interestingly, overexpression of RORα in PCs at various developmental stages did not facilitate dendrite development, but had specific detrimental effects on PCs. Because RORα deficiency during development is closely related to the severity of spinocerebellar ataxia type 1, delineating the specific roles of RORα in PCs in vivo at different time windows during development and throughout adulthood would facilitate our understanding of the pathogenesis of cerebellar disorders. Significance statement: The genetic programs by which each neuron subtype develops and maintains dendritic arbors have remained largely unclear. This is partly because dendrite development is modulated dynamically by neuronal activities and interactions with local environmental cues in vivo. In addition, dendrites are formed and maintained by the balance between their growth and regression; the effects caused by the disruption of transcription factors during the early developmental stages could be masked by dendritic growth or regression in the later stages. Here, using temporal- and cell-specific knock-down, knock-out, and overexpression approaches in vivo, we show that multiple aspects of the dendritic organization of cerebellar Purkinje cells are controlled by a single transcriptional factor, retinoic acid-related orphan receptor alpha.
Collapse
|
33
|
Gilabert-Juan J, Sáez AR, Lopez-Campos G, Sebastiá-Ortega N, González-Martínez R, Costa J, Haro JM, Callado LF, Meana JJ, Nacher J, Sanjuán J, Moltó MD. Semaphorin and plexin gene expression is altered in the prefrontal cortex of schizophrenia patients with and without auditory hallucinations. Psychiatry Res 2015; 229:850-7. [PMID: 26243375 DOI: 10.1016/j.psychres.2015.07.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/24/2015] [Accepted: 07/26/2015] [Indexed: 02/07/2023]
Abstract
Auditory hallucinations (AH) are clinical hallmarks of schizophrenia, however little is known about molecular genetics of these symptoms. In this study, gene expression profiling of postmortem brain samples from prefrontal cortex of schizophrenic patients without AH (SNA), patients with AH (SA) and control subjects were compared. Genome-wide expression analysis was conducted using samples of three individuals of each group and the Affymetrix GeneChip Human-Gene 1.0 ST-Array. This analysis identified the Axon Guidance pathway as one of the most differentially expressed network among SNA, SA and CNT. To confirm the transcriptome results, mRNA level quantification of seventeen genes involved in this pathway was performed in a larger sample. PLXNB1, SEMA3A, SEMA4D and SEM6C were upregulated in SNA or SA patients compared to controls. PLXNA1 and SEMA3D showed down-regulation in their expression in the patient's samples, but differences remained statistically significant between the SNA patients and controls. Differences between SNA and SA were found in PLXNB1 expression which is decreased in SA patients. This study strengthens the contribution of brain plasticity in pathophysiology of schizophrenia and shows that non-hallucinatory patients present more alterations in frontal regions than patients with hallucinations concerning neural plasticity.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- CIBERSAM, Spain; Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain; Unidad de Neurobiología y Programa de Neurociencias Básicas y Aplicadas, Departamento de Biología Celular, Universitat de València, INCLIVA, Valencia, Spain
| | - Ana Rosa Sáez
- Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain
| | | | - Noelia Sebastiá-Ortega
- Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain
| | - Rocio González-Martínez
- Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain; Unidad de Neurobiología y Programa de Neurociencias Básicas y Aplicadas, Departamento de Biología Celular, Universitat de València, INCLIVA, Valencia, Spain
| | - Juan Costa
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Deu, Barcelona, Spain
| | - Josep María Haro
- CIBERSAM, Spain; Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Deu, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM, Spain; Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Spain
| | - J Javier Meana
- CIBERSAM, Spain; Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Spain; BioCruces Health Research Institute, Spain
| | - Juán Nacher
- CIBERSAM, Spain; Unidad de Neurobiología y Programa de Neurociencias Básicas y Aplicadas, Departamento de Biología Celular, Universitat de València, INCLIVA, Valencia, Spain
| | - Julio Sanjuán
- CIBERSAM, Spain; Hospital Clínico de Valencia, Universitat de València INCLIVA, Valencia, Spain
| | - María Dolores Moltó
- CIBERSAM, Spain; Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain.
| |
Collapse
|
34
|
Ehrhardt A, Wang B, Yung AC, Wang Y, Kozlowski P, van Breemen C, Schrader JW. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras. PLoS One 2015; 10:e0141493. [PMID: 26516777 PMCID: PMC4627820 DOI: 10.1371/journal.pone.0141493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022] Open
Abstract
Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice.
Collapse
MESH Headings
- Acetylcholine/physiology
- Aging/genetics
- Aging/physiology
- Animals
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monomeric GTP-Binding Proteins/deficiency
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/physiology
- Muscle Contraction
- Muscle, Smooth/metabolism
- Phenotype
- Proteinuria/genetics
- Proteinuria/physiopathology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M2/biosynthesis
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Sex Characteristics
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder, Overactive/genetics
- Urinary Bladder, Overactive/physiopathology
- Urinary Incontinence/genetics
- Urinary Incontinence/physiopathology
- Urinary Retention/genetics
- Urinary Retention/physiopathology
- Urination/physiology
- ras Proteins
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Bin Wang
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Andrew C. Yung
- The University of British Columbia MRI Research Centre, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Yanni Wang
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- The University of British Columbia MRI Research Centre, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
- The University of British Columbia, Departments of Radiology and Urologic Sciences, 818 West 10th Ave., Vancouver, British Columbia, Canada
| | - Cornelis van Breemen
- The University of British Columbia, Department of Pharmacology and Therapeutics, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - John W. Schrader
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
35
|
Xiang L, You T, Chen J, Xu W, Jiao Y. Serum Soluble Semaphorin 4D is Associated with Left Atrial Diameter in Patients with Atrial Fibrillation. Med Sci Monit 2015; 21:2912-7. [PMID: 26417899 PMCID: PMC4596452 DOI: 10.12659/msm.895441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background The aim of this study was to evaluate the serum soluble semaphorin 4D (sSema4D) in patients with atrial fibrillation and to investigate the relationship of serum sSema4D with left atrial diameter (LAD). Material/Methods We studied a total of 113 patients who were subdivided into paroxysmal and non-paroxysmal (included persistent and permanent) atrial fibrillation groups, respectively. Another 55 subjects without atrial fibrillation were enrolled as the healthy control group. Serum levels of soluble semaphorin 4D (Sema4D) were measured in all subjects using the enzyme-labeled immunosorbent assay method. We also evaluated the coagulation parameters and left atrial diameters. Results Patients with paroxysmal and non-paroxysmal atrial fibrillation had significantly higher sSema4D level compared with controls (8.50±2.19 ng/mL and 9.30±2.28 ng/mL vs. 6.56±1.27 ng/ml, P<0.05). Serum sSema4D concentrations were elevated in patients with non-paroxysmal atrial fibrillation compared to those with paroxysmal atrial fibrillation (P<0.001). The level of sSema4D was positively correlated with LAD (r=0.606, P<0.001). Multivariate logistic regression analysis revealed that serum sSema4D, LAD, male sex, heart rate, hypertension, and coronary artery disease were associated with atrial fibrillation (P<0.05). Conclusions Serum sSema4D levels are increased in patients with atrial fibrillation and are independently associated with atrial remodeling.
Collapse
Affiliation(s)
- Li Xiang
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Tao You
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Jianchang Chen
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Weiting Xu
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yang Jiao
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
36
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
37
|
Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis? Neuromolecular Med 2015; 17:297-304. [PMID: 25989848 DOI: 10.1007/s12017-015-8357-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/08/2015] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder is a heterogeneous disease, and numerous alterations of gene expression come into play to attempt to explain potential molecular and pathophysiological causes. Abnormalities of brain development and connectivity associated with alterations in cytoskeletal rearrangement, neuritogenesis and elongation of axons and dendrites might represent or contribute to the structural basis of autism pathology. Slit/Robo signaling regulates cytoskeletal remodeling related to axonal and dendritic branching. Components of its signaling pathway (ABL and Cdc42) are suspected to be molecular bases of alterations of normal development. The present review describes the most important mechanisms underlying neuritogenesis, axon pathfinding and the role of GTPases in neurite outgrowth, with special emphasis on alterations associated with autism spectrum disorders. On the basis of analysis of publicly available microarray data, potential biomarkers of autism are discussed.
Collapse
Affiliation(s)
- Jan Bakos
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, Bratislava, Slovakia,
| | | | | | | | | |
Collapse
|
38
|
Umeda K, Iwasawa N, Negishi M, Oinuma I. A short splicing isoform of afadin suppresses the cortical axon branching in a dominant-negative manner. Mol Biol Cell 2015; 26:1957-70. [PMID: 25808489 PMCID: PMC4436838 DOI: 10.1091/mbc.e15-01-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023] Open
Abstract
Suppression of surplus axon branching is crucial for formation of proper neuronal networks; however, the molecular mechanisms have been poorly understood. In a novel mechanism, s-afadin, a short splicing isoform of afadin lacking the F-actin–binding domain, acts as a dominant-negative suppressor of cortical axon branching. Precise wiring patterns of axons are among the remarkable features of neuronal circuit formation, and establishment of the proper neuronal network requires control of outgrowth, branching, and guidance of axons. R-Ras is a Ras-family small GTPase that has essential roles in multiple phases of axonal development. We recently identified afadin, an F-actin–binding protein, as an effector of R-Ras mediating axon branching through F-actin reorganization. Afadin comprises two isoforms—l-afadin, having the F-actin–binding domain, and s-afadin, lacking the F-actin–binding domain. Compared with l-afadin, s-afadin, the short splicing variant of l-afadin, contains RA domains but lacks the F-actin–binding domain. Neurons express both isoforms; however, the function of s-afadin in brain remains unknown. Here we identify s-afadin as an endogenous inhibitor of cortical axon branching. In contrast to the abundant and constant expression of l-afadin throughout neuronal development, the expression of s-afadin is relatively low when cortical axons branch actively. Ectopic expression and knockdown of s-afadin suppress and promote branching, respectively. s-Afadin blocks the R-Ras–mediated membrane translocation of l-afadin and axon branching by inhibiting the binding of l-afadin to R-Ras. Thus s-afadin acts as a dominant-negative isoform in R-Ras-afadin–regulated axon branching.
Collapse
Affiliation(s)
- Kentaro Umeda
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nariaki Iwasawa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Structural and mechanistic insights into the recruitment of talin by RIAM in integrin signaling. Structure 2014; 22:1810-1820. [PMID: 25465129 DOI: 10.1016/j.str.2014.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/22/2022]
Abstract
Plasma membrane (PM)-bound GTPase Rap1 recruits the Rap1-interacting-adaptor-molecule (RIAM), which in turn recruits talin to bind and activate integrins. However, it is unclear how RIAM recruits talin and why its close homolog lamellipodin does not. Here, we report that, although RIAM possesses two talin-binding sites (TBS1 and TBS2), only TBS1 is capable of recruiting cytoplasmic talin to the PM, and the R8 domain is the strongest binding site in talin. Crystal structure of an R7R8:TBS1 complex reveals an unexpected kink in the TBS1 helix that is not shared in the homologous region of lamellipodin. This kinked helix conformation is required for the colocalization of RIAM and talin at the PM and proper activation of integrin. Our findings provide the structural and mechanistic insight into talin recruitment by RIAM that underlies integrin activation and explain the differential functions of the otherwise highly homologous RIAM and lamellipodin in integrin signaling.
Collapse
|
40
|
Zhang H, Chang YC, Brennan ML, Wu J. The structure of Rap1 in complex with RIAM reveals specificity determinants and recruitment mechanism. J Mol Cell Biol 2013; 6:128-39. [PMID: 24287201 DOI: 10.1093/jmcb/mjt044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The small GTPase Rap1 induces integrin activation via an inside-out signaling pathway mediated by the Rap1-interacting adaptor molecule (RIAM). Blocking this pathway may suppress tumor metastasis and other diseases that are related to hyperactive integrins. However, the molecular basis for the specific recognition of RIAM by Rap1 remains largely unknown. Herein we present the crystal structure of an active, GTP-bound GTPase domain of Rap1 in complex with the Ras association (RA)-pleckstrin homology (PH) structural module of RIAM at 1.65 Å. The structure reveals that the recognition of RIAM by Rap1 is governed by side-chain interactions. Several side chains are critical in determining specificity of this recognition, particularly the Lys31 residue in Rap1 that is oppositely charged compared with the Glu31/Asp31 residue in other Ras GTPases. Lys31 forms a salt bridge with RIAM residue Glu212, making it the key specificity determinant of the interaction. We also show that disruption of these interactions results in reduction of Rap1:RIAM association, leading to a loss of co-clustering and cell adhesion. Our findings elucidate the molecular mechanism by which RIAM mediates Rap1-induced integrin activation. The crystal structure also offers new insight into the structural basis for the specific recruitment of RA-PH module-containing effector proteins by their small GTPase partners.
Collapse
Affiliation(s)
- Hao Zhang
- Developmental Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
41
|
Frias CP, Wierenga CJ. Activity-dependent adaptations in inhibitory axons. Front Cell Neurosci 2013; 7:219. [PMID: 24312009 PMCID: PMC3836028 DOI: 10.3389/fncel.2013.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing) and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect the formation and plasticity of inhibitory synapses.
Collapse
Affiliation(s)
| | - Corette J. Wierenga
- Division of Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
42
|
Qiao S, Kim SH, Heck D, Goldowitz D, LeDoux MS, Homayouni R. Dab2IP GTPase activating protein regulates dendrite development and synapse number in cerebellum. PLoS One 2013; 8:e53635. [PMID: 23326475 PMCID: PMC3541190 DOI: 10.1371/journal.pone.0053635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
DOC-2/DAB-2 interacting protein (Dab2IP) is a GTPase activating protein that binds to Disabled-1, a cytosolic adapter protein involved in Reelin signaling and brain development. Dab2IP regulates PI3K-AKT signaling and is associated with metastatic prostate cancer, abdominal aortic aneurysms and coronary heart disease. To date, the physiological function of Dab2IP in the nervous system, where it is highly expressed, is relatively unknown. In this study, we generated a mouse model with a targeted disruption of Dab2IP using a retrovirus gene trap strategy. Unlike reeler mice, Dab2IP knock-down mice did not exhibit severe ataxia or cerebellar hypoplasia. However, Dab2IP deficiency produced a number of cerebellar abnormalities such as a delay in the development of Purkinje cell (PC) dendrites, a decrease in the parallel fiber synaptic marker VGluT1, and an increase in the climbing fiber synaptic marker VGluT2. These findings demonstrate for the first time that Dab2IP plays an important role in dendrite development and regulates the number of synapses in the cerebellum.
Collapse
Affiliation(s)
- Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Sun-Hong Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Detlef Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Daniel Goldowitz
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Mark S. LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ramin Homayouni
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
43
|
Giacobini P, Prevot V. Semaphorins in the development, homeostasis and disease of hormone systems. Semin Cell Dev Biol 2012; 24:190-8. [PMID: 23219659 DOI: 10.1016/j.semcdb.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/28/2012] [Indexed: 11/16/2022]
Abstract
Semaphorin proteins are among the best-studied families of guidance cues. Initially characterized as repulsive neuronal guidance cues, during the last decade, significant progress has been made in defining their involvement in the regulation of dynamic changes in the cellular cytoskeleton during embryonic and postnatal neuronal development, under both physiological and pathological conditions. However, semaphorins are not restricted to the nervous system but widely expressed in other tissues, where they play key roles in angiogenesis and organogenesis. In recent years, there has been an increasing emphasis on the potential influence of semaphorins on the development and homeostasis of hormone systems, and conversely, how circulating reproductive hormones regulate semaphorin expression. In this review, we summarize recent studies analyzing the contribution of semaphorin signaling to the morphogenesis, differentiation and plasticity of fundamental neuroendocrine and endocrine systems that regulate key physiological processes, such as reproduction, bone formation and the control of energy homeostasis.
Collapse
Affiliation(s)
- Paolo Giacobini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, Unit 837, France.
| | | |
Collapse
|