1
|
Lyu C, Li Z, Xu C, Kalai J, Luo L. Rewiring an olfactory circuit by altering the combinatorial code of cell-surface proteins. RESEARCH SQUARE 2025:rs.3.rs-6099298. [PMID: 40162206 PMCID: PMC11952648 DOI: 10.21203/rs.3.rs-6099298/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proper brain function requires the precise assembly of neural circuits during development. Despite the identification of many cell-surface proteins (CSPs) that help guide axons to their targets1,2, it remains largely unknown how multiple CSPs work together to assemble a functional circuit. Here, we used synaptic partner matching in the Drosophila olfactory circuit3,4 to address this question. By systematically altering the combination of differentially expressed CSPs in a single olfactory receptor neuron (ORN) type, which senses a male pheromone that inhibits male-male courtship, we switched its connection from its endogenous postsynaptic projection neuron (PN) type nearly completely to a new PN type that promotes courtship. To achieve this switch, we deduced a combinatorial code including CSPs that mediate both attractive and repulsive interactions between synaptic partners5,6. The anatomical switch changed the odor response of the new PN partner and markedly increased male-male courtship. We generalized three manipulation strategies from this rewiring to successfully rewire a second ORN type to multiple distinct PN types. This work demonstrates that manipulating a small set of CSPs is sufficient to respecify synaptic connections, paving ways to explore how neural systems evolve through changes of circuit connectivity.
Collapse
Affiliation(s)
- Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Jordan Kalai
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Díaz-Morales M, Khallaf MA, Stieber R, Alali I, Hansson BS, Knaden M. The Ortholog Receptor Or67d in Drosophila Bipectinata is able to Detect Two Different Pheromones. J Chem Ecol 2024; 50:610-619. [PMID: 39294426 PMCID: PMC11543753 DOI: 10.1007/s10886-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Sex pheromones play a crucial role in species recognition and reproductive isolation. Despite being largely species-specific in drosophilids, the mechanisms underlying pheromone detection, production, and their influence on mating behavior remain poorly understood. Here, we compare the chemical profiles of Drosophila bipectinata and D. melanogaster, the mating behaviors in both species, as well as the tuning properties of Or67d receptors, which are expressed by neurons in antennal trichoid sensilla at1. Through single sensillum recordings, we demonstrate that the D. bipectinata Or67d-ortholog exhibits similar sensitivity to cis-vaccenyl acetate (cVA) as compared to D. melanogaster but in addition also responds uniquely to (Z)-11-eicosen-1-yl-acetate (Z11-20:Ac), a compound exclusively produced by D. bipectinata males. Through courtship behavior assays we found that, surprisingly, perfuming the flies with Z11-20:Ac did not reveal any aphrodisiacal or anti-aphrodisiacal effects in mating assays. The behavioral relevance of at1 neuron channels in D. bipectinata compared to D. melanogaster seems to be restricted to its formerly shown function as an aggregation pheromone. Moreover, the non-specific compound cVA affected copulation negatively in D. bipectinata and could potentially act as a premating isolation barrier. As both ligands of Or67d seem to govern different behaviors in D. bipectinata, additional neurons detecting at least one of those compounds might be involved. These results underscore the complexity of chemical signaling in species recognition and raise intriguing questions about the evolutionary implications of pheromone detection pathways in Drosophila species.
Collapse
Affiliation(s)
- Melissa Díaz-Morales
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, 13122, Berlin, Germany
| | - Regina Stieber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ibrahim Alali
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany.
| |
Collapse
|
3
|
Fisher JD, Crown AM, Sorkaç A, Martinez-Machado S, Snell NJ, Vishwanath N, Monje S, Vo A, Wu AH, Moșneanu RA, Okoro AM, Savaş D, Nkera B, Iturralde P, Kumari A, Chou-Freed C, Hartmann GG, Talay M, Barnea G. Convergent olfactory circuits for courtship in Drosophila revealed by ds-Tango. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619891. [PMID: 39484479 PMCID: PMC11527207 DOI: 10.1101/2024.10.23.619891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Animals exhibit sex-specific behaviors that are governed by sexually dimorphic circuits. One such behavior in male Drosophila melanogaster, courtship, is regulated by various sensory modalities, including olfaction. Here, we reveal how sexually dimorphic olfactory pathways in male flies converge at the third-order, onto lateral horn output neurons, to regulate courtship. To achieve this, we developed ds-Tango, a modified version of the monosynaptic tracing and manipulation tool trans-Tango. In ds-Tango, two distinct configurations of trans-Tango are positioned in series, thus providing selective genetic access not only to the monosynaptic partners of starter neurons but also to their disynaptic connections. Using ds-Tango, we identified a node of convergence for three sexually dimorphic olfactory pathways. Silencing this node results in deficits in sex recognition of potential partners. Our results identify lateral horn output neurons required for proper courtship behavior in male flies and establish ds-Tango as a tool for disynaptic circuit tracing.
