1
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Kang K, Zhou T, Gong J, Chen W, Yue X, Zhang D, Yue L. A bitter taste receptor liganded by oxalic acid inhibits brown planthopper feeding by promoting CREB phosphorylation via the PI3K-AKT signaling pathway. Int J Biol Macromol 2025; 290:138999. [PMID: 39708894 DOI: 10.1016/j.ijbiomac.2024.138999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood. Our previous research identified the bitter taste receptor NlGr23a in the brown planthopper (BPH), which specifically binds to oxalic acid and elicits a significant feeding rejection response. In this study, using an Sf9 cell line stably expressing NlGr23a, we demonstrated that oxalic acid exposure significantly enhances phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB), a protein associated with BPH food consumption. Further analysis revealed the involvement of phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway in facilitating CREB phosphorylation upon activation by oxalic acid-NlGr23a binding. These in vitro findings were corroborated by in vivo experiments examining the expression profiles of relevant proteins and protein kinases in BPHs fed an oxalic acid-supplemented diet. Our results elucidate the biochemical cascades triggered by oxalic acid-NlGr23a interaction, advancing our understanding of insect gustatory receptor-mediated feeding behavior modulation and potentially informing novel strategies for integrated pest management.
Collapse
Affiliation(s)
- Kui Kang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Ting Zhou
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Jun Gong
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Weiwen Chen
- College of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Xiangzhao Yue
- School of Life Sciences, Shangrao Normal University, Shangrao 334001, China
| | - Daowei Zhang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China.
| | - Lei Yue
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. SCIENCE ADVANCES 2024; 10:eadq9183. [PMID: 39536115 PMCID: PMC11559607 DOI: 10.1126/sciadv.adq9183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult Caenorhabditis elegans nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo/CELSR. During postembryonic development, FMI-1 promotes and maintains synaptic connectivity of PHB to a command interneuron, AVA, in both sexes, but a serotonin-dependent transcriptional regulatory cassette antagonizes FMI-1 expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node is the CREB-target LIN-29, a Zn finger transcription factor that integrates four layers of information: sexual specificity, past experience, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | | | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
4
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Fu Y, Zhang F, Wang W, Xu J, Zhao M, Ma C, Cheng Y, Chen W, Su Z, Lv X, Liu Z, Ma K, Ma L. Temporal and Spatial Signatures of Scylla paramamosain Transcriptome Reveal Mechanistic Insights into Endogenous Ovarian Maturation under Risk of Starvation. Int J Mol Sci 2024; 25:700. [PMID: 38255774 PMCID: PMC10815400 DOI: 10.3390/ijms25020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Variability in food availability leads to condition-dependent investments in reproduction. This study is aimed at understanding the metabolic response and regulatory mechanism of female Scylla paramamosain in response to starvation in a temporal- and tissue-specific manner. The mud crabs were starved for 7 (control), 14, 28, and 40 days for histological and biochemical analysis in the hepatopancreas, ovary, and serum, as well as for RNA sequencing on the hepatopancreas and ovary. We further highlighted candidate gene modules highly linked to physiological traits. Collectively, our observations suggested that starvation triggered endogenous ovarian maturation at the expense of hepatopancreas mass, with both metabolic adjustments to optimize energy and fatty acid supply from hepatopancreas to ovary in the early phase, followed by the activation of autophagy-related pathways in both organs over prolonged starvation. These specific adaptive responses might be considered efficient strategies to stimulate ovarian maturation of Scylla paramamosain under fasting stress, which improves the nutritional value of female mud crabs and other economically important crustaceans.
Collapse
Affiliation(s)
- Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Jiayuan Xu
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Zhixing Su
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Xiaokang Lv
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| |
Collapse
|
6
|
Moro CA, Sony SA, Franklin LP, Dong S, Peifer MM, Wittig KE, Hanna-Rose W. Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010974. [PMID: 37773959 PMCID: PMC10566684 DOI: 10.1371/journal.pgen.1010974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.
Collapse
Affiliation(s)
- Corinna A. Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina A. Sony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Latisha P. Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shirley Dong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mia M. Peifer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kathryn E. Wittig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
7
|
Tsai Y, Lin YC, Lee YH. Octopamine-MAPK-SKN-1 signaling suppresses mating-induced oxidative stress in Caenorhabditis elegans gonads to protect fertility. iScience 2023; 26:106162. [PMID: 36876134 PMCID: PMC9976470 DOI: 10.1016/j.isci.2023.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/12/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Sexual conflict over mating is costly to female physiology. Caenorhabditis elegans hermaphrodites generally produce self-progeny, but they can produce cross-progeny upon successfully mating with a male. We have uncovered that C. elegans hermaphrodites experience sexual conflict over mating, resulting in severe costs in terms of their fertility and longevity. We show that reactive oxygen species (ROS) accumulate on the apical surfaces of spermathecal bag cells after successful mating and induce cell damage, leading to ovulation defects and fertility suppression. To counteract these negative impacts, C. elegans hermaphrodites deploy the octopamine (OA) regulatory pathway to enhance glutathione (GSH) biosynthesis and protect spermathecae from mating-induced ROS. We show that the SER-3 receptor and mitogen-activated protein kinase (MAPK) KGB-1 cascade transduce the OA signal to transcription factor SKN-1/Nrf2 in the spermatheca to upregulate GSH biosynthesis.
Collapse
Affiliation(s)
- Yu Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Hue Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Liu H, Wu JJ, Li R, Wang PZ, Huang JH, Xu Y, Zhao JL, Wu PP, Li SJ, Wu ZX. Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1101628. [PMID: 37008778 PMCID: PMC10050701 DOI: 10.3389/fnmol.2023.1101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Sensations, especially nociception, are tightly controlled and regulated by the central and peripheral nervous systems. Osmotic sensation and related physiological and behavioral reactions are essential for animal well-being and survival. In this study, we find that interaction between secondary nociceptive ADL and primary nociceptive ASH neurons upregulates Caenorhabditis elegans avoidance of the mild and medium hyperosmolality of 0.41 and 0.88 Osm but does not affect avoidance of high osmolality of 1.37 and 2.29 Osm. The interaction between ASH and ADL is actualized through a negative feedback circuit consisting of ASH, ADL, and RIM interneurons. In this circuit, hyperosmolality-sensitive ADL augments the ASH hyperosmotic response and animal hyperosmotic avoidance; RIM inhibits ADL and is excited by ASH; thus, ASH exciting RIM reduces ADL augmenting ASH. The neuronal signal integration modality in the circuit is disexcitation. In addition, ASH promotes hyperosmotic avoidance through ASH/RIC/AIY feedforward circuit. Finally, we find that in addition to ASH and ADL, multiple sensory neurons are involved in hyperosmotic sensation and avoidance behavior.
Collapse
|
9
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
10
|
Increased Stress Levels in Caged Honeybee (Apis mellifera) (Hymenoptera: Apidae) Workers. STRESSES 2022. [DOI: 10.3390/stresses2040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Honeybees, Apis mellifera, usually live in large colonies consisting of thousands of individuals. Within the colony, workers interact with their social environment frequently. The large workforce, division of labour, and other features may promote the ecological success of honeybees. For decades, artificial mini colonies in cages within the laboratory have become the gold standard, especially in experiments related to toxicology, effects of pesticides and pathogens. Experiments using caged bees and full-sized colonies yielded contradictory results. Here, the effect of cage experiments on the stress level of individual bees is analysed. Two different stress response were targeted, the heat shock response and the mobilization of energetic resources. While no differences were found for varying group sizes of bees, very strong effects emerged by comparing caged workers with bees from natural colonies. Caged workers showed increased levels of hsp expression and reduced haemolymph titres for trehalose, the energy storage sugar. These results reveal that the lack of the social environment (e.g., lack of queen, lack of sufficient group size) induce stress in caged bees, which might act synergistically when bees are challenged by additional stressors (e.g., pesticides, pathogens) resulting in higher mortality than observed under field conditions.
Collapse
|
11
|
Zhang YJ, Jiang L, Ahamd S, Chen Y, Zhang JY, Stanley D, Miao H, Ge LQ. The octopamine receptor, OA2B2, modulates stress resistance and reproduction in Nilaparvata lugens Stål (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2022; 31:33-48. [PMID: 34480382 DOI: 10.1111/imb.12736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål) is a resurgent pest of rice crops throughout Asia. We recently discovered that octopamine (OA) and OA2B2 operate in the BPH mating system, where it mediates a wide range of molecular, physiological and behavioural changes. Here, we report on outcomes of experiments designed to test the hypothesis that OA/OA2B2 signalling mediates responses to three abiotic stressors, starvation, high temperature (37 °C), and induced oxidative stress. We found per os RNAi-mediated OA2B2 silencing led to significantly decreased survival, measured in days, following exposure to each of these stressors. We selected a biologically costly process, reproductive biology, as a biotic stressor. Silencing of OA2B2 led to decreased total protein content in ovaries and fat bodies, downregulated expression of vitellogenin (Vg) and Vg receptor (VgR), inhibited fat body Vg protein synthesis, shortened the oviposition period, prolonged the preoviposition period, reduced the number of laid eggs, body weight and female longevity. In addition, the silencing treatments also led to inhibited ovarian development, and ovarian Vg uptake, reduced numbers of egg masses and offspring and lower hatching rates and population growth index. These data support our hypothesis that OA2B2 acts in mediating BPH resistance to biotic and abiotic stressors.
Collapse
Affiliation(s)
- Y J Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - L Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - S Ahamd
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Y Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - J Y Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - D Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, USA
| | - H Miao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - L Q Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front Mol Neurosci 2021; 14:786471. [PMID: 34924955 PMCID: PMC8674661 DOI: 10.3389/fnmol.2021.786471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.
Collapse
Affiliation(s)
- Umer Saleem Bhat
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Siju Surendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
13
|
Kim J, Hyun M, Hibi M, You YJ. Maintenance of quiescent oocytes by noradrenergic signals. Nat Commun 2021; 12:6925. [PMID: 34836956 PMCID: PMC8626438 DOI: 10.1038/s41467-021-26945-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
All females adopt an evolutionary conserved reproduction strategy; under unfavorable conditions such as scarcity of food or mates, oocytes remain quiescent. However, the signals to maintain oocyte quiescence are largely unknown. Here, we report that in four different species - Caenorhabditis elegans, Caenorhabditis remanei, Drosophila melanogaster, and Danio rerio - octopamine and norepinephrine play an essential role in maintaining oocyte quiescence. In the absence of mates, the oocytes of Caenorhabditis mutants lacking octopamine signaling fail to remain quiescent, but continue to divide and become polyploid. Upon starvation, the egg chambers of D. melanogaster mutants lacking octopamine signaling fail to remain at the previtellogenic stage, but grow to full-grown egg chambers. Upon starvation, D. rerio lacking norepinephrine fails to maintain a quiescent primordial follicle and activates an excessive number of primordial follicles. Our study reveals an evolutionarily conserved function of the noradrenergic signal in maintaining quiescent oocytes.
Collapse
Affiliation(s)
- Jeongho Kim
- grid.202119.90000 0001 2364 8385Department of Biological Sciences, Inha University, Incheon, 22212 South Korea
| | - Moonjung Hyun
- grid.224260.00000 0004 0458 8737Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.418982.e0000 0004 5345 5340Present Address: Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834 South Korea
| | - Masahiko Hibi
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Young-Jai You
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Chen KS, Menezes K, Rodgers JB, O’Hara DM, Tran N, Fujisawa K, Ishikura S, Khodaei S, Chau H, Cranston A, Kapadia M, Pawar G, Ping S, Krizus A, Lacoste A, Spangler S, Visanji NP, Marras C, Majbour NK, El-Agnaf OMA, Lozano AM, Culotti J, Suo S, Ryu WS, Kalia SK, Kalia LV. Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Mol Neurodegener 2021; 16:77. [PMID: 34772429 PMCID: PMC8588601 DOI: 10.1186/s13024-021-00497-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies. METHODS To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models. RESULTS We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model. CONCLUSIONS We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Kevin S. Chen
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Krystal Menezes
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | - Darren M. O’Hara
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Nhat Tran
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Kazuko Fujisawa
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Seiya Ishikura
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Shahin Khodaei
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Hien Chau
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Anna Cranston
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Minesh Kapadia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Grishma Pawar
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Susan Ping
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Aldis Krizus
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | | | - Naomi P. Visanji
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Nour K. Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Andres M. Lozano
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Satoshi Suo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - William S. Ryu
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - Suneil K. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
- KITE and CRANIA, University Health Network, Toronto, ON Canada
| | - Lorraine V. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON Canada
| |
Collapse
|
15
|
CREB mediates the C. elegans dauer polyphenism through direct and cell-autonomous regulation of TGF-β expression. PLoS Genet 2021; 17:e1009678. [PMID: 34260587 PMCID: PMC8312985 DOI: 10.1371/journal.pgen.1009678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Animals can adapt to dynamic environmental conditions by modulating their developmental programs. Understanding the genetic architecture and molecular mechanisms underlying developmental plasticity in response to changing environments is an important and emerging area of research. Here, we show a novel role of cAMP response element binding protein (CREB)-encoding crh-1 gene in developmental polyphenism of C. elegans. Under conditions that promote normal development in wild-type animals, crh-1 mutants inappropriately form transient pre-dauer (L2d) larvae and express the L2d marker gene. L2d formation in crh-1 mutants is specifically induced by the ascaroside pheromone ascr#5 (asc-ωC3; C3), and crh-1 functions autonomously in the ascr#5-sensing ASI neurons to inhibit L2d formation. Moreover, we find that CRH-1 directly binds upstream of the daf-7 TGF-β locus and promotes its expression in the ASI neurons. Taken together, these results provide new insight into how animals alter their developmental programs in response to environmental changes.
Collapse
|
16
|
Li H, Lones L, DiAntonio A. Bidirectional regulation of glial potassium buffering - glioprotection versus neuroprotection. eLife 2021; 10:62606. [PMID: 33646119 PMCID: PMC7946421 DOI: 10.7554/elife.62606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Glia modulate neuronal excitability and seizure sensitivity by maintaining potassium and water homeostasis. A salt inducible kinase 3 (SIK3)-regulated gene expression program controls the glial capacity to buffer K+ and water in Drosophila, however upstream regulatory mechanisms are unknown. Here, we identify an octopaminergic circuit linking neuronal activity to glial ion and water buffering. Under basal conditions, octopamine functions through the inhibitory octopaminergic G-protein-coupled receptor (GPCR) OctβR to upregulate glial buffering capacity, while under pathological K+ stress, octopamine signals through the stimulatory octopaminergic GPCR OAMB1 to downregulate the glial buffering program. Failure to downregulate this program leads to intracellular glia swelling and stress signaling, suggesting that turning down this pathway is glioprotective. In the eag shaker Drosophila seizure model, the SIK3-mediated buffering pathway is inactivated. Reactivation of the glial buffering program dramatically suppresses neuronal hyperactivity, seizures, and shortened life span in this mutant. These findings highlight the therapeutic potential of a glial-centric therapeutic strategy for diseases of hyperexcitability.
Collapse
Affiliation(s)
- Hailun Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, United States
| | - Lorenzo Lones
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, United States.,Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, United States
| |
Collapse
|
17
|
Miller HA, Dean ES, Pletcher SD, Leiser SF. Cell non-autonomous regulation of health and longevity. eLife 2020; 9:62659. [PMID: 33300870 PMCID: PMC7728442 DOI: 10.7554/elife.62659] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
As the demographics of the modern world skew older, understanding and mitigating the effects of aging is increasingly important within biomedical research. Recent studies in model organisms demonstrate that the aging process is frequently modified by an organism’s ability to perceive and respond to changes in its environment. Many well-studied pathways that influence aging involve sensory cells, frequently neurons, that signal to peripheral tissues and promote survival during the presence of stress. Importantly, this activation of stress response pathways is often sufficient to improve health and longevity even in the absence of stress. Here, we review the current landscape of research highlighting the importance of cell non-autonomous signaling in modulating aging from C. elegans to mammals. We also discuss emerging concepts including retrograde signaling, approaches to mapping these networks, and development of potential therapeutics.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, United States
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
18
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
19
|
Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit. J Neurosci 2020; 40:7475-7488. [PMID: 32847964 DOI: 10.1523/jneurosci.1357-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Maps of the synapses made and neurotransmitters released by all neurons in model systems, such as Caenorhabditis elegans have left still unresolved how neural circuits integrate and respond to neurotransmitter signals. Using the egg-laying circuit of C. elegans as a model, we mapped which cells express each of the 26 neurotransmitter GPCRs of this organism and also genetically analyzed the functions of all 26 GPCRs. We found that individual neurons express many distinct receptors, epithelial cells often express neurotransmitter receptors, and receptors are often positioned to receive extrasynaptic signals. Receptor knockouts reveal few egg-laying defects under standard laboratory conditions, suggesting that the receptors function redundantly or regulate egg-laying only in specific conditions; however, increasing receptor signaling through overexpression more efficiently reveals receptor functions. This map of neurotransmitter GPCR expression and function in the egg-laying circuit provides a model for understanding GPCR signaling in other neural circuits.SIGNIFICANCE STATEMENT Neurotransmitters signal through GPCRs to modulate activity of neurons, and changes in such signaling can underlie conditions such as depression and Parkinson's disease. To determine how neurotransmitter GPCRs together help regulate function of a neural circuit, we analyzed the simple egg-laying circuit in the model organism C. elegans We identified all the cells that express every neurotransmitter GPCR and genetically analyzed how each GPCR affects the behavior the circuit produces. We found that many neurotransmitter GPCRs are expressed in each neuron, that neurons also appear to use these receptors to communicate with other cell types, and that GPCRs appear to often act redundantly or only under specific conditions to regulate circuit function.
Collapse
|
20
|
Lorenzo R, Onizuka M, Defrance M, Laurent P. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Res 2020; 48:7119-7134. [PMID: 32542321 PMCID: PMC7367206 DOI: 10.1093/nar/gkaa486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Michiho Onizuka
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Differential Regulation of Innate and Learned Behavior by Creb1/Crh-1 in Caenorhabditis elegans. J Neurosci 2019; 39:7934-7946. [PMID: 31413073 PMCID: PMC6774408 DOI: 10.1523/jneurosci.0006-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Memory formation is crucial for the survival of animals. Here, we study the effect of different crh-1 [Caenorhabditis elegans homolog of mammalian cAMP response element binding protein 1 (CREB1)] isoforms on the ability of C. elegans to form long-term memory (LTM). Null mutants in creb1/crh-1 are defective in LTM formation across phyla. We show that a specific isoform of CREB1/CRH-1, CRH-1e, is primarily responsible for memory related functions of the transcription factor in C. elegans. Silencing of CRH-1e-expressing neurons during training for LTM formation abolishes the LTM of the animal. Further, CRH-1e expression in RIM neurons is sufficient to rescue LTM defects of creb1/crh-1-null mutants. We go on to show that apart from being LTM defective, creb1/crh-1-null animals show defects in innate chemotaxis behavior. We further characterize the amino acids K247 and K266 as responsible for the LTM related functions of CREB1/CRH-1 while being dispensable for its innate chemotaxis behavior. These findings provide insight into the spatial and temporal workings of a crucial transcription factor that can be further exploited to find CREB1 targets involved in the process of memory formation. SIGNIFICANCE STATEMENT This study elucidates the role of a specific isoform of CREB1/CRH-1, CRH-1e, in Caenorhabditis elegans memory formation and chemosensation. Removal of this single isoform of creb1/crh-1 shows defects in long-term memory formation in the animal and expression of CREB1/CRH-1e in a single pair of neurons is sufficient to rescue the memory defects seen in the mutant animals. We further show that two specific amino acids of CRH-1 are required for the process of memory formation in the animal.
Collapse
|
22
|
Chute CD, DiLoreto EM, Zhang YK, Reilly DK, Rayes D, Coyle VL, Choi HJ, Alkema MJ, Schroeder FC, Srinivasan J. Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nat Commun 2019; 10:3186. [PMID: 31320626 PMCID: PMC6639374 DOI: 10.1038/s41467-019-11240-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Biogenic amine neurotransmitters play a central role in metazoan biology, and both their chemical structures and cognate receptors are evolutionarily conserved. Their primary roles are in cell-to-cell signaling, as biogenic amines are not normally recruited for communication between separate individuals. Here, we show that in the nematode C. elegans, a neurotransmitter-sensing G protein-coupled receptor, TYRA-2, is required for avoidance responses to osas#9, an ascaroside pheromone that incorporates the neurotransmitter, octopamine. Neuronal ablation, cell-specific genetic rescue, and calcium imaging show that tyra-2 expression in the nociceptive neuron, ASH, is necessary and sufficient to induce osas#9 avoidance. Ectopic expression in the AWA neuron, which is generally associated with attractive responses, reverses the response to osas#9, resulting in attraction instead of avoidance behavior, confirming that TYRA-2 partakes in the sensing of osas#9. The TYRA-2/osas#9 signaling system represents an inter-organismal communication channel that evolved via co-option of a neurotransmitter and its cognate receptor.
Collapse
Affiliation(s)
- Christopher D Chute
- Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
- BioHelix Corporation, Beverly, MA, 01915, USA
| | - Elizabeth M DiLoreto
- Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas K Reilly
- Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Diego Rayes
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, B8000, Argentina
| | - Veronica L Coyle
- Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
- AbbVie, Cambridge, MA, 02139, USA
| | - Hee June Choi
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Mark J Alkema
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jagan Srinivasan
- Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.
| |
Collapse
|
23
|
Suo S, Harada K, Matsuda S, Kyo K, Wang M, Maruyama K, Awaji T, Tsuboi T. Sexually Dimorphic Regulation of Behavioral States by Dopamine in Caenorhabditis elegans. J Neurosci 2019; 39:4668-4683. [PMID: 30988167 PMCID: PMC6561698 DOI: 10.1523/jneurosci.2985-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Sex differences in behavior allow animals to effectively mate and reproduce. However, the mechanism by which biological sex regulates behavioral states, which underlie the regulation of sex-shared behaviors, such as locomotion, is largely unknown. In this study, we studied sex differences in the behavioral states of Caenorhabditis elegans and found that males spend less time in a low locomotor activity state than hermaphrodites and that dopamine generates this sex difference. In males, dopamine reduces the low activity state by acting in the same pathway as polycystic kidney disease-related genes that function in male-specific neurons. In hermaphrodites, dopamine increases the low activity state by suppression of octopamine signaling in the sex-shared SIA neurons, which have reduced responsiveness to octopamine in males. Furthermore, dopamine promotes exploration both inside and outside of bacterial lawn (the food source) in males and suppresses it in hermaphrodites. These results demonstrate that sexually dimorphic signaling allows the same neuromodulator to promote adaptive behavior for each sex.SIGNIFICANCE STATEMENT The mechanisms that generate sex differences in sex-shared behaviors, including locomotion, are not well understood. We show that there are sex differences in the regulation of behavioral states in the model animal Caenorhabditis elegans Dopamine promotes the high locomotor activity state in males, which must search for mates to reproduce, and suppresses it in self-fertilizing hermaphrodites through distinct molecular mechanisms. This study demonstrates that sex-specific signaling generates sex differences in the regulation of behavioral states, which in turn modulates the locomotor activity to suit reproduction for each sex.
Collapse
Affiliation(s)
- Satoshi Suo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan,
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| | - Shogo Matsuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan, and
| | - Koki Kyo
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan
| | - Min Wang
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan, and
| |
Collapse
|
24
|
Reciprocal modulation of 5-HT and octopamine regulates pumping via feedforward and feedback circuits in C. elegans. Proc Natl Acad Sci U S A 2019; 116:7107-7112. [PMID: 30872487 PMCID: PMC6452730 DOI: 10.1073/pnas.1819261116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Physiological regulation and behavior depend less on neurons than on neuronal circuits. Neurosignal integration is the basis of neurocircuit function. The modalities of neuroinformation integration are evolutionarily conserved in animals and humans. Here, we identified two modalities of neurosignal integration in two different circuits by which serotonergic ADFs regulate pharyngeal pumping in Caenorhabditis elegans: disinhibition in a feedforward circuit consisting of ADF, RIC, and SIA neurons and disexcitation, a modality of neurosignal integration suggested by this study, in a feedback circuit consisting of ADF, RIC, AWB, and ADF neurons. Feeding is vital for animal survival and is tightly regulated by the endocrine and nervous systems. To study the mechanisms of humoral regulation of feeding behavior, we investigated serotonin (5-HT) and octopamine (OA) signaling in Caenorhabditis elegans, which uses pharyngeal pumping to ingest bacteria into the gut. We reveal that a cross-modulation mechanism between 5-HT and OA, which convey feeding and fasting signals, respectively, mainly functions in regulating the pumping and secretion of both neuromodulators via ADF/RIC/SIA feedforward neurocircuit (consisting of ADF, RIC, and SIA neurons) and ADF/RIC/AWB/ADF feedback neurocircuit (consisting of ADF, RIC, AWB, and ADF neurons) under conditions of food supply and food deprivation, respectively. Food supply stimulates food-sensing ADFs to release more 5-HT, which augments pumping via inhibiting OA secretion by RIC interneurons and, thus, alleviates pumping suppression by OA-activated SIA interneurons/motoneurons. In contrast, nutrient deprivation stimulates RICs to secrete OA, which suppresses pumping via activating SIAs and maintains basal pumping and 5-HT production activity through excitation of ADFs relayed by AWB sensory neurons. Notably, the feedforward and feedback circuits employ distinct modalities of neurosignal integration, namely, disinhibition and disexcitation, respectively.
Collapse
|
25
|
Park J, Choi W, Dar AR, Butcher RA, Kim K. Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans. Mol Cells 2019; 42:28-35. [PMID: 30453729 PMCID: PMC6354054 DOI: 10.14348/molcells.2018.0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.
Collapse
Affiliation(s)
- Jisoo Park
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Woochan Choi
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL 32611,
USA
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611,
USA
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
26
|
Feldmann KG, Chowdhury A, Becker JL, McAlpin N, Ahmed T, Haider S, Richard Xia JX, Diaz K, Mehta MG, Mano I. Non-canonical activation of CREB mediates neuroprotection in a Caenorhabditis elegans model of excitotoxic necrosis. J Neurochem 2018; 148:531-549. [PMID: 30447010 DOI: 10.1111/jnc.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Excitotoxicity, caused by exaggerated neuronal stimulation by Glutamate (Glu), is a major cause of neurodegeneration in brain ischemia. While we know that neurodegeneration is triggered by overstimulation of Glu-receptors (GluRs), the subsequent mechanisms that lead to cellular demise remain controversial. Surprisingly, signaling downstream of GluRs can also activate neuroprotective pathways. The strongest evidence involves activation of the transcription factor cAMP response element-binding protein (CREB), widely recognized for its importance in synaptic plasticity. Canonical views describe CREB as a phosphorylation-triggered transcription factor, where transcriptional activation involves CREB phosphorylation and association with CREB-binding protein. However, given CREB's ubiquitous cross-tissue expression, the multitude of cascades leading to CREB phosphorylation, and its ability to regulate thousands of genes, it remains unclear how CREB exerts closely tailored, differential neuroprotective responses in excitotoxicity. A non-canonical, alternative cascade for activation of CREB-mediated transcription involves the CREB co-factor cAMP-regulated transcriptional co-activator (CRTC), and may be independent of CREB phosphorylation. To identify cascades that activate CREB in excitotoxicity we used a Caenorhabditis elegans model of neurodegeneration by excitotoxic necrosis. We demonstrated that CREB's neuroprotective effect was conserved, and seemed most effective in neurons with moderate Glu exposure. We found that factors mediating canonical CREB activation were not involved. Instead, phosphorylation-independent CREB activation in nematode excitotoxic necrosis hinged on CRTC. CREB-mediated transcription that depends on CRTC, but not on CREB phosphorylation, might lead to expression of a specific subset of neuroprotective genes. Elucidating conserved mechanisms of excitotoxicity-specific CREB activation can help us focus on core neuroprotective programs in excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.14494.
Collapse
Affiliation(s)
- K Genevieve Feldmann
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Ayesha Chowdhury
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Jessica L Becker
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - N'Gina McAlpin
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Taqwa Ahmed
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Syed Haider
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Jian X Richard Xia
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Karina Diaz
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Monal G Mehta
- Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Itzhak Mano
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA.,The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| |
Collapse
|
27
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
28
|
Abstract
Insufficient or excessive immune responses to pathogen infection are major causes of disease. Increasing evidence indicates that the nervous system regulates the immune system to help maintain immunological homeostasis. However, the precise mechanisms of this regulation are largely unknown. Here we show the existence of an octopaminergic immunoinhibitory pathway in Caenorhabditis elegans. Our study results indicate that this pathway is tonically active under normal conditions to maintain immunological homeostasis or suppress unwanted innate immune responses but downregulated upon pathogen infection to allow enhanced innate immunity. As excessive innate immune responses have been linked to human health conditions such as Crohn's disease, rheumatoid arthritis, atherosclerosis, diabetes, and Alzheimer's disease, elucidating octopaminergic neural regulation of innate immunity could be helpful in the development of new treatments for innate immune diseases. Upon pathogen infection, the nervous system regulates innate immunity to confer coordinated protection to the host. However, the precise mechanisms of such regulation remain unclear. Previous studies have demonstrated that OCTR-1, a putative G protein-coupled receptor for catecholamine, functions in the sensory neurons designated “ASH” to suppress innate immune responses in Caenorhabditis elegans. It is unknown what molecules act as OCTR-1 ligands in the neural immune regulatory circuit. Here we identify neurotransmitter octopamine (OA) as an endogenous ligand for OCTR-1 in immune regulation and show that the OA-producing RIC neurons function in the OCTR-1 neural circuit to suppress innate immunity. RIC neurons are deactivated in the presence of pathogens but transiently activated by nonpathogenic bacteria. Our data support a model whereby an octopaminergic immunoinhibitory pathway is tonically active under normal conditions to maintain immunological homeostasis or suppress unwanted innate immune responses but downregulated upon pathogen infection to allow enhanced innate immunity. As excessive innate immune responses have been linked to a myriad of human health concerns, our study could potentially benefit the development of more-effective treatments for innate immune disorders.
Collapse
|
29
|
Rose JK. Demonstrating Connections Between Neuron Signaling and Behavior using C. elegans Learning Assays and Optogenetics in a Laboratory Class. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2018; 16:A223-A231. [PMID: 30254536 PMCID: PMC6153016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Due to its well-described neural circuitry and identified connectome, the Caenorhabditis elegans model is well-suited for demonstrating connections between neuron signaling and behavioral outcome. In the 2017 FUN workshop at Dominican University, three behavior-based techniques were introduced for their ease of introduction to students, the flexible data collection options they offer and the inexpensive cost to implement in an education setting. These behavioral assays were adapted to address some of the challenges of performing C. elegans behavior experiments in lab classes and included: an associative chemosensory avoidance task to examine behavior of groups of worms, a mechanosensory task to observe individual worm behavior and an optogenetics assay to directly manipulate neuron signaling and simultaneously observe resultant behavior. Methods for these assays as well as example data collected by undergraduate students in a lab class are provided. FUN Workshop feedback and assessment indicate these assays were well-received and overall seen as valuable for introducing neuroscience and behavior to undergraduates in a lab class.
Collapse
Affiliation(s)
- Jacqueline K Rose
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA 98225
| |
Collapse
|
30
|
Kagawa-Nagamura Y, Gengyo-Ando K, Ohkura M, Nakai J. Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans. ZOOLOGICAL LETTERS 2018; 4:19. [PMID: 30065850 PMCID: PMC6062986 DOI: 10.1186/s40851-018-0103-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tyramine, known as a "trace amine" in mammals, modulates a wide range of behavior in invertebrates; however, the underlying cellular and circuit mechanisms are not well understood. In the nematode Caenorhabditis elegans (C. elegans), tyramine affects key behaviors, including foraging, feeding, and escape responses. The touch-evoked backward escape response is often coupled with a sharp omega turn that allows the animal to navigate away in the opposite direction. Previous studies have showed that a metabotropic tyramine receptor, SER-2, in GABAergic body motor neurons controls deep body bending in omega turns. In this study, we focused on the role of tyramine in GABAergic head motor neurons. Our goal is to understand the mechanism by which tyraminergic signaling alters neural circuit activity to control escape behavior. RESULTS Using calcium imaging in freely moving C. elegans, we found that GABAergic RME motor neurons in the head had high calcium levels during forward locomotion but low calcium levels during spontaneous and evoked backward locomotion. This calcium decrease was also observed during the omega turn. Mutant analyses showed that tbh-1 mutants lacking only octopamine had normal calcium responses, whereas tdc-1 mutants lacking both tyramine and octopamine did not exhibit the calcium decrease in RME. This neuromodulation was mediated by SER-2. Moreover, tyraminergic RIM neuron activity was negatively correlated with RME activity in the directional switch from forward to backward locomotion. These results indicate that tyramine released from RIM inhibits RME via SER-2 signaling. The omega turn is initiated by a sharp head bend when the animal reinitiates forward movement. Interestingly, ser-2 mutants exhibited shallow head bends and often failed to execute deep-angle omega turns. The behavioral defect and the abnormal calcium response in ser-2 mutants could be rescued by SER-2 expression in RME. These results suggest that tyraminergic inhibition of RME is involved in the control of omega turns. CONCLUSION We demonstrate that endogenous tyramine downregulates calcium levels in GABAergic RME motor neurons in the head via the tyramine receptor SER-2 during backward locomotion and omega turns. Our data suggest that this neuromodulation allows deep head bending during omega turns and plays a role in the escape behavior in C. elegans.
Collapse
Affiliation(s)
- Yuko Kagawa-Nagamura
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Keiko Gengyo-Ando
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
| | - Masamichi Ohkura
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
| |
Collapse
|
31
|
Food-Dependent Plasticity in Caenorhabditis elegans Stress-Induced Sleep Is Mediated by TOR-FOXA and TGF-β Signaling. Genetics 2018; 209:1183-1195. [PMID: 29925566 DOI: 10.1534/genetics.118.301204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023] Open
Abstract
Behavioral plasticity allows for context-dependent prioritization of competing drives, such as sleep and foraging. Despite the identification of neuropeptides and hormones implicated in dual control of sleep drive and appetite, our understanding of the mechanism underlying the conserved sleep-suppressing effect of food deprivation is limited. Caenorhabditis elegans provides an intriguing model for the dissection of sleep function and regulation as these nematodes engage a quiescence program following exposure to noxious conditions, a phenomenon known as stress-induced sleep (SIS). Here we show that food deprivation potently suppresses SIS, an effect enhanced at high population density. We present evidence that food deprivation reduces the need to sleep, protecting against the lethality associated with defective SIS. Additionally, we find that SIS is regulated by both target of rapamycin and transforming growth factor-β nutrient signaling pathways, thus identifying mechanisms coordinating sleep drive with internal and external indicators of food availability.
Collapse
|
32
|
Zhang L, Xu D, Cui M, Tang L, Hou T, Zhang Q. The guanine nucleotide-binding protein α subunit protein ChGnaq positively regulates Hsc70 transcription in Crassostrea hongkongensis. Biochem Biophys Res Commun 2018; 499:215-220. [DOI: 10.1016/j.bbrc.2018.03.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
33
|
Arey RN, Stein GM, Kaletsky R, Kauffman A, Murphy CT. Activation of G αq Signaling Enhances Memory Consolidation and Slows Cognitive Decline. Neuron 2018; 98:562-574.e5. [PMID: 29656871 DOI: 10.1016/j.neuron.2018.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/06/2017] [Accepted: 03/21/2018] [Indexed: 01/25/2023]
Abstract
Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function Gαq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced Gαq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of Gαq specifically in aged animals rescues the ability to form memory. Activation of Gαq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity.
Collapse
Affiliation(s)
- Rachel N Arey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Geneva M Stein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Kauffman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
34
|
Maas AE, Lawson GL, Bergan AJ, Tarrant AM. Exposure to CO 2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa. ACTA ACUST UNITED AC 2018; 221:jeb.164400. [PMID: 29191863 DOI: 10.1242/jeb.164400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/24/2017] [Indexed: 12/28/2022]
Abstract
Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.
Collapse
Affiliation(s)
- Amy E Maas
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's GE01, Bermuda .,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Gareth L Lawson
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Alexander J Bergan
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| |
Collapse
|
35
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357:661-667. [PMID: 28818938 DOI: 10.1126/science.aam8940] [Citation(s) in RCA: 924] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Portland, OR, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
36
|
Li Y, Tiedemann L, von Frieling J, Nolte S, El-Kholy S, Stephano F, Gelhaus C, Bruchhaus I, Fink C, Roeder T. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster. Front Syst Neurosci 2017; 11:60. [PMID: 28878633 PMCID: PMC5572263 DOI: 10.3389/fnsys.2017.00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Hormones control various metabolic traits comprising fat deposition or starvation resistance. Here we show that two invertebrate neurohormones, octopamine (OA) and tyramine (TA) as well as their associated receptors, had a major impact on these metabolic traits. Animals devoid of the monoamine OA develop a severe obesity phenotype. Using flies defective in the expression of receptors for OA and TA, we aimed to decipher the contributions of single receptors for these metabolic phenotypes. Whereas those animals impaired in octß1r, octß2r and tar1 share the obesity phenotype of OA-deficient (tβh-deficient) animals, the octß1r, octß2r deficient flies showed reduced insulin release, which is opposed to the situation found in tβh-deficient animals. On the other hand, OAMB deficient flies were leaner than controls, implying that the regulation of this phenotype is more complex than anticipated. Other phenotypes seen in tβh-deficient animals, such as the reduced ability to perform complex movements tasks can mainly be attributed to the octß2r. Tissue-specific RNAi experiments revealed a very complex interorgan communication leading to the different metabolic phenotypes observed in OA or OA and TA-deficient flies.
Collapse
Affiliation(s)
- Yong Li
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Lasse Tiedemann
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Jakob von Frieling
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Stella Nolte
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Samar El-Kholy
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Flora Stephano
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Christoph Gelhaus
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Iris Bruchhaus
- Department of Molecular Parasitology, Bernhard-Nocht-Institute for Tropical MedicineHamburg, Germany
| | - Christine Fink
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN)Kiel, Germany
| | - Thomas Roeder
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN)Kiel, Germany
| |
Collapse
|
37
|
Oishi A, Karamitri A, Gerbier R, Lahuna O, Ahmad R, Jockers R. Orphan GPR61, GPR62 and GPR135 receptors and the melatonin MT 2 receptor reciprocally modulate their signaling functions. Sci Rep 2017; 7:8990. [PMID: 28827538 PMCID: PMC5566548 DOI: 10.1038/s41598-017-08996-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the function of orphan G protein-coupled receptors (GPCRs), whose cognate ligand is unknown, is of major importance as GPCRs are privileged drug targets for many diseases. Recent phylogenetic studies classified three orphan receptors, GPR61, GPR62 and GPR135 among the melatonin receptor subfamily, but their capacity to bind melatonin and their biochemical functions are not well characterized yet. We show here that GPR61, GPR62 and GPR135 do not bind [3H]-melatonin nor 2-[125I]iodomelatonin and do not respond to melatonin in several signaling assays. In contrast, the three receptors show extensive spontaneous ligand-independent activities on the cAMP, inositol phosphate and ß-arrestin pathways with distinct pathway-specific profiles. Spontaneous ß-arrestin recruitment internalizes all three GPRs in the endosomal compartment. Co-expression of the melatonin binding MT2 receptor with GPR61, GPR62 or GPR135 has several consequences such as (i) the formation of receptor heteromers, (ii) the inhibition of melatonin-induced ß-arrestin2 recruitment to MT2 and (iii) the decrease of elevated cAMP levels upon melatonin stimulation in cells expressing spontaneously active GPR61 and GPR62. Collectively, these data show that GPR61, GPR62 and GPR135 are unable to bind melatonin, but show a reciprocal regulatory interaction with MT2 receptors.
Collapse
Affiliation(s)
- Atsuro Oishi
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Olivier Lahuna
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Raise Ahmad
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France. .,CNRS UMR, 8104, Paris, France. .,University Paris Descartes, Paris, France.
| |
Collapse
|
38
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017. [DOI: 10.1126/science.aam8940 order by 10746--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S. Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N. Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Portland, OR, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
39
|
Vohra M, Lemieux GA, Lin L, Ashrafi K. The beneficial effects of dietary restriction on learning are distinct from its effects on longevity and mediated by depletion of a neuroinhibitory metabolite. PLoS Biol 2017; 15:e2002032. [PMID: 28763436 PMCID: PMC5538637 DOI: 10.1371/journal.pbio.2002032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022] Open
Abstract
In species ranging from humans to Caenorhabditis elegans, dietary restriction (DR) grants numerous benefits, including enhanced learning. The precise mechanisms by which DR engenders benefits on processes related to learning remain poorly understood. As a result, it is unclear whether the learning benefits of DR are due to myriad improvements in mechanisms that collectively confer improved cellular health and extension of organismal lifespan or due to specific neural mechanisms. Using an associative learning paradigm in C. elegans, we investigated the effects of DR as well as manipulations of insulin, mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), and autophagy pathways-processes implicated in longevity-on learning. Despite their effects on a vast number of molecular effectors, we found that the beneficial effects on learning elicited by each of these manipulations are fully dependent on depletion of kynurenic acid (KYNA), a neuroinhibitory metabolite. KYNA depletion then leads, in an N-methyl D-aspartate receptor (NMDAR)-dependent manner, to activation of a specific pair of interneurons with a critical role in learning. Thus, fluctuations in KYNA levels emerge as a previously unidentified molecular mechanism linking longevity and metabolic pathways to neural mechanisms of learning. Importantly, KYNA levels did not alter lifespan in any of the conditions tested. As such, the beneficial effects of DR on learning can be attributed to changes in a nutritionally sensitive metabolite with neuromodulatory activity rather than indirect or secondary consequences of improved health and extended longevity.
Collapse
Affiliation(s)
- Mihir Vohra
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - George A Lemieux
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
40
|
Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in Caenorhabditis elegans. J Neurosci 2017; 37:7811-7823. [PMID: 28698386 DOI: 10.1523/jneurosci.2636-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/18/2017] [Accepted: 07/01/2017] [Indexed: 11/21/2022] Open
Abstract
Biogenic amines are conserved signaling molecules that link food cues to behavior and metabolism in a wide variety of organisms. In the nematode Caenorhabditis elegans, the biogenic amines serotonin (5-HT) and octopamine regulate a number of food-related behaviors. Using a novel method for long-term quantitative behavioral imaging, we show that 5-HT and octopamine jointly influence locomotor activity and quiescence in feeding and fasting hermaphrodites, and we define the neural circuits through which this modulation occurs. We show that 5-HT produced by the ADF neurons acts via the SER-5 receptor in muscles and neurons to suppress quiescent behavior and promote roaming in fasting worms, whereas 5-HT produced by the NSM neurons acts on the MOD-1 receptor in AIY neurons to promote low-amplitude locomotor behavior characteristic of well fed animals. Octopamine, produced by the RIC neurons, acts via SER-3 and SER-6 receptors in SIA neurons to promote roaming behaviors characteristic of fasting animals. We find that 5-HT signaling is required for animals to assume food-appropriate behavior, whereas octopamine signaling is required for animals to assume fasting-appropriate behavior. The requirement for both neurotransmitters in both the feeding and fasting states enables increased behavioral adaptability. Our results define the molecular and neural pathways through which parallel biogenic amine signaling tunes behavior appropriately to nutrient conditions.SIGNIFICANCE STATEMENT Animals adjust behavior in response to environmental changes, such as fluctuations in food abundance, to maximize survival and reproduction. Biogenic amines, such as like serotonin, are conserved neurotransmitters that regulate behavior and metabolism in relation to energy status. Disruptions of biogenic amine signaling contribute to human neurological diseases of mood, appetite, and movement. In this study, we investigated the roles of the biogenic amines serotonin and octopamine in regulating locomotion behaviors associated with feeding and fasting in the roundworm Caenorhabditis elegans We identified neural circuits through which these signals work to govern behavior. Understanding the molecular pathways through which biogenic amines function in model organisms may improve our understanding of dysfunctions of appetite and behavior found in mammals, including humans.
Collapse
|
41
|
Hoshikawa H, Uno M, Honjoh S, Nishida E. Octopamine enhances oxidative stress resistance through the fasting-responsive transcription factor DAF-16/FOXO in C. elegans. Genes Cells 2017; 22:210-219. [PMID: 28105749 DOI: 10.1111/gtc.12469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/18/2016] [Indexed: 01/12/2023]
Abstract
Dietary restriction regimens lead to enhanced stress resistance and extended life span in many species through the regulation of fasting and/or diet-responsive mechanisms. The fasting stimulus is perceived by sensory neurons and causes behavioral and metabolic adaptations. Octopamine (OA), one of the Caenorhabditis elegans neurotransmitters, is involved in behavioral adaptations, and its levels are increased under fasting conditions. However, it remains largely unknown how OA contributes to the fasting responses. In this study, we found that OA administration enhanced organismal resistance to oxidative stress. This enhanced resistance was suppressed by a mutation of the OA receptors, SER-3 and SER-6. Moreover, we found that OA administration promoted the nuclear translocation of DAF-16, the key transcription factor in fasting responses, and that the OA-induced enhancement of stress resistance required DAF-16. Altogether, our results suggest that OA signaling, which is triggered by the absence of food, shifts the organismal state to a more protective one to prepare for environmental stresses.
Collapse
Affiliation(s)
- Haruka Hoshikawa
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masaharu Uno
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sakiko Honjoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
42
|
Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor. Immunobiology 2016; 222:684-692. [PMID: 28069295 DOI: 10.1016/j.imbio.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/24/2022]
Abstract
One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens.
Collapse
|
43
|
Li Y, Hoffmann J, Li Y, Stephano F, Bruchhaus I, Fink C, Roeder T. Octopamine controls starvation resistance, life span and metabolic traits in Drosophila. Sci Rep 2016; 6:35359. [PMID: 27759117 PMCID: PMC5069482 DOI: 10.1038/srep35359] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
The monoamines octopamine (OA) and tyramine (TA) modulate numerous behaviours and physiological processes in invertebrates. Nevertheless, it is not clear whether these invertebrate counterparts of norepinephrine are important regulators of metabolic and life history traits. We show that flies (Drosophila melanogaster) lacking OA are more resistant to starvation, while their overall life span is substantially reduced compared with control flies. In addition, these animals have increased body fat deposits, reduced physical activity and a reduced metabolic resting rate. Increasing the release of OA from internal stores induced the opposite effects. Flies devoid of both OA and TA had normal body fat and metabolic rates, suggesting that OA and TA act antagonistically. Moreover, OA-deficient flies show increased insulin release rates. We inferred that the OA-mediated control of insulin release accounts for a substantial proportion of the alterations observed in these flies. Apparently, OA levels control the balance between thrifty and expenditure metabolic modes. Thus, changes in OA levels in response to external and internal signals orchestrate behaviour and metabolic processes to meet physiological needs. Moreover, chronic deregulation of the corresponding signalling systems in humans may be associated with metabolic disorders, such as obesity or diabetes.
Collapse
Affiliation(s)
- Yong Li
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Julia Hoffmann
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Yang Li
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Flora Stephano
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Fink
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Roeder
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
44
|
Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans. J Neurosci 2016; 36:3157-69. [PMID: 26985027 DOI: 10.1523/jneurosci.1128-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways.
Collapse
|
45
|
Tao J, Ma YC, Yang ZS, Zou CG, Zhang KQ. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation. SCIENCE ADVANCES 2016; 2:e1501372. [PMID: 27386520 PMCID: PMC4928904 DOI: 10.1126/sciadv.1501372] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhong-Shan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- Corresponding author. (C.-G.Z.); (K.-Q.Z.)
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- Corresponding author. (C.-G.Z.); (K.-Q.Z.)
| |
Collapse
|
46
|
Dopamine regulates body size in Caenorhabditis elegans. Dev Biol 2016; 412:128-138. [DOI: 10.1016/j.ydbio.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|
47
|
Zhou Y, Falck JR, Rothe M, Schunck WH, Menzel R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J Lipid Res 2015; 56:2110-23. [PMID: 26399467 PMCID: PMC4617398 DOI: 10.1194/jlr.m061887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX 75390
| | | | | | - Ralph Menzel
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
48
|
Neal SJ, Takeishi A, O'Donnell MP, Park J, Hong M, Butcher RA, Kim K, Sengupta P. Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling. eLife 2015; 4. [PMID: 26335407 PMCID: PMC4558564 DOI: 10.7554/elife.10110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023] Open
Abstract
Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-β and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity. DOI:http://dx.doi.org/10.7554/eLife.10110.001 Living organisms have the remarkable ability to adapt to changes in their external environment. For example, when conditions are favorable, the larvae of the tiny roundworm C. elegans rapidly mature into adults and reproduce. However, when faced with starvation, over-crowding or other adverse conditions, they can stop growing and enter a type of stasis called the dauer stage, which enables them to survive in harsh conditions for extended periods of time. The worms enter the dauer stage if they detect high levels of a pheromone mixture that is produced by other worms—which indicates that the local population is over-crowded. However, temperature, food availability, and other environmental cues also influence this decision. A protein called TGF-β and other proteins called insulin-like peptides are produced by a group of sensory neurons in the worm's head. These proteins usually promote the growth of the worms by increasing the production of particular steroid hormones. However, high levels of the pheromone mixture, an inadequate supply of food and other adverse conditions decrease the expression of the genes that encode these proteins, which allows the worm to enter the dauer state. It is not clear how the worm senses food, nor how this is integrated with the information provided by the pheromones to influence this decision. To address these questions, Neal et al. studied a variety of mutant worms that lacked proteins involved in different aspects of food sensing. The experiments show that worms missing a protein called CaMKI enter the dauer state even under conditions in which food is plentiful and normal worms continue to grow. CaMKI inhibits entry into the dauer stage by increasing the expression of the genes that encode TGF-β and the insulin-like peptides in sensory neurons in response to food. Neal et al.'s findings reveal how CaMKI enables information about food availability to be integrated with other environmental cues to influence whether young worms enter the dauer state. Understanding how food sensing is linked to changes in hormone levels will help us appreciate why and how the availability of food has complex effects on animal biology and behavior. DOI:http://dx.doi.org/10.7554/eLife.10110.002
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Asuka Takeishi
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Michael P O'Donnell
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - JiSoo Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Myeongjin Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Piali Sengupta
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
49
|
Lakhina V, Arey RN, Kaletsky R, Kauffman A, Stein G, Keyes W, Xu D, Murphy CT. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 2015; 85:330-45. [PMID: 25611510 DOI: 10.1016/j.neuron.2014.12.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Abstract
Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Kauffman
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Geneva Stein
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - William Keyes
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Xu
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
50
|
Abstract
Ca(2+)/calmodulin-dependent Kinase II (CaMKII) is a calcium-regulated serine threonine kinase whose functions include regulation of synaptic activity (Coultrap and Bayer 2012). A postsynaptic role for CaMKII in triggering long-lasting changes in synaptic activity at some synapses has been established, although the relevant downstream targets remain to be defined (Nicoll and Roche 2013). A presynaptic role for CaMKII in regulating synaptic activity is less clear with evidence for CaMKII either increasing or decreasing release of neurotransmitter from synaptic vesicles (SVs) (Wang 2008). In this issue Hoover et al. (2014) further expand upon the role of CaMKII in presynaptic cells by demonstrating a role in regulating another form of neuronal signaling, that of dense core vesicles (DCVs), whose contents can include neuropeptides and insulin-related peptides, as well as other neuromodulators such as serotonin and dopamine (Michael et al. 2006). Intriguingly, Hoover et al. (2014) demonstrate that active CaMKII is required cell autonomously to prevent premature release of DCVs after they bud from the Golgi in the soma and before they are trafficked to their release sites in the axon. This role of CaMKII requires it to have kinase activity as well as an activating calcium signal released from internal ER stores via the ryanodine receptor. Not only does this represent a novel function for CaMKII but also it offers new insights into how DCVs are regulated. Compared to SVs we know much less about how DCVs are trafficked, docked, and primed for release. This is despite the fact that neuropeptides are major regulators of human brain function, including mood, anxiety, and social interactions (Garrison et al. 2012; Kormos and Gaszner 2013; Walker and Mcglone 2013). This is supported by studies showing mutations in genes for DCV regulators or cargoes are associated with human mental disorders (Sadakata and Furuichi 2009; Alldredge 2010; Quinn 2013; Quinn et al. 2013). We lack even a basic understanding of DCV function, such as, are there defined DCV docking sites and, if so, how are DCVs delivered to these release sites? These results from Hoover et al. (2014) promise to be a starting point in answering some of these questions.
Collapse
|