1
|
Essawy AE, Bekheet GJ, Abdel Salam S, Alhasani RH, Abd Elkader HTAE. Betaine alleviates deficits in motor behavior, neurotoxic effects, and neuroinflammatory responses in a rat model of demyelination. Toxicol Rep 2025; 14:101974. [PMID: 40129881 PMCID: PMC11930798 DOI: 10.1016/j.toxrep.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Multiple sclerosis (MS) is characterized as a chronic inflammatory demyelinating neurodegenerative disorder that leads to the deterioration of the myelin sheath and the loss of axons. Betaine, a trimethylglycine compound, is recognized for its ability to penetrate the blood-brain barrier (BBB) and exhibits properties that are antioxidant, anti-inflammatory, and neuroprotective. The cuprizone (CPZ) model serves as an effective tool for investigating the processes of demyelination and remyelination associated with MS. In our research, we examined the protective and therapeutic effects of betaine in a rat model of MS induced by CPZ. The experimental protocol involved administering 600 mg/kg of CPZ orally for 7 days, followed by 2 weeks with 200 mg/kg of CPZ. The protective group received a combination of betaine (1 g/kg/day, orally) and CPZ (200 mg/kg/day), while the therapeutic group was treated with CPZ (600 mg/kg) alongside betaine for three weeks. Behavioral assessments were conducted using inverted screen and rotarod tests to measure balance, motor coordination, and grasping ability. Following these evaluations, the rats were euthanized for analysis of oxidative stress and inflammatory biomarkers, toluidine blue staining, transmission electron microscopy (TEM) imaging, and myelin basic protein (MBP) immunostaining of the corpus callosum (CC). The results indicated that betaine significantly enhanced balance, motor coordination, and grasping ability, while decreasing oxidative stress, inhibiting interleukin (IL)-4 and IL-17 levels, and reversing the demyelination caused by CPZ. Notably, betaine also mitigated the increase in homocysteine (Hcy) levels and facilitated remyelination, evidenced by the presence of normal compacted myelin and increased expression of MBP in the CC. This study substantiates the remyelinating effects of betaine in the context of CPZ-induced demyelination. It suggests that it may contribute to the repair of myelin through the modulation of behavioral deficits, oxidative stress, neuroinflammation, ultrastructural changes, and MBP expression levels, indicating its potential as a complementary therapeutic agent in the management of MS.
Collapse
Affiliation(s)
- Amina E. Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gihad Jamal Bekheet
- Euro-Mediterranean Master in Neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sherine Abdel Salam
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | | | | |
Collapse
|
2
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
3
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Sun X, Qian M, Li H, Wang L, Zhao Y, Yin M, Dai L, Bao H. FKBP5 activates mitophagy by ablating PPAR-γ to shape a benign remyelination environment. Cell Death Dis 2023; 14:736. [PMID: 37952053 PMCID: PMC10640650 DOI: 10.1038/s41419-023-06260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Xingzong Sun
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Menghan Qian
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yunjie Zhao
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, China.
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Ghaiad HR, A Abd-Elmawla M, Gad ES, A Ahmed K, Abdelmonem M. Modulating miR-146a Expression by Hydrogen Sulfide Ameliorates Motor Dysfunction and Axonal Demyelination in Cuprizone-Induced Multiple Sclerosis. ACS Chem Neurosci 2023; 14:3047-3058. [PMID: 37585620 DOI: 10.1021/acschemneuro.3c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neuro-inflammatory and neuro-autoimmune disease. Although hydrogen sulfide has recently shown potential therapeutic impacts in different neurological diseases, its effects on MS are still obscure. MiR-146a is considered a vital target for different therapeutic approaches in treating MS. The present study is directed to explore the therapeutic effects of NaHS (hydrogen sulfide donor) on cuprizone-induced MS and to explore whether NaHS can mediate its effects via regulating miR-146a expression. A total of 28 male C57Bl/6 mice were divided into 4 groups; control, cuprizone-intoxicated, NaHS control (100 μmol/kg/day, i.p), and NaHS-treated groups. Intriguingly, NaHS treatment managed to improve locomotor coordination and curb neuronal inflammation and demyelination as evidenced by hematoxylin & eosin, and Luxol fast blue staining and the increased myelin basic protein (MBP) content. Additionally, NaHS reduced interleukin-1 receptor-associated kinase-1 (IRAK-1), nuclear transcription factor kappa B (NF-κB), interleukin (IL)-17, and IL-1β brain levels along with downregulation of miR-146a expression compared with the untreated cuprizone-intoxicated group. Furthermore, NaHS-treated animals revealed much less oxidative stress compared to the untreated animals as evidenced by elevated glutathione and reduced malondialdehyde contents. Altogether, the current work reported that NaHS could improve motor dysfunction and reduce axonal demyelination, oxidative stress, as well as neuro-inflammation in mice with MS. Thus, using H2S-releasing compounds could be a promising approach in MS treatment strategies. The mechanism of these beneficial effects may involve the regulation of miR-146a/NF-κB/IL-1β axis.
Collapse
Affiliation(s)
- Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Enas S Gad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Ismailia 45511, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
7
|
Labunets I, Rodnichenko A, Savosko S, Pivneva T. Reaction of different cell types of the brain on neurotoxin cuprizone and hormone melatonin treatment in young and aging mice. Front Cell Neurosci 2023; 17:1131130. [PMID: 37153635 PMCID: PMC10157497 DOI: 10.3389/fncel.2023.1131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction The brain myelin and neurons destruction in multiple sclerosis may be associated with the production of neuroinflammatory cells (macrophages, astrocytes, T-lymphocytes) of pro-inflammatory cytokines and free radicals. The age-associated changes of the above cells can influence on the response of nervous system cells to toxic damaging and regulatory factors of humoral/endocrine nature, in particular pineal hormone melatonin. The study aim was (1) to evaluate changes of the brain macrophages, astrocytes, T-cells, neural stem cells, neurons, and central nervous system (CNS) functioning in the neurotoxin cuprizone-treated mice of different age; and (2) to assess in such mice the effects of exogenous melatonin and possible courses of its action. Methods A toxic demyelination and neurodegeneration model was induced in 129/Sv mice aged 3-5 and 13-15 months by adding cuprizone neurotoxin to their food for 3 weeks. From the 8th day of the cuprizone treatment, melatonin was injected intraperitoneally at 6 p.m. daily, at a dose of 1 mg/kg. The brain GFPA + -cells were evaluated by immunohistochemical method, the proportion of CD11b+, CD3+CD11b+, CD3+, CD3+CD4+, CD3+CD8+, Nestin+-cells was determined via flow cytometry. Macrophage activity was evaluated by their ability to phagocytose latex beads Morphometric analysis of the brain neurons and the behavioral reactions ("open field" and rotarod tests) were performed. To assess the involvement of the bone marrow and thymus in the action of melatonin, the amount of granulocyte/macrophage colony-forming cells (GM-CFC), and blood monocytes and thymic hormone thymulin were evaluated. Results and discussion The numbers of the GFAP+-, CD3+-, CD3+CD4+, CD3+CD8+, CD11b+, CD3+CD11b+, Nestin+-cells and macrophages phagocytic latex beads and malondialdehyde (MDA) content were increased in the brain of young and aging mice under cuprizone influence. The proportion of undamaged neurons within the brain, motor, affective, and exploratory activities, and muscle tone decreased in mice of both ages. Introducing melatonin to mice of any age reduced the number of GFAP+-, CD3+- cells and their subpopulations, macrophage activation, and MDA content. At the same time, the percentage of brain neurons that were unchanged increased as the number of Nestin+ cells decreased. The behavioral responses were also improved. Besides, the number of bone marrow GM-CFC and the blood level of monocytes and thymulin increased. The effects of both neurotoxin and melatonin on the brain astrocytes, macrophages T-cells, and immune system organs as well as the structure and functioning of neurons were more pronounced in the young mice. Conclusion We have observed the involvement of the astrocytes, macrophages, T-cells, neural stem cells, and neurons in the brain reaction of mice different age after administration of neurotoxin cuprizone and melatonin. The brain cell composition reaction has the age features. The neuroprotective effects of melatonin in cuprizone-treated mice have been realized through an improvement of the brain cell composition and oxidative stress factors and functioning of bone marrow and thymus.
Collapse
Affiliation(s)
- Irina Labunets
- Cell and Tissue Technologies Department, Institute of Genetic and Regenerative Medicine, National Scientific Center “M.D. Strazhesko Institute of Cardiology”, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- *Correspondence: Irina Labunets,
| | - Anzhela Rodnichenko
- Cell and Tissue Technologies Department, Institute of Genetic and Regenerative Medicine, National Scientific Center “M.D. Strazhesko Institute of Cardiology”, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Sergey Savosko
- Cell and Tissue Technologies Department, Institute of Genetic and Regenerative Medicine, National Scientific Center “M.D. Strazhesko Institute of Cardiology”, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Tetyana Pivneva
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
8
|
Honarvar F, Hojati V, Zare L, Bakhtiari N, Javan M. Ursolic Acid Enhances Myelin Repair in Adult Mice Brains and Stimulates Exhausted Oligodendrocyte Progenitors to Remyelinate. J Mol Neurosci 2022; 72:2081-2093. [PMID: 35976486 DOI: 10.1007/s12031-022-02059-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
Abstract
In multiple sclerosis patients, long-term inflammation makes the oligodendrocyte progenitor cells (OPCs) exhausted; therefore, a new therapy that makes them responsive to insults to participate in remyelination is highly in demand. Here, we investigated the effect of ursolic acid (UA) on myelin repair after mid-term and long-term demyelination periods induced by 6 or 12 weeks of cuprizone treatment followed by 2 weeks of recovery with or without UA. Immunohistochemistry studies and myelin genes expression assessment were used to evaluate the myelination status of mouse corpora callosa and the cellular mechanisms of myelin repair. Results showed that UA significantly promoted recovery from myelin loss after discontinuing 6 or 12 weeks of cuprizone feeding, as measured by luxol fast blue (LFB), fluoroMyelin (FM), anti-myelin basic protein (MBP) staining, and oligodendrocyte progenitor cell counts. It led to reduced inflammation and gliosis as evaluated by glial fibrillary acidic protein (GFAP), Iba1, or other marker gene transcripts. Following long-term demyelination, gliosis and TNF-α were observed as potential players in lesion pathology, which were restored by UA. An increased IL-10 may contribute to UA anti-inflammatory effect and making responsive the exhausted OPCs. UA increased the number of new oligodendrocyte lineage cells and myelination. Our findings indicated that UA can enhance myelin repair after cuprizone challenge through the prevention of gliosis and increasing the newly generated myelin.
Collapse
Affiliation(s)
- Fatemeh Honarvar
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nuredin Bakhtiari
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. .,Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
10
|
Landini L, Souza Monteiro de Araujo D, Titiz M, Geppetti P, Nassini R, De Logu F. TRPA1 Role in Inflammatory Disorders: What Is Known So Far? Int J Mol Sci 2022; 23:ijms23094529. [PMID: 35562920 PMCID: PMC9101260 DOI: 10.3390/ijms23094529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses. TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect modulation of a large series of intracellular pathways, orchestrates a range of cellular processes, such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway has been proposed as a protective mechanism to detect and respond to harmful agents in various pathological conditions, including several inflammatory diseases. Specific attention has been paid to TRPA1 contribution to the transition of inflammation and immune responses from an early defensive response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as beneficial tools for the treatment of inflammatory conditions.
Collapse
|
11
|
Günaydın C, Önger ME, Avcı B, Bozkurt A, Terzi M, Bilge SS. Tofacitinib enhances remyelination and improves myelin integrity in cuprizone-induced mice. Immunopharmacol Immunotoxicol 2021; 43:790-798. [PMID: 34618622 DOI: 10.1080/08923973.2021.1986063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Demyelination and subsequent remyelination are well-known mechanisms in multiple sclerosis (MS) pathology. Current research mainly focused on preventing demyelination or regulating the peripheral immune system to protect further damage to the central nervous system. However, information about another essential mechanism, remyelination, and its balance of the immune response within the central nervous system's boundaries is still limited. MATERIALS AND METHODS In this study, we tried to demonstrate the effect of the recently introduced Janus kinase (JAK)-signal transducer and activator of transcription (STAT) inhibitor, tofacitinib, on remyelination.Demyelination was induced by 6-week cuprizone administration, followed by 2-week tofacitinib (10, 30, and 100 mg/kg) treatment. RESULTS At the functional level, tofacitinib improved cuprizone-induced decline in motor coordination and muscle strength, which were assessed by rotarod and hanging wire tests. Tofacitinib also showed anti-inflammatory effect by alleviating the cuprizone-induced increase in the central levels of interferon-γ (IFN-γ), interleukin (IL)-6, IL-1β, and tumor necrosis alpha (TNF-α). Furthermore, tofacitinib also suppressed the cuprizone-induced increase in matrix metalloproteinases (MMP)-9 and MMP-2 levels. Additionally, cuprizone-induced loss of myelin integrity and myelin basic protein expression was inhibited by tofacitinib. At the molecular level, we also assessed phosphorylation of STAT-3 and STAT-5, and our data indicates tofacitinib suppressed cuprizone-induced phosphorylation in those proteins. CONCLUSION Our study highlights JAK/STAT inhibition provides beneficial effects on remyelination via inhibition of inflammatory cascade.
Collapse
Affiliation(s)
- Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Emin Önger
- Department of Histology and Embryology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Biochemistry, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayhan Bozkurt
- Department of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Terzi
- Department of Neurology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - S Sırrı Bilge
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
12
|
Shiri E, Pasbakhsh P, Borhani-Haghighi M, Alizadeh Z, Nekoonam S, Mojaverrostami S, Pirhajati Mahabadi V, Mehdi A, Zibara K, Kashani IR. Mesenchymal Stem Cells Ameliorate Cuprizone-Induced Demyelination by Targeting Oxidative Stress and Mitochondrial Dysfunction. Cell Mol Neurobiol 2021; 41:1467-1481. [PMID: 32594382 PMCID: PMC11448649 DOI: 10.1007/s10571-020-00910-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The main causes of MS disease progression, demyelination, and tissue damage are oxidative stress and mitochondrial dysfunction. Hence, the latter are considered as important therapeutic targets. Recent studies have demonstrated that mesenchymal stem cells (MSCs) possess antioxidative properties and are able to target mitochondrial dysfunction. Therefore, we investigated the effect of transplanting Wharton's jelly-derived MSCs in a demyelination mouse model of MS in which mice were fed cuprizone (CPZ) for 12 weeks. CPZ is a copper chelator that impairs the activity of cytochrome oxidase, decreases oxidative phosphorylation, and produces degenerative changes in oligodendrocytes, leading to toxic demyelination similar to those found in MS patients. Results showed that MSCs caused a significant increase in the percentage of myelinated areas and in the number of myelinated fibers in the corpus callosum of the CPZ + MSC group, compared to the CPZ group, as assessed by Luxol fast blue staining and transmission electron microscopy. In addition, transplantation of MSCs significantly increased the number of oligodendrocytes while decreasing astrogliosis and microgliosis in the corpus callosum of the CPZ + MSC group, evaluated by immunofluorescence. Moreover, the mechanism by which MSCs exert these physiological effects was found to be through abolishing the effect of CPZ on oxidative stress markers and mitochondrial dysfunction. Indeed, malondialdehyde significantly decreased while glutathione and superoxide dismutase significantly increased in CPZ + MSC mice group, in comparison witth the CPZ group alone. Furthermore, cell therapy with MSC transplantation increased the expression levels of mitochondrial biogenesis transcripts PGC1α, NRF1, MFN2, and TFAM. In summary, these results demonstrate that MSCs may attenuate MS by promoting an antioxidant response, reducing oxidative stress, and improving mitochondrial homeostasis.
Collapse
Affiliation(s)
- Elham Shiri
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saied Nekoonam
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Vice-Chancellor for Research and Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mehdi
- PRASE and Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- ER045, PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | | |
Collapse
|
13
|
Papazian I, Tsoukala E, Boutou A, Karamita M, Kambas K, Iliopoulou L, Fischer R, Kontermann RE, Denis MC, Kollias G, Lassmann H, Probert L. Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKβ promote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice. J Neuroinflammation 2021; 18:222. [PMID: 34565380 PMCID: PMC8466720 DOI: 10.1186/s12974-021-02200-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown. Methods To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit β (IKKβ), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-d-aspartate (NMDA) excitotoxicity in vitro. Results Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKβ promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist. Conclusions These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKβ promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02200-4.
Collapse
Affiliation(s)
- Irini Papazian
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece
| | - Eleni Tsoukala
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece
| | - Athena Boutou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece
| | - Maria Karamita
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece
| | - Lida Iliopoulou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Maria C Denis
- Institute of Immunology, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, 16672, Athens, Greece
| | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, 16672, Athens, Greece
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A1090, Vienna, Austria
| | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave, 11521, Athens, Greece.
| |
Collapse
|
14
|
Morgan ML, Brideau C, Teo W, Caprariello AV, Stys PK. Label-free assessment of myelin status using birefringence microscopy. J Neurosci Methods 2021; 360:109226. [PMID: 34052286 DOI: 10.1016/j.jneumeth.2021.109226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Label-free methods for quantifying myelination can reduce expense, time, and variability in results when examining tissue white matter pathology. NEW METHOD We sought to determine whether the optical birefringent properties of myelin could be exploited to determine myelination status of white matter in tissue sections. Sections of forebrains of mice (normal, and treated with cuprizone to cause demyelination) were examined by birefringence using a birefringence imaging system (Thorlabs LCC7201), and results compared with sections stained using Luxol Fast Blue. RESULTS Quantitative birefringence analysis of myelin was not only reliable in detecting demyelination, but also showed abnormalities that preceded myelin loss in cuprizone-treated mice. COMPARISON WITH EXISTING METHODS Subtle myelin pathology visible with electron microscopy but not with conventional histopathological staining was readily detected with birefringence microscopy. CONCLUSIONS Birefringence imaging provides a rapid, label-free method of analyzing the myelin content and nanostructural status in longitudinal white matter structures, being sensitive to subtle myelin changes that precede overt pathological damage.
Collapse
Affiliation(s)
- Megan Lynn Morgan
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Craig Brideau
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Wulin Teo
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Andrew Vincent Caprariello
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Peter K Stys
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Digehsara SG, Name N, Sartipnia N, Karim E, Taheri S, Ebrahimi MT, Arasteh J. Analysis of inflammasomes and CYP27B1 genes in cuprizone demyelinated C57BL/6 mice and evaluation of Th1 and Th2 patterns after oral administration of Lactobacillus casei strain T2 (IBRC-M10783). Microb Pathog 2021; 155:104931. [PMID: 33930419 DOI: 10.1016/j.micpath.2021.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is characterized by the destruction of myelin in the CNS. Various factors including genetics, epigenetics, and environmental factors are involved in the development of the disease. There is evidence that changes in the gut microbiome profile are associated with immune-related diseases such as MS. Probiotics can alter the composition of the gut microbiota on the mucosal surfaces by differentiating naive T cells into Th1, Th2, Th17, and Treg cells. Female C57BL/6 mice were divided into 6 groups (n = 7): Normal group, cuprizone group (gavage of cuprizone for 4 weeks), Probiotic group (gavage of probiotic for 4 weeks), Treatment1 group (Probiotic for 4 weeks and then cuprizone for 4 weeks), treatment2 group (cuprizone for 4 weeks and then probiotic for 4 weeks) and treatment3 group (cuprizone for 4 weeks and then probiotic for 4 weeks with vitamin D3). Then the expression of NLRP-1, NLRP-3, AIM2, and CYP27B1 genes were evaluated using Real-Time PCR, and serum levels of IFN-γ and IL-4 were also measured by ELISA.The results showed a significant decrease in the expression of inflammasome and CYP27B1 genes in the probiotic-treated groups compared to the cuprizone group. Also, the comparison between probiotic-treated groups and cuprizone group showed a significant decrease in the amount of IFN-γ and IL-4. Due to reduced expression of the inflammasome genes as well as the decrease in IFN-γ levels as an inflammatory cytokine, it appears that L. casei may be effective in the healing process of demyelinated mice.
Collapse
Affiliation(s)
| | - Niloofar Name
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Sartipnia
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Elahe Karim
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | | | - Javad Arasteh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Zhao J, Liao Y, Miller-Little W, Xiao J, Liu C, Li X, Li X, Kang Z. STEAP4 expression in CNS resident cells promotes Th17 cell-induced autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:98. [PMID: 33879167 PMCID: PMC8059164 DOI: 10.1186/s12974-021-02146-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating neurological disease caused by autoimmune destruction of the myelin sheath. Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for the pathogenesis of MS. We and others have previously demonstrated that IL-17 is critical for the pathogenesis of EAE. The concentration of IL-17 is significantly higher in the sera of MS patients than in healthy controls and correlates with disease activity. Moreover, anti-IL-17 neutralizing antibody demonstrated promising efficacy in a phase II trial in MS patients, further substantiating a key pathogenic role for IL-17 in MS. While Th17 and IL-17 are emerging as a bona fide drivers for neuroinflammation, it remains unclear what effector molecule executes the inflammatory tissue destruction in Th17-driven EAE. METHODS By microarray analysis, we found STEAP4 is a downstream molecule of IL-17 signaling in EAE. We then used STEAP4 global knockout mice and STEAP4 conditional knockout mice to test its role in the pathogenesis of EAE. RESULTS Here, we report that the metalloreductase, STEAP4, is a key effector molecule that participates and contributes to the pathogenesis of Th17-mediated neuroinflammation in experimental autoimmune encephalomyelitis. STEAP4 knockout mice displayed delayed onset and reduced severity of EAE induced by active immunization. The reduced disease phenotype was not due to any impact of STEAP4 deficiency on myelin reactive T cells. In contrast, STEAP4 knockout mice were resistant to passively induced EAE, pointing to a role for STEAP4 in the effector stage of EAE. Notably, STEAP4 was only induced the spinal cord of EAE mice that received Th17 cells but not Th1 cells. Consistently, STEAP4 deficiency protected from only Th17 but not Th1-induced EAE. Finally, using Nestin-Cre STEAP4fl/fl mice, we showed that ablation of STEAP4 expression in the resident cells in the central nervous system attenuated disease severity in both active immunization and passive Th17 transfer-induced EAE. CONCLUSION In this study, we identified STEAP4 as a Th17-specific effector molecule that participates and contributes to the pathogenesis of neuroinflammation, thus potentially provide a novel target for MS therapy.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Yun Liao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - William Miller-Little
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Jianxing Xiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Xiao Li
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA.
| | - Zizhen Kang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
17
|
Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, Greiner T, Frenz J, Müller-Hilke B, Müller M, Amor S, van der Valk P, Kipp M. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia 2020; 69:925-942. [PMID: 33245604 DOI: 10.1002/glia.23937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.
Collapse
Affiliation(s)
- Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Nedelcu
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Chrzanowski
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Emily Santrau
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Abdel-Maged AES, Gad AM, Rashed LA, Azab SS, Mohamed EA, Awad AS. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Mohamed
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Zhou X, Nicholson AM, Ren Y, Brooks M, Jiang P, Zuberi A, Phuoc HN, Perkerson RB, Matchett B, Parsons TM, Finch NA, Lin W, Qiao W, Castanedes-Casey M, Phillips V, Librero AL, Asmann Y, Bu G, Murray ME, Lutz C, Dickson DW, Rademakers R. Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 2020; 143:1905-1919. [PMID: 32504082 PMCID: PMC7296855 DOI: 10.1093/brain/awaa141] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Aamir Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Hung Nguyen Phuoc
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Billie Matchett
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Wenlang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ariston L Librero
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Cathleen Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
- VIB Center for Molecular Neurology, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
20
|
Labunets IF, Rodnichenko AE. Melatonin Effects in Young and Aging Mice with the Toxic Cuprizone-Induced Demyelination. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
An J, Yin JJ, He Y, Sui RX, Miao Q, Wang Q, Yu JZ, Yu JW, Shi FD, Ma CG, Xiao BG. Temporal and Spatial Dynamics of Astroglial Reaction and Immune Response in Cuprizone-Induced Demyelination. Neurotox Res 2019; 37:587-601. [DOI: 10.1007/s12640-019-00129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
|
22
|
Omotoso GO, Olajide OJ, Gbadamosi IT, Adebayo JO, Enaibe BU, Akinola OB, Owoyele BV. Cuprizone toxicity and Garcinia kola biflavonoid complex activity on hippocampal morphology and neurobehaviour. Heliyon 2019; 5:e02102. [PMID: 31367687 PMCID: PMC6646876 DOI: 10.1016/j.heliyon.2019.e02102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Cuprizone-induced neurotoxicity has been employed to study the biology of remyelination in experimental models of multiple sclerosis. This study was aimed at determining the role of kolaviron, a biflavonoid from Garcinia kola, in mitigating the damaging effects of cuprizone on behaviour and the hippocampus. Twenty-four male albino mice aged 6–8 weeks were categorised into 4 equal groups: Group A (Control) received regular diet; Group B received 200 mg/kg/d of kolaviron in addition to their regular diet; Group C received 0.2% cuprizone diet only, while Group D received both kolaviron and cuprizone diet. The treatment lasted for 35 days after which behavioural tests (Morris water maze, Y maze and open field tests) were conducted and brain tissues were processed for histology, histochemistry (Nissl staining), immunohistochemistry (glial fibrillary acidic protein) and biochemistry (malondialdehyde, superoxide dismutase and glutathione peroxidase). Results showed that cuprizone toxicity led to weight loss, impairment in memory and exploratory drive, oxidative stress, chromatolysis and reactive astrocytosis; meanwhile administration of kolaviron prevented cuprizone-induced weight loss, memory decline, oxidative stress and neuromorphological alterations. In conclusion, administration of kolaviron might be useful in limiting the effects of cuprizone toxicity on the morphology and functions of the hippocampus.
Collapse
Affiliation(s)
- G O Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - O J Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - I T Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - J O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - B U Enaibe
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - O B Akinola
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - B V Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| |
Collapse
|
23
|
Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J Mol Histol 2019; 50:263-271. [DOI: 10.1007/s10735-019-09824-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
|
24
|
Traub J, Traffehn S, Ochs J, Häusser-Kinzel S, Stephan S, Scannevin R, Brück W, Metz I, Weber MS. Dimethyl fumarate impairs differentiated B cells and fosters central nervous system integrity in treatment of multiple sclerosis. Brain Pathol 2019; 29:640-657. [PMID: 30706542 PMCID: PMC6849574 DOI: 10.1111/bpa.12711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
In multiple sclerosis (MS), the effect of dimethyl fumarate (DMF) treatment is primarily attributed to its capacity to dampen pathogenic T cells. Here, we tested whether DMF also modulates B cells, which are newly recognized key players in MS, and to which extent DMF restricts ongoing loss of oligodendrocytes and axons in the central nervous system (CNS). Therefore, blood samples and brain tissue from DMF-treated MS patients were analyzed by flow cytometry or histopathological examination, respectively. Complementary mechanistic studies were conducted in inflammatory as well as non-inflammatory CNS demyelinating mouse models. In this study, DMF reduced the frequency of antigen-experienced and memory B cells and rendered remaining B cells less prone to activation and production of pro-inflammatory cytokines. Dissecting the functional consequences of these alterations, we found that DMF ameliorated a B cell-accentuated experimental autoimmune encephalomyelitis model by diminishing the capacity of B cells to act as antigen-presenting cells for T cells. In a non-inflammatory model of toxic demyelination, DMF limited oligodendrocyte apoptosis, promoted maturation of oligodendrocyte precursors and reduced axonal damage. In a CNS biopsy of a DMF-treated MS patient, we equivalently observed higher numbers of mature oligodendrocytes as well as a reduced extent of axonal damage when compared to a cohort of treatment-naïve patients. In conclusion, we showed that besides suppressing T cells, DMF dampens pathogenic B cell functions, which probably contributes to its clinical effectiveness in relapsing MS. DMF treatment may furthermore limit chronically ongoing CNS tissue damage, which may reduce long-term disability in MS apart from its relapse-reducing capacity.
Collapse
Affiliation(s)
- Jan Traub
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Sarah Traffehn
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Jasmin Ochs
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Schirin Stephan
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Imke Metz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| |
Collapse
|
25
|
Nadeem A, Al-Harbi NO, Alfardan AS, Ahmad SF, AlAsmari AF, Al-Harbi MM. IL-17A-induced neutrophilic airway inflammation is mediated by oxidant-antioxidant imbalance and inflammatory cytokines in mice. Biomed Pharmacother 2018; 107:1196-1204. [DOI: 10.1016/j.biopha.2018.08.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
|
26
|
Labunets IF, Rodnichenko AE, Melnyk NO, Rymar SE, Utko N, Gavrulyk-Skyba GO, Butenko GM. Neuroprotective effect of the recombinant human leukemia inhibitory factor in mice with an experimental cuprizone model of multiple sclerosis: possible mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.7124/bc.000989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. F. Labunets
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | | | - N. O Melnyk
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | - S. E. Rymar
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
- Bogomolets National Medical University
| | - N.A. Utko
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | | | - G. M. Butenko
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| |
Collapse
|
27
|
Pentón-Rol G, Marín-Prida J, Falcón-Cama V. C-Phycocyanin and Phycocyanobilin as Remyelination Therapies for Enhancing Recovery in Multiple Sclerosis and Ischemic Stroke: A Preclinical Perspective. Behav Sci (Basel) 2018; 8:bs8010015. [PMID: 29346320 PMCID: PMC5791033 DOI: 10.3390/bs8010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Myelin loss has a crucial impact on behavior disabilities associated to Multiple Sclerosis (MS) and Ischemic Stroke (IS). Although several MS therapies are approved, none of them promote remyelination in patients, limiting their ability for chronic recovery. With no available therapeutic options, enhanced demyelination in stroke survivors is correlated with a poorer behavioral recovery. Here, we show the experimental findings of our group and others supporting the remyelinating effects of C-Phycocyanin (C-PC), the main biliprotein of Spirulina platensis and its linked tetrapyrrole Phycocyanobilin (PCB), in models of these illnesses. C-PC promoted white matter regeneration in rats and mice affected by experimental autoimmune encephalomyelitis. Electron microscopy analysis in cerebral cortex from ischemic rats revealed a potent remyelinating action of PCB treatment after stroke. Among others biological processes, we discussed the role of regulatory T cell induction, the control of oxidative stress and pro-inflammatory mediators, gene expression modulation and COX-2 inhibition as potential mechanisms involved in the C-PC and PCB effects on the recruitment, differentiation and maturation of oligodendrocyte precursor cells in demyelinated lesions. The assembled evidence supports the implementation of clinical trials to demonstrate the recovery effects of C-PC and PCB in these diseases.
Collapse
Affiliation(s)
- Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Cubanacan, P.O. Box 6162, Playa, Havana 10600, Cuba.
| | - Javier Marín-Prida
- Center for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/214 y 222, La Lisa, PO Box 430, Havana 13600, Cuba.
| | - Viviana Falcón-Cama
- Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Cubanacan, P.O. Box 6162, Playa, Havana 10600, Cuba.
| |
Collapse
|
28
|
Zbesko JC, Nguyen TVV, Yang T, Frye JB, Hussain O, Hayes M, Chung A, Day WA, Stepanovic K, Krumberger M, Mona J, Longo FM, Doyle KP. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol Dis 2018; 112:63-78. [PMID: 29331263 PMCID: PMC5851450 DOI: 10.1016/j.nbd.2018.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022] Open
Abstract
Following stroke, the damaged tissue undergoes liquefactive necrosis, a stage of infarct resolution that lasts for months although the exact length of time is currently unknown. One method of repair involves reactive astrocytes and microglia forming a glial scar to compartmentalize the area of liquefactive necrosis from the rest of the brain. The formation of the glial scar is a critical component of the healing response to stroke, as well as other central nervous system (CNS) injuries. The goal of this study was to evaluate the toxicity of the extracellular fluid present in areas of liquefactive necrosis and determine how effectively it is segregated from the remainder of the brain. To accomplish this goal, we used a mouse model of stroke in conjunction with an extracellular fluid toxicity assay, fluorescent and electron microscopy, immunostaining, tracer injections into the infarct, and multiplex immunoassays. We confirmed that the extracellular fluid present in areas of liquefactive necrosis following stroke is toxic to primary cortical and hippocampal neurons for at least 7 weeks following stroke, and discovered that although glial scars are robust physical and endocytic barriers, they are nevertheless permeable. We found that molecules present in the area of liquefactive necrosis can leak across the glial scar and are removed by a combination of paravascular clearance and microglial endocytosis in the adjacent tissue. Despite these mechanisms, there is delayed atrophy, cytotoxic edema, and neuron loss in regions adjacent to the infarct for weeks following stroke. These findings suggest that one mechanism of neurodegeneration following stroke is the failure of glial scars to impermeably segregate areas of liquefactive necrosis from surviving brain tissue.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Thuy-Vi V Nguyen
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Omar Hussain
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Megan Hayes
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Amanda Chung
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - W Anthony Day
- Arizona Health Sciences Center Imaging Core Facility, Arizona Research Labs, University of Arizona, Tucson, AZ 85719, USA
| | | | - Maj Krumberger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Justine Mona
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
29
|
Sanadgol N, Golab F, Tashakkor Z, Taki N, Moradi Kouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M. Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. PHARMACEUTICAL BIOLOGY 2017; 55:1679-1687. [PMID: 28447514 PMCID: PMC6130560 DOI: 10.1080/13880209.2017.1319867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Ellagic acid (EA) is a natural phenol antioxidant with various therapeutic activities. However, the efficacy of EA has not been examined in neuropathologic conditions. OBJECTIVE In vivo neuroprotective effects of EA on cuprizone (cup)-induced demyelination were evaluated. MATERIAL AND METHODS C57BL/6 J mice were fed with chow containing 0.2% cup for 4 weeks to induce oligodendrocytes (OLGs) depletion predominantly in the corpus callosum (CC). EA was administered at different doses (40 or 80 mg/kg body weight/day/i.p.) from the first day of cup diet. Oligodendrocytes apoptosis [TUNEL assay and myelin oligodendrocyte glycoprotein (MOG+)/caspase-3+ cells), gliosis (H&E staining, glial fibrillary acidic protein (GFAP+) and macrophage-3 (Mac-3+) cells) and inflammatory markers (interleukin 17 (IL-17), interleukin 11 (IL-11) and stromal cell-derived factor 1 α (SDF-1α) or CXCL12] during cup intoxication were examined. RESULTS High dose of EA (EA-80) increased mature oligodendrocytes population (MOG+ cells, p < 0.001), and decreased apoptosis (p < 0.05) compared with the cup mice. Treatment with both EA doses did not show any considerable effects on the expression of CXCL12, but significantly down-regulated the expression of IL-17 and up-regulated the expression of IL-11 in mRNA levels compared with the cup mice. Only treatment with EA-80 significantly decreased the population of active macrophage (MAC-3+ cells, p < 0.001) but not reactive astrocytes (GFAP+ cells) compared with the cup mice. DISCUSSION AND CONCLUSION In this model, EA-80 effectively reduces lesions via reduction of neuroinflammation and toxic effects of cup on mature OLGs. EA is a suitable therapeutic agent for moderate brain damage in neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zakiyeh Tashakkor
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nooshin Taki
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Samira Moradi Kouchi
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Berghoff SA, Düking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N, Kusch K, Ruhwedel T, Möbius W, Saher G. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun 2017; 5:94. [PMID: 29195512 PMCID: PMC5710130 DOI: 10.1186/s40478-017-0497-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.
Collapse
|
31
|
Bonetto G, Charalampopoulos I, Gravanis A, Karagogeos D. The novel synthetic microneurotrophin BNN27 protects mature oligodendrocytes against cuprizone-induced death, through the NGF receptor TrkA. Glia 2017; 65:1376-1394. [PMID: 28567989 DOI: 10.1002/glia.23170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022]
Abstract
BNN27, a member of a chemical library of C17-spiroepoxy derivatives of the neurosteroid DHEA, has been shown to regulate neuronal survival through its selective interaction with NGF receptors (TrkA and p75NTR ), but its role on glial populations has not been studied. Here, we present evidence that BNN27 provides trophic action (rescue from apoptosis), in a TrkA-dependent manner, to mature oligodendrocytes when they are challenged with the cuprizone toxin in culture. BNN27 treatment also increases oligodendrocyte maturation and diminishes microglia activation in vitro. The effect of BNN27 in the cuprizone mouse model of demyelination in vivo has also been investigated. In this model, that does not directly involve the adaptive immune system, BNN27 can protect from demyelination without affecting the remyelinating process. BNN27 preserves mature oligodendrocyte during demyelination, while reducing microgliosis and astrogliosis. Our findings suggest that BNN27 may serve as a lead molecule to develop neurotrophin-like blood-brain barrier (BBB)-permeable protective agents of oligodendrocyte populations and myelin, with potential applications in the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Giulia Bonetto
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | | | - Achille Gravanis
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
- Department of Pharmacology, Faculty of Medicine, University of Crete, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| |
Collapse
|
32
|
Yamamoto S, Yamashina K, Ishikawa M, Gotoh M, Yagishita S, Iwasa K, Maruyama K, Murakami-Murofushi K, Yoshikawa K. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease. J Neuroinflammation 2017; 14:142. [PMID: 28732510 PMCID: PMC5521126 DOI: 10.1186/s12974-017-0923-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. METHODS To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. RESULTS We demonstrated that 2ccPA suppressed the CoCl2-induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. CONCLUSIONS We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE. These data indicate that 2ccPA may be a promising compound for the development of new drugs to treat demyelinating disease and ameliorate the symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masaki Ishikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Mari Gotoh
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kimiko Murakami-Murofushi
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| |
Collapse
|
33
|
Karamita M, Barnum C, Möbius W, Tansey MG, Szymkowski DE, Lassmann H, Probert L. Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia. JCI Insight 2017; 2:87455. [PMID: 28422748 DOI: 10.1172/jci.insight.87455] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/16/2017] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory CNS demyelinating disease in which remyelination largely fails. Transmembrane TNF (tmTNF) and TNF receptor 2 are important for remyelination in experimental MS models, but it is unknown whether soluble TNF (solTNF), a major proinflammatory factor, is involved in regeneration processes. Here, we investigated the specific contribution of solTNF to demyelination and remyelination in the cuprizone model. Treatment with XPro1595, a selective inhibitor of solTNF that crosses the intact blood-brain barrier (BBB), in cuprizone-fed mice did not prevent toxin-induced oligodendrocyte loss and demyelination, but it permitted profound early remyelination due to improved phagocytosis of myelin debris by CNS macrophages and prevented disease-associated decline in motor performance. The beneficial effects of XPro1595 were absent in TNF-deficient mice and replicated in tmTNF-knockin mice, showing that tmTNF is sufficient for the maintenance of myelin and neuroprotection. These findings demonstrate that solTNF inhibits remyelination and repair in a cuprizone demyelination model and suggest that local production of solTNF in the CNS might be one reason why remyelination fails in MS. These findings also suggest that disinhibition of remyelination by selective inhibitors of solTNF that cross the BBB might represent a promising approach for treatment in progressive MS.
Collapse
Affiliation(s)
- Maria Karamita
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | | | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Malú G Tansey
- Department of Physiology, Emory University, Atlanta, Georgia, USA
| | | | - Hans Lassmann
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
34
|
Taraboletti A, Walker T, Avila R, Huang H, Caporoso J, Manandhar E, Leeper TC, Modarelli DA, Medicetty S, Shriver LP. Cuprizone Intoxication Induces Cell Intrinsic Alterations in Oligodendrocyte Metabolism Independent of Copper Chelation. Biochemistry 2017; 56:1518-1528. [PMID: 28186720 PMCID: PMC6145805 DOI: 10.1021/acs.biochem.6b01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.
Collapse
Affiliation(s)
| | - Tia Walker
- Department of Chemistry, Indiana University Northwest, Gary, Indiana 46408, United States
| | - Robin Avila
- Renovo Neural, Inc., Cleveland, Ohio 44106, United States
| | - He Huang
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Joel Caporoso
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Erendra Manandhar
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Thomas C. Leeper
- Department of Chemistry, College of Wooster, Wooster, Ohio 44691, United States
| | - David A. Modarelli
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | | | - Leah P. Shriver
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
- Department of Biology, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
35
|
Berghoff SA, Gerndt N, Winchenbach J, Stumpf SK, Hosang L, Odoardi F, Ruhwedel T, Böhler C, Barrette B, Stassart R, Liebetanz D, Dibaj P, Möbius W, Edgar JM, Saher G. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun 2017; 8:14241. [PMID: 28117328 PMCID: PMC5286209 DOI: 10.1038/ncomms14241] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes. Cholesterol is important for axonal myelination during development. Here the authors show that cholesterol levels are reduced in a cuprizone mouse model of multiple sclerosis and that dietary cholesterol supplementation enhances remyelination and recovery.
Collapse
Affiliation(s)
- Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Nina Gerndt
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Jan Winchenbach
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Sina K Stumpf
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Leon Hosang
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Francesca Odoardi
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Carolin Böhler
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Benoit Barrette
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Ruth Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.,Department of Neuropathology, University Medical Center, Georg-August-University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, Georg-August University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.,Applied Neurobiology Group, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12-8TA, UK
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
36
|
IL-17A Promotes Granulocyte Infiltration, Myelin Loss, Microglia Activation, and Behavioral Deficits During Cuprizone-Induced Demyelination. Mol Neurobiol 2017; 55:946-957. [DOI: 10.1007/s12035-016-0368-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
|
37
|
Sághy É, Sipos É, Ács P, Bölcskei K, Pohóczky K, Kemény Á, Sándor Z, Szőke É, Sétáló G, Komoly S, Pintér E. TRPA1 deficiency is protective in cuprizone-induced demyelination-A new target against oligodendrocyte apoptosis. Glia 2016; 64:2166-2180. [DOI: 10.1002/glia.23051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Éva Sághy
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Éva Sipos
- Department of Neurology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Péter Ács
- Department of Neurology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Department of Medical Biology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
- MTA-PTE Chronic Pain Research Group; Pécs Hungary
| | - György Sétáló
- Department of Medical Biology; Faculty of Medicine, University of Pécs; Pécs Hungary
- Signal Transduction Research Group, Szentágothai Research Center, University of Pécs; Pécs Hungary
| | - Sámuel Komoly
- Department of Neurology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| |
Collapse
|
38
|
Bai CB, Sun S, Roholt A, Benson E, Edberg D, Medicetty S, Dutta R, Kidd G, Macklin WB, Trapp B. A mouse model for testing remyelinating therapies. Exp Neurol 2016; 283:330-40. [PMID: 27384502 DOI: 10.1016/j.expneurol.2016.06.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/14/2023]
Abstract
Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics. We have used a modified cuprizone protocol that causes a consistent and robust demyelination of mouse white matter and cerebral cortex. Spontaneous remyelination occurred significantly faster in the cerebral cortex than in white matter and reactive astrocytes were more abundant in white matter lesions. Remyelination of white matter and cerebral cortex was therapeutically enhanced by daily injections of thyroid hormone triiodothyronine (T3). In summary, we describe an in vivo demyelination/remyelination paradigm that can be powered to determine efficacy of therapies that enhance white matter and cortical remyelination.
Collapse
Affiliation(s)
- C Brian Bai
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States.
| | - Sunny Sun
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States
| | - Andrew Roholt
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States
| | - Emily Benson
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States
| | - Dale Edberg
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States
| | - Satish Medicetty
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Grahame Kidd
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Wendy B Macklin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Bruce Trapp
- Renovo Neural, Inc., 10000 Cedar Ave., Cleveland, OH 44106, United States; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| |
Collapse
|
39
|
Nakajima M, Shimizu R, Furuta K, Sugino M, Watanabe T, Aoki R, Okuyama S, Furukawa Y. Auraptene induces oligodendrocyte lineage precursor cells in a cuprizone-induced animal model of demyelination. Brain Res 2016; 1639:28-37. [DOI: 10.1016/j.brainres.2016.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
40
|
Glenn JD, Smith MD, Kirby LA, Baxi EG, Whartenby KA. Disparate Effects of Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis and Cuprizone-Induced Demyelination. PLoS One 2015; 10:e0139008. [PMID: 26407166 PMCID: PMC4583481 DOI: 10.1371/journal.pone.0139008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/07/2015] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pleiotropic cells with potential therapeutic benefits for a wide range of diseases. Because of their immunomodulatory properties they have been utilized to treat autoimmune diseases such as multiple sclerosis (MS), which is characterized by demyelination. The microenvironment surrounding MSCs is thought to affect their differentiation and phenotype, which could in turn affect the efficacy. We thus sought to dissect the potential for differential impact of MSCs on central nervous system (CNS) disease in T cell mediated and non-T cell mediated settings using the MOG35–55 experimental autoimmune encephalomyelitis (EAE) and cuprizone-mediated demyelination models, respectively. As the pathogeneses of MS and EAE are thought to be mediated by IFNγ-producing (TH1) and IL-17A-producing (TH17) effector CD4+ T cells, we investigated the effect of MSCs on the development of these two key pathogenic cell groups. Although MSCs suppressed the activation and effector function of TH17 cells, they did not affect TH1 activation, but enhanced TH1 effector function and ultimately produced no effect on EAE. In the non- T cell mediated cuprizone model of demyelination, MSC administration had a positive effect, with an overall increase in myelin abundance in the brain of MSC-treated mice compared to controls. These results highlight the potential variability of MSCs as a biologic therapeutic tool in the treatment of autoimmune disease and the need for further investigation into the multifaceted functions of MSCs in diverse microenvironments and the mechanisms behind the diversity.
Collapse
Affiliation(s)
- Justin D. Glenn
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew D. Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leslie A. Kirby
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily G. Baxi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Katharine A Whartenby
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J Neurosci 2015; 35:8626-39. [PMID: 26041928 DOI: 10.1523/jneurosci.3817-14.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS characterized by inflammation and neurodegeneration. Animal models that enable the study of remyelination in the context of ongoing inflammation are greatly needed for the development of novel therapies that target the pathological inhibitory cues inherent to the MS plaque microenvironment. We report the development of an innovative animal model combining cuprizone-mediated demyelination with transfer of myelin-reactive CD4(+) T cells. Characterization of this model reveals both Th1 and Th17 CD4(+) T cells infiltrate the CNS of cuprizone-fed mice, with infiltration of Th17 cells being more efficient. Infiltration correlates with impaired spontaneous remyelination as evidenced by myelin protein expression, immunostaining, and ultrastructural analysis. Electron microscopic analysis further reveals that demyelinated axons are preserved but reduced in caliber. Examination of the immune response contributing to impaired remyelination highlights a role for peripheral monocytes with an M1 phenotype. This study demonstrates the development of a novel animal model that recapitulates elements of the microenvironment of the MS plaque and reveals an important role for T cells and peripheral monocytes in impairing endogenous remyelination in vivo. This model could be useful for testing putative MS therapies designed to enhance remyelination in the setting of active inflammation, and may also facilitate modeling the pathophysiology of denuded axons, which has been a challenge in rodents because they typically remyelinate very quickly.
Collapse
|
42
|
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2015; 47:485-505. [PMID: 25445182 DOI: 10.1016/j.neubiorev.2014.10.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
The cuprizone mouse model allows the investigation of the complex molecular mechanisms behind nonautoimmune-mediated demyelination and spontaneous remyelination. While it is generally accepted that oligodendrocytes are specifically vulnerable to cuprizone intoxication due to their high metabolic demands, a comprehensive overview of the etiology of cuprizone-induced pathology is still missing to date. In this review we extensively describe the physico-chemical mode of action of cuprizone and discuss the molecular and enzymatic mechanisms by which cuprizone induces metabolic stress, oligodendrocyte apoptosis, myelin degeneration and eventually axonal and neuronal pathology. In addition, we describe the dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelination by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris. Finally, we discuss the many clinical symptoms that can be observed following cuprizone treatment, and how these strengthened the cuprizone model as a useful tool to study human multiple sclerosis, schizophrenia and epilepsy.
Collapse
|
43
|
Anatomical Distribution of Cuprizone-Induced Lesions in C57BL6 Mice. J Mol Neurosci 2015; 57:166-75. [DOI: 10.1007/s12031-015-0595-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022]
|
44
|
Farias AS, Pradella F, Schmitt A, Santos LMB, Martins-de-Souza D. Ten years of proteomics in multiple sclerosis. Proteomics 2014; 14:467-80. [PMID: 24339438 DOI: 10.1002/pmic.201300268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil; Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
45
|
Moynes DM, Vanner SJ, Lomax AE. Participation of interleukin 17A in neuroimmune interactions. Brain Behav Immun 2014; 41:1-9. [PMID: 24642072 DOI: 10.1016/j.bbi.2014.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/09/2014] [Indexed: 01/02/2023] Open
Abstract
Inflammation involving the helper T cell 17 (Th17) subset of lymphocytes has been implicated in a number of diseases that affect the nervous system. As the canonical cytokine of Th17 cells, interleukin 17A (IL-17A) is thought to contribute to these neuroimmune interactions. The main receptor for IL-17A is expressed in many neural tissues. IL-17A has direct effects on neurons but can also impact neural function via signaling to satellite cells and immune cells. In the central nervous system, IL-17A has been associated with neuropathology in multiple sclerosis, epilepsy syndromes and ischemic brain injury. Effects of IL-17A at the level of dorsal root ganglia and the spinal cord may contribute to enhanced nociception during neuropathic and inflammatory pain. Finally, IL-17A plays a role in sympathetic axon growth and regeneration of damaged axons that innervate the cornea. Given the widespread effects of IL-17A on neural tissues, it will be important to determine whether selectively mitigating the damaging effects of this cytokine while augmenting its beneficial effects is a possible strategy to treat inflammatory damage to the nervous system.
Collapse
Affiliation(s)
- Derek M Moynes
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
46
|
Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, Rafiee K, Beyer C, Kipp M, Zendedel A. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res 2014; 232:2835-46. [PMID: 24798398 DOI: 10.1007/s00221-014-3946-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/02/2014] [Indexed: 11/25/2022]
Abstract
Multiple sclerosis (MS) is the most prevalent inflammatory demyelinating disease of the central nervous system. Besides other pathophysiological mechanisms, mitochondrial injury is crucially involved in the development and progression of this disease. Mitochondria have been identified as targets for the peptide hormone melatonin. In the present study, we sought to evaluate the impact of oxidative stress on mitochondrial density and enzyme transcription during experimentally induced demyelination and the protective influence of melatonin. Adult male mice were fed with cuprizone for 5 weeks which caused severe demyelination of the corpus callosum (CC). Animals were simultaneously treated with melatonin by daily intra-peritoneal injections. Melatonin exposure reversed cuprizone-induced demyelination and axon protection. Transmission electron microscopy demonstrated significantly increased mitochondrial numbers and slightly increased mitochondrial size within CC axons after cuprizone exposure. Melatonin antagonized these effects and, in addition, induced the expression of subunits of the respiratory chain complex over normal control values reflecting a mechanism to compensate cuprizone-mediated down-regulation of these genes. Similarly, melatonin modulated gene expression of mitochondrial fusion and fission proteins. Biochemical analysis showed that oxidative stress induced by cuprizone was regulated by melatonin. The data implicate that melatonin abolishes destructive cuprizone effects in the CC by decreasing oxidative stress, restoring mitochondrial respiratory enzyme activity and fusion and fission processes as well as decreasing intra-axonal mitochondria accumulation.
Collapse
Affiliation(s)
- Iraj Ragerdi Kashani
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Poursina Street, Tehran, Iran,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu G, Guo J, Liu J, Wang Z, Liang D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin Immunol 2014; 154:127-40. [PMID: 25076485 DOI: 10.1016/j.clim.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
Abstract
IL-17, the hallmark cytokine of Th17 cells, plays a pivotal role in the pathogenesis of autoimmune diseases, including encephalomyelitis. In the central nervous system, neuroglial cells are the main residents that express IL-17R and respond to IL-17 by producing chemokines/cytokines and boosting local inflammation. Factors that influence the IL-17R expression in neuroglial cells can also exert their impacts on the outbreak, progression and outcome of encephalomyelitis. Here, we reported that Toll-like receptor signaling has its bias for promoting the IL-17RA, but not the IL-17RC, expression in mouse neuroglial cells in a T cell infiltration independent manner. Elevated IL-17R functionally responded to IL-17 by secreting more chemokines and accelerating CD4 cell migration. First, real-time PCR confirmed that the expression of Il-17ra, but not Il-17rc, was significantly increased in the brain and spinal cord of EAE-induced mice. This effect was elicited by something in complete Freund's adjuvant (CFA), because markedly increased IL-17R was detected in mice immunized with CFA only, even though no evidence of EAE was found. Furthermore, in Rag1(-/-) mice, it was confirmed that CFA could augment the IL-17RA expression in the CNS in the absence of T cell infiltration. In vivo immunization with TLR ligands and in vitro treatment of purified neuroglial cells demonstrated that TLR ligands directly and effectively evoke the IL-17RA expression in the CNS and in cultured astrocytes, microglia and oligodendrocytes. LPS was the most effective inducer of the IL-17RA expression in astrocytes, and polyIC was superior to LPS for microglia and oligodendrocytes. Activated CD4 cells can also promote the secretion of chemokines by LPS pre-treated astrocytes, and hence accelerate the migration of CD4 cells, which was blocked by the neutralization of IL-17RA on the surface of the astrocyte. Taken together, we concluded that TLR signaling can directly stimulate the expression of IL-17RA, but not IL-17RC, in neuroglial cells, which functionally respond to IL-17A by secreting chemokines, accelerating CD4 cell migration, and contributing to the pathogenesis of encephalomyelitis.
Collapse
Affiliation(s)
- Guoping Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jin Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dongchun Liang
- Doheny Eye Institute, University of Southern California, CA 90033, USA.
| |
Collapse
|
48
|
Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014; 8:73. [PMID: 24659953 PMCID: PMC3952085 DOI: 10.3389/fncel.2014.00073] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical SchoolHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| |
Collapse
|
49
|
Fisher Y, Strominger I, Biton S, Nemirovsky A, Baron R, Monsonego A. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. THE JOURNAL OF IMMUNOLOGY 2013; 192:92-102. [PMID: 24307730 DOI: 10.4049/jimmunol.1301707] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD4 T cells reside within the cerebrospinal fluid, it is yet unclear whether and how they enter the brain parenchyma and migrate to target specific Ags. We examined the ability of Th1, Th2, and Th17 CD4 T cells injected intracerebroventricularly to migrate from the lateral ventricles into the brain parenchyma in mice. We show that primarily Th1 cells cross the ependymal layer of the ventricle and migrate within the brain parenchyma by stimulating an IFN-γ-dependent dialogue with neural cells, which maintains the effector function of the T cells. When injected into a mouse model of Alzheimer's disease, amyloid-β (Aβ)-specific Th1 cells target Aβ plaques, increase Aβ uptake, and promote neurogenesis with no evidence of pathogenic autoimmunity or neuronal loss. Overall, we provide a mechanistic insight to the migration of cerebrospinal fluid CD4 T cells into the brain parenchyma and highlight implications on brain immunity and repair.
Collapse
Affiliation(s)
- Yair Fisher
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Goldberg J, Daniel M, van Heuvel Y, Victor M, Beyer C, Clarner T, Kipp M. Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell Mol Neurobiol 2013; 33:1087-98. [PMID: 23979168 PMCID: PMC11497941 DOI: 10.1007/s10571-013-9975-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022]
Abstract
Cuprizone [bis(cyclohexylidenehydrazide)]-induced toxic demyelination is an experimental approach frequently used to study de- and re-myelination in the central nervous system. In this model, mice are fed with the copper chelator cuprizone which leads to oligodendrocyte apoptosis and subsequent microgliosis, astrocytosis, and demyelination. The underlying mechanisms of cuprizone-induced oligodendrocyte death are still unknown. We analysed differences in amino acid levels after short-term cuprizone exposure (i.e., 4 days). Furthermore, an amino acid response (AAR) pathway activated in oligodendrocytes after cuprizone intoxication was evaluated. Short-term cuprizone exposure resulted in a selective decrease of alanine, glycine, and proline plasma levels, which was paralleled by an increase of apoptotic cells in the liver and a decrease of alanine aminotransferase in the serum. These parameters were paralleled by oligodendrocyte apoptosis and the induction of an AAR with increased expression of the transcription factors ATF-3 and ATF-4 (activating transcription factor-3 and -4). Immunohistochemistry revealed that ATF-3 is exclusively expressed by oligodendrocytes and localized to the nuclear compartment. Our results suggest that cuprizone-induced liver dysfunction results in amino acid starvation and in consequence to the activation of an AAR. We propose that this stress response modulates oligodendrocyte viability in the cuprizone animal model.
Collapse
Affiliation(s)
- Johannes Goldberg
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Moritz Daniel
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Yasemin van Heuvel
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Marion Victor
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Cordian Beyer
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Tim Clarner
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Markus Kipp
- Faculty of Medicine, Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|