Collapse
Affiliation(s)
- John D. Fisher
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Anthony M. Crown
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Sasha Martinez-Machado
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Nathaniel J. Snell
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Neel Vishwanath
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Silas Monje
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - An Vo
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA
| | - Annie H. Wu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Rareș A. Moșneanu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Angel M. Okoro
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Doruk Savaş
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bahati Nkera
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Pablo Iturralde
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Aastha Kumari
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Cambria Chou-Freed
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Department of Cell and Tissue Biology, UCSF, San Francisco, CA, USA
| | - Griffin G. Hartmann
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA,, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Barta T, Monsempès C, Demondion E, Chatterjee A, Kostal L, Lucas P. Stimulus duration encoding occurs early in the moth olfactory pathway. Commun Biol 2024; 7:1252. [PMID: 39363042 PMCID: PMC11449909 DOI: 10.1038/s42003-024-06921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Collapse
Affiliation(s)
- Tomas Barta
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, 904-0412, Okinawa, Japan.
| | - Christelle Monsempès
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Elodie Demondion
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Abhishek Chatterjee
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| | - Philippe Lucas
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
| |
Collapse
|
5
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
6
|
Halty-deLeon L, Pal Mahadevan V, Wiesel E, Hansson BS, Wicher D. Response Plasticity of Drosophila Olfactory Sensory Neurons. Int J Mol Sci 2024; 25:7125. [PMID: 39000230 PMCID: PMC11241008 DOI: 10.3390/ijms25137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.
Collapse
Affiliation(s)
| | | | - Eric Wiesel
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
7
|
Zhang Y, Liu W, Luo Z, Yuan J, Wuyun Q, Zhang P, Wang Q, Yang M, Liu C, Yan S, Wang G. Odorant Receptor BdorOR49b Mediates Oviposition and Attraction Behavior of Bactrocera dorsalis to Benzothiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7784-7793. [PMID: 38561632 DOI: 10.1021/acs.jafc.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
10
|
Wan X, Shen P, Shi K, Li J, Wu F, Zhou C. A Neural Circuit Controlling Virgin Female Aggression Induced by Mating-related Cues in Drosophila. Neurosci Bull 2023; 39:1396-1410. [PMID: 36941515 PMCID: PMC10465459 DOI: 10.1007/s12264-023-01050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 03/23/2023] Open
Abstract
Females increase aggression for mating opportunities and for acquiring reproductive resources. Although the close relationship between female aggression and mating status is widely appreciated, whether and how female aggression is regulated by mating-related cues remains poorly understood. Here we report an interesting observation that Drosophila virgin females initiate high-frequency attacks toward mated females. We identify 11-cis-vaccenyl acetate (cVA), a male-derived pheromone transferred to females during mating, which promotes virgin female aggression. We subsequently reveal a cVA-responsive neural circuit consisting of four orders of neurons, including Or67d, DA1, aSP-g, and pC1 neurons, that mediate cVA-induced virgin female aggression. We also determine that aSP-g neurons release acetylcholine (ACh) to excite pC1 neurons via the nicotinic ACh receptor nAChRα7. Together, beyond revealing cVA as a mating-related inducer of virgin female aggression, our results identify a neural circuit linking the chemosensory perception of mating-related cues to aggressive behavior in Drosophila females.
Collapse
Affiliation(s)
- Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
11
|
Ha TS, Sengupta S, Powell J, Smith DP. An angiotensin converting enzyme homolog is required for volatile pheromone detection, odorant binding protein secretion and normal courtship behavior in Drosophila melanogaster. Genetics 2023; 224:iyad109. [PMID: 37283550 PMCID: PMC10484059 DOI: 10.1093/genetics/iyad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
In many arthropods, including insects responsible for transmission of human diseases, behaviors that include mating, aggregation, and aggression are triggered by detection of pheromones. Extracellular odorant binding proteins are critical for pheromone detection in many insects and are secreted into the fluid bathing the olfactory neuron dendrites. In Drosophila melanogaster, the odorant binding protein LUSH is essential for normal sensitivity to the volatile sex pheromone, 11-cis vaccenyl acetate (cVA). Using a genetic screen for cVA pheromone insensitivity, we identified ANCE-3, a homolog of human angiotensin converting enzyme that is required for detection of cVA pheromone. The mutants have normal dose-response curves for food odors, although olfactory neuron amplitudes are reduced in all olfactory neurons examined. ance-3 mutants have profound delays in mating, and the courtship defects are primarily but not exclusively due to loss of ance-3 function in males. We demonstrate that ANCE-3 is required in the sensillae support cells for normal reproductive behavior, and that localization of odorant binding proteins to the sensillum lymph is blocked in the mutants. Expression of an ance-3 cDNA in sensillae support cells completely rescues the cVA responses, LUSH localization, and courtship defects. We show the courtship latency defects are not due to effects on olfactory neurons in the antenna nor mediated through ORCO receptors, but instead stem from ANCE-3-dependent effects on chemosensory sensillae in other body parts. These findings reveal an unexpected factor critical for pheromone detection with profound influence on reproductive behaviors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongbuk, 38453 Republic of Korea
| | - Samarpita Sengupta
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Jordan Powell
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Dean P Smith
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| |
Collapse
|
12
|
Zhang X, Wang X, Zhao S, Fang K, Wang Z, Liu J, Xi J, Wang S, Zhang J. Response of Odorant Receptors with Phenylacetaldehyde and the Effects on the Behavior of the Rice Water Weevil ( Lissorhoptrus oryzophilus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6541-6551. [PMID: 37058441 DOI: 10.1021/acs.jafc.2c07963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive rice pest that threatens the rice industry worldwide. Odorant receptors (ORs) and odorant receptor coreceptors (Orcos) play an important role in the process of insects' whole life activities; however, there are no related functional studies on RWW. On this basis, a heterologous study of LoryOR20/LoryOrco in Xenopus laevis oocytes was performed to detect the effects of certain natural compounds on RWWs and four active compounds were found. Electroantennogram (EAG) recordings and a behavior test showed that RWWs exhibited a significant response to phenylacetaldehyde (PAA) and an EAG measurement of dsRNA-LoryOR20-treated RWWs revealed a significant decrease in response to PAA. Our results revealed an olfactory molecular mechanism for the recognition of PAA by RWWs, thus providing a potential genetic target at the peripheral olfactory sensing level, contributing to the development of novel control strategies for pest management.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kui Fang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- Technical Center of Kunming Customs, Kunming 650228, PR China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun 130062, PR China
| | - Jianan Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
13
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526941. [PMID: 36798169 PMCID: PMC9934574 DOI: 10.1101/2023.02.03.526941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Geoffrey D. Findlay
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Jiao J, Zhu R, Ren L, Tao J, Luo Y. Identification and expression profile analysis of chemosensory genes in pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae). Front Physiol 2023; 14:1123479. [PMID: 36875036 PMCID: PMC9978445 DOI: 10.3389/fphys.2023.1123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Insects have highly specialized and sensitive olfactory systems involving several chemosensory genes to locate their mates and hosts or escape from predators. Pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), has invaded China since 2016 and caused serious damage. Till now, there is no environmentally friendly measure to control this gall midge. Screening molecules with high affinity to target odorant-binding protein to develop highly efficient attractants is a potential pest management method. However, the chemosensory genes in T. japonensis are still unclear. We identified 67 chemosensory-related genes in the transcriptomes of antennae, including 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs, using high throughput sequencing. Phylogenetic analysis of these six chemosensory gene families among Dipteran was performed to classify and predict the functions. The expression profiles of OBPs, CSPs and ORs were validated by quantitative real-time PCR. 16 of the 26 OBPs were biased expressed in antennae. TjapORco and TjapOR5 were highly expressed in the antenna of unmated male and female adults. The functions of related OBPs and ORs genes were also discussed. These results provide a basis for the functional research on chemosensory genes at the molecular level.
Collapse
Affiliation(s)
- Jipeng Jiao
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Rui Zhu
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| | - Jing Tao
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| | - Youqing Luo
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| |
Collapse
|
15
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Ha TS, Smith DP. Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins. INSECTS 2022; 13:insects13100926. [PMID: 36292874 PMCID: PMC9604063 DOI: 10.3390/insects13100926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
17
|
Identification and characterization of olfactory receptor genes and olfactory perception in rapa whelk Rapana venosa (Valenciennes, 1846) during larval settlement and metamorphosis. Gene 2022; 825:146403. [PMID: 35306113 DOI: 10.1016/j.gene.2022.146403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022]
Abstract
The rapa whelk Rapana venosa, an economically important marine fishery resource in China but a major invader all over the world, changes from a phytophagous to a carnivorous form following settlement and metamorphosis. However, the low settlement and metamorphosis rates (<1%) of larvae limit the abundance of R. venosa. This critical step (settlement and metamorphosis) remains poorly characterized but may be related to how larvae perceive the presence of shellfish, their new source of food. Here, we report that larvae may use olfactory perception to sense shellfish. Olfactory receptor (OR) genes are involved in odor sensing in animals. We identified a total of 463 OR genes, which could be grouped into nine clades based on phylogenetic analysis. When assessing the attraction of larvae at different developmental stages to oyster odor, R. venosa showed active settlement and metamorphosis behavior only at the J4 stage (competent larva, 1000-1500 μm shell length) and in the presence of shellfish odor at the same time. Expression of OR gene family members differed between stage 2 (four-spiral whorl stage) and stage 1 (single- to three-spiral whorl stage), indicating significant changes in the olfactory system during larval development. These findings broaden our understanding of olfactory perception, settlement, and metamorphosis in gastropods and can be used to improve R. venosa harvesting, as well as the sustainable development and utilization of this resource.
Collapse
|
18
|
He Z, Yu Z, He X, Hao Y, Qiao L, Luo S, Zhang J, Chen B. Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasit Vectors 2022; 15:143. [PMID: 35461301 PMCID: PMC9034491 DOI: 10.1186/s13071-022-05259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anophelessinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An.sinensis. Methods The OR genes were identified using the available genome sequences of An.sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An.sinensis antennae, proboscis and maxillary palps of both sexes. Results A total of 59 putative OR genes have been identified and characterized in An.sinensis. This number is significantly less than that in An.gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. Conclusions This is the first genome-wide analysis of the entire repertoire of OR genes in An.sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An.sinensis in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05259-x.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Youjin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Shihui Luo
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
19
|
Time-Dependent Odorant Sensitivity Modulation in Insects. INSECTS 2022; 13:insects13040354. [PMID: 35447796 PMCID: PMC9028461 DOI: 10.3390/insects13040354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023]
Abstract
Simple Summary Insects, including blood-feeding female mosquitoes, can transmit deadly diseases, such as malaria, encephalitis, dengue, and yellow fever. Insects use olfaction to locate food sources, mates, and hosts. The nature of odorant plumes poses a challenge for insects in locating odorant sources in the environment. In order to modulate the system for the detection of fresh stimuli or changes in odorant concentrations, the olfaction system desensitizes to different concentrations and durations of stimuli. Without this ability, the chemotaxis behaviors of insects are defective. Thus, understanding how insects adjust their olfactory response dynamics to parse the chemical language of the external environment is not only a basic biology question but also has far-reaching implications for repellents and pest control. Abstract Insects use olfaction to detect ecologically relevant chemicals in their environment. To maintain useful responses over a variety of stimuli, olfactory receptor neurons are desensitized to prolonged or high concentrations of stimuli. Depending on the timescale, the desensitization is classified as short-term, which typically spans a few seconds; or long-term, which spans from minutes to hours. Compared with the well-studied mechanisms of desensitization in vertebrate olfactory neurons, the mechanisms underlying invertebrate olfactory sensitivity regulation remain poorly understood. Recently, using a large-scale functional screen, a conserved critical receptor phosphorylation site has been identified in the model insect Drosophila melanogaster, providing new insight into the molecular basis of desensitization in insects. Here, we summarize the progress in this area and provide perspectives on future directions to determine the molecular mechanisms that orchestrate the desensitization in insect olfaction.
Collapse
|
20
|
Abstract
Are olfactory receptor neurons (ORNs) arranged in a functionally meaningful manner to facilitate information processing? Here, we address this long-standing question by uncovering a valence map in the olfactory periphery of Drosophila. Within sensory hairs, we find that neighboring ORNs antagonistically regulate behaviors: stereotypically compartmentalized large- and small-spike ORNs, recognized by their characteristic spike amplitudes, either promote or inhibit the same type of behavior, respectively. Systematic optogenetic and thermogenetic assays—covering the majority of antennal sensilla—highlight a valence-opponent organization. Critically, odor-mixture behavioral experiments show that lateral inhibition between antagonistic ORNs mediates robust behavioral decisions in response to countervailing cues. Computational modeling predicts that the robustness of behavioral output depends on odor mixture ratios. A hallmark of complex sensory systems is the organization of neurons into functionally meaningful maps, which allow for comparison and contrast of parallel inputs via lateral inhibition. However, it is unclear whether such a map exists in olfaction. Here, we address this question by determining the organizing principle underlying the stereotyped pairing of olfactory receptor neurons (ORNs) in Drosophila sensory hairs, wherein compartmentalized neurons inhibit each other via ephaptic coupling. Systematic behavioral assays reveal that most paired ORNs antagonistically regulate the same type of behavior. Such valence opponency is relevant in critical behavioral contexts including place preference, egg laying, and courtship. Odor-mixture experiments show that ephaptic inhibition provides a peripheral means for evaluating and shaping countervailing cues relayed to higher brain centers. Furthermore, computational modeling suggests that this organization likely contributes to processing ratio information in odor mixtures. This olfactory valence map may have evolved to swiftly process ethologically meaningful odor blends without involving costly synaptic computation.
Collapse
|
21
|
Guo H, Huang LQ, Gong XL, Wang CZ. Comparison of functions of pheromone receptor repertoires in Helicoverpa armigera and Helicoverpa assulta using a Drosophila expression system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103702. [PMID: 34942332 DOI: 10.1016/j.ibmb.2021.103702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera and H. assulta are sympatric closely related species sharing two sex pheromone components, (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) but in opposite ratios, 97:3 and 3:97 respectively. This feature makes them a feasible model for studying the evolution of pheromone coding mechanisms of lepidopteran insects. Despite a decade-long study to deorphanize the pheromone receptor (PR) repertoires of the two species, the comparison of the function of all PR orthologs between the two species is incomplete. Moreover, the ligands of OR14 and OR15 have so far not been found, likely due to the missing of the active ligand(s) in the compound panel and/or incompatibility of heterologous expression systems used. In the present study, we expressed the PR repertoires of both Helicoverpa species in Drosophila T1 neurons to comparatively study the function of PRs. Among those PRs, OR13, OR6, and OR14 of both species are functionally conserved and narrowly tuned, and the T1 neurons expressing each of them respond to Z11-16:Ald, (Z)-9-hexadecenol (Z9-16:OH), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), respectively. While HarmOR16-expressing neurons respond strongly to (Z)-9-tetradecenal (Z9-14:Ald) and (Z)-11-hexadecenol (Z11-16:OH), the neurons expressing HassOR16 mainly respond to Z9-14:Ald and also weakly respond to (Z)-9-tetradecenol (Z9-14:OH). Moreover, HarmOR14b-expressing neurons are activated by Z9-14:Ald, whereas HassOR14b-expressing neurons are sensitive to Z9-16:Ald, Z9-14:Ald, and (Z)-9-hexadecenol (Z9-16:OH). In addition, HarmOR15-expressing neurons are selectively responsive to Z9-14:Ald. However, the Drosophila T1 neurons expressing either HarmOR11 or HassOR11 are silent to all of the compounds tested. In summary, except for OR11, we have deorphanized all the PRs of these two Helicoverpa species using a Drosophila expression system and a large panel of pheromone compounds, thereby providing a valuable reference for parsing the code of peripheral coding of pheromones.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
22
|
Liu G, Wang Q, Liu X, Li X, Pang X, Zhang D. Antennal and palpal sensilla of three predatory Lispe species (Diptera: Muscidae): an ultrastructural investigation. Sci Rep 2021; 11:18357. [PMID: 34526584 PMCID: PMC8443604 DOI: 10.1038/s41598-021-97677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Antennae and maxillary palps are the most important chemical reception organs of flies. So far, the morphology of antennae and maxillary palps of flies of most feeding habits have been well described, except for that of relatively rare aquatic predatory species. This study describes sensilla on antennae and maxillary palps of three aquatic predatory Lispe species: Lispe longicollis, L. orientalis and L. pygmaea. Types, distribution, and density of sensilla are characterised via light and scanning electron microscopy. One type of mechanoreceptors is found on antennal scape. Mechanoreceptors (two subtypes) and one single pedicellar button (in L. pygmaea) are located on antennal pedicel. Four types of sensilla are discovered on antennal postpedicel: trichoid sensilla, basiconic sensilla (three subtypes), coeloconic sensilla and clavate sensilla. A unique character of these Lispe species is that the coeloconic sensilla are distributed sparsely on antennal postpedicel. Mechanoreceptors and basiconic sensilla are observed on the surface of maxillary palps in all three species. We demonstrated clear sexual dimorphism of the maxillary palps in some of the Lispe species, unlike most other Muscidae species, are larger in males than females. This, along with their courtship dance behaviour, suggest their function as both chemical signal receiver and visual signal conveyer, which is among the few records of a chemical reception organ act as a signal conveyer in insects.
Collapse
Affiliation(s)
- Genting Liu
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Qike Wang
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Xianhui Liu
- University of California Davis, Davis, CA, 95616, USA
| | - Xinyu Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road No. 35, Mailbox 162, Beijing, 100083, China
| | - Xiunan Pang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road No. 35, Mailbox 162, Beijing, 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road No. 35, Mailbox 162, Beijing, 100083, China.
| |
Collapse
|
23
|
Nava Gonzales C, McKaughan Q, Bushong EA, Cauwenberghs K, Ng R, Madany M, Ellisman MH, Su CY. Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster. eLife 2021; 10:69896. [PMID: 34423777 PMCID: PMC8410077 DOI: 10.7554/elife.69896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
The biophysical properties of sensory neurons are influenced by their morphometric and morphological features, whose precise measurements require high-quality volume electron microscopy (EM). However, systematic surveys of nanoscale characteristics for identified neurons are scarce. Here, we characterize the morphology of Drosophila olfactory receptor neurons (ORNs) across the majority of genetically identified sensory hairs. By analyzing serial block-face electron microscopy images of cryofixed antennal tissues, we compile an extensive morphometric data set based on 122 reconstructed 3D models for 33 of the 40 identified antennal ORN types. Additionally, we observe multiple novel features—including extracellular vacuoles within sensillum lumen, intricate dendritic branching, mitochondria enrichment in select ORNs, novel sensillum types, and empty sensilla containing no neurons—which raise new questions pertinent to cell biology and sensory neurobiology. Our systematic survey is critical for future investigations into how the size and shape of sensory neurons influence their responses, sensitivity, and circuit function.
Collapse
Affiliation(s)
- Cesar Nava Gonzales
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Quintyn McKaughan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, San Diego, United States
| | - Kalyani Cauwenberghs
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Matthew Madany
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, San Diego, United States
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, San Diego, United States
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| |
Collapse
|
24
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
25
|
Large-scale characterization of sex pheromone communication systems in Drosophila. Nat Commun 2021; 12:4165. [PMID: 34230464 PMCID: PMC8260797 DOI: 10.1038/s41467-021-24395-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
Insects use sex pheromones as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Despite the profound knowledge of sex pheromones, little is known about the coevolutionary mechanisms and constraints on their production and detection. Using whole-genome sequences to infer the kinship among 99 drosophilids, we investigate how phylogenetic and chemical traits have interacted at a wide evolutionary timescale. Through a series of chemical syntheses and electrophysiological recordings, we identify 52 sex-specific compounds, many of which are detected via olfaction. Behavioral analyses reveal that many of the 43 male-specific compounds are transferred to the female during copulation and mediate female receptivity and/or male courtship inhibition. Measurement of phylogenetic signals demonstrates that sex pheromones and their cognate olfactory channels evolve rapidly and independently over evolutionary time to guarantee efficient intra- and inter-specific communication systems. Our results show how sexual isolation barriers between species can be reinforced by species-specific olfactory signals. Despite the profound knowledge of sex pheromones, little is known about the coevolutionary mechanisms and constraints on their production and detection. Whole-genome sequences from 99 drosophilids, with chemical and behavioural data, show that sex pheromones and their cognate olfactory channels evolve rapidly and independently.
Collapse
|
26
|
Tian K, Liu W, Feng LK, Huang TY, Wang GR, Lin KJ. Functional characterization of pheromone receptor candidates in codling moth Cydia pomonella (Lepidoptera: Tortricidae). INSECT SCIENCE 2021; 28:445-456. [PMID: 32369668 DOI: 10.1111/1744-7917.12775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Sex pheromones serve a critical role in Lepidopterans finding mates. Male moths perceive and react to sex pheromones emitted by conspecific females through a delicate pheromone communication system. Pheromone receptors (PRs) are the key sensory elements at the beginning of that process. The codling moth (Cydia pomnonella) is an important pome fruit pest globally and a serious invasive species in China. Pheromone-based techniques have been used successfully in monitoring and controlling this species. We conducted ribonucleic acid sequencing analysis of the codling moth antennal transcriptome and identified 66 odorant receptors (ORs) in a population from Xinjiang province, China, of which 14 were PRs, including two novel PRs (CpomOR2e and CpomOR73). Four PRs that contain full-length open reading frames (CpomOR1, OR2a, OR5, OR7) and four PRs with ligands that have not been reported previously (CpomOR1, OR2a, OR5, OR7) were selected to deorphanize in the heterologous Xenopus oocyte expression system. Specifically, we found that CpomOR2a and CpomOR5 responded to (E,E)-8, 10-dodecadien-1-yl acetate (codlemone acetate). Furthermore, CpomOR5 (EC50 = 1.379 × 10-8 mol/L) was much more sensitive to codlemone acetate than CpomOR2a (EC50 = 1.663 × 10-6 mol/L). Since codlemone acetate is an important component of C. pomonella sex pheromone, our results improve the current understanding of pheromone communication in codling moths and will be helpful for the development of pest management strategies.
Collapse
Affiliation(s)
- Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Kai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ke-Jian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Siju KP, De Backer JF, Grunwald Kadow IC. Dopamine modulation of sensory processing and adaptive behavior in flies. Cell Tissue Res 2021; 383:207-225. [PMID: 33515291 PMCID: PMC7873103 DOI: 10.1007/s00441-020-03371-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Behavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center-the mushroom body-is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.
Collapse
Affiliation(s)
- K. P. Siju
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jean-Francois De Backer
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilona C. Grunwald Kadow
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
28
|
Zhang Y, Ng R, Neville MC, Goodwin SF, Su CY. Distinct Roles and Synergistic Function of Fru M Isoforms in Drosophila Olfactory Receptor Neurons. Cell Rep 2020; 33:108516. [PMID: 33326795 PMCID: PMC7845487 DOI: 10.1016/j.celrep.2020.108516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Sexual dimorphism in Drosophila courtship circuits requires the male-specific transcription factor fruM, which is alternatively spliced to encode the FruMA, FruMB, and FruMC isoforms. Most fruM-positive neurons express multiple variants; however, the functional significance of their co-expression remains undetermined. Do co-expressed isoforms each play unique roles to jointly regulate dimorphism? By focusing on fruM-positive olfactory receptor neurons (ORNs), here, we show that FruMB and FruMC are both required for males' age-dependent sensitization to aphrodisiac olfactory cues in a cell-autonomous manner. Interestingly, FruMB expression is upregulated with age in Or47b and Ir84a ORNs, and its overexpression mimics the effect of age in elevating olfactory responses. Mechanistically, FruMB and FruMC synergistically mediate response sensitization through cooperation of their respective downstream effectors, namely, PPK25 and PPK23, which are both required for forming a functional amplification channel in ORNs. Together, these results provide critical mechanistic insight into how co-expressed FruM isoforms jointly coordinate dimorphic neurophysiology.
Collapse
Affiliation(s)
- Ye Zhang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Sato K, Yamamoto D. Contact-Chemosensory Evolution Underlying Reproductive Isolation in Drosophila Species. Front Behav Neurosci 2020; 14:597428. [PMID: 33343311 PMCID: PMC7746553 DOI: 10.3389/fnbeh.2020.597428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in Drosophila. Premating isolation is prevalent among closely related species. In Drosophila, preference for conspecifics against other species in mate choice underlies premating isolation, and such preference relies on contact chemosensory communications between a female and male along with other biological factors. For example, although D. simulans and D. melanogaster are sibling species that yield hybrids, their premating isolation is maintained primarily by the contrasting effects of 7,11-heptacosadiene (7,11-HD), a predominant female pheromone in D. melanogaster, on males of the two species: it attracts D. melanogaster males and repels D. simulans males. The contrasting preference for 7,11-HD in males of these two species is mainly ascribed to opposite effects of 7,11-HD on neural activities in the courtship decision-making neurons in the male brain: 7,11-HD provokes both excitatory and inhibitory inputs in these neurons and differences in the balance between the two counteracting inputs result in the contrasting preference for 7,11-HD, i.e., attraction in D. melanogaster and repulsion in D. simulans. Introduction of two double bonds is a key step in 7,11-HD biosynthesis and is mediated by the desaturase desatF, which is active in D. melanogaster females but transcriptionally inactivated in D. simulans females. Thus, 7,11-HD biosynthesis diversified in females and 7,11-HD perception diversified in males, yet it remains elusive how concordance of the changes in the two sexes was attained in evolution.
Collapse
Affiliation(s)
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
30
|
Physiological and molecular correlates of the screwworm fly attraction to wound and animal odors. Sci Rep 2020; 10:20771. [PMID: 33247186 PMCID: PMC7695851 DOI: 10.1038/s41598-020-77541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The screwworm fly, Cochliomyia hominivorax (Coquerel), was successfully eradicated from the United States by the sterile insect technique (SIT). However, recent detection of these flies in the Florida Keys, and increased risk of introductions to the other areas warrant novel tools for management of the flies. Surveillance, a key component of screwworm control programs, utilizes traps baited with rotting liver or a blend of synthetic chemicals such as swormlure-4. In this work, we evaluated the olfactory physiology of the screwworm fly and compared it with the non-obligate ectoparasitic secondary screwworm flies, C. macellaria, that invade necrotic wound and feed on dead tissue. These two species occur in geographically overlapping regions. C. macellaria, along with other blowflies such as the exotic C. megacephala, greatly outnumber C. hominivorax in the existing monitoring traps. Olfactory responses to swormlure-4 constituents between sex and mating status (mated vs unmated) in both species were recorded and compared. Overall, responses measured by the antennograms offered insights into the comparative olfactory physiology of the two fly species. We also present detailed analyses of the antennal transcriptome by RNA-Sequencing that reveal significant differences between male and female screwworm flies. The differential expression patterns were confirmed by quantitative PCR. Taken together, this integrated study provides insights into the physiological and molecular correlates of the screwworm’s attraction to wounds, and identifies molecular targets that will aid in the development of odorant-based fly management strategies.
Collapse
|
31
|
Wu Z, Cui Y, Ma J, Qu M, Lin J. Analyses of chemosensory genes provide insight into the evolution of behavioral differences to phytochemicals in Bactrocera species. Mol Phylogenet Evol 2020; 151:106858. [DOI: 10.1016/j.ympev.2020.106858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
|
32
|
Tait G, Park K, Nieri R, Crava MC, Mermer S, Clappa E, Boyer G, Dalton DT, Carlin S, Brewer L, Walton VM, Anfora G, Rossi-Stacconi MV. Reproductive Site Selection: Evidence of an Oviposition Cue in a Highly Adaptive Dipteran, Drosophila suzukii (Diptera: Drosophilidae). ENVIRONMENTAL ENTOMOLOGY 2020; 49:355-363. [PMID: 31977012 DOI: 10.1093/ee/nvaa005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 05/10/2023]
Abstract
Drosophila suzukii (Matsumura) is a vinegar fly species that originates from Eastern Asia and has spread throughout Europe and the Americas since its initial detection in United States in 2008. Its relatively large, sclerotized, and serrated ovipositor enables the ability to penetrate ripening fruits, providing a protected environment for its egg and larval stages. Because the mechanism of oviposition site selection of D. suzukii is a matter of hypothesis, the aim of the present study was to elucidate behavioral and chemical aspects of short-range ovipositional site selection within the context of D. suzukii reproductive biology. The preference of D. suzukii to lay eggs on artificially pierced, previously infested, or intact fruits was tested. Video recordings and photographic evidence documented the release of an anal secretion over the fruit surface near the oviposition sites. Gas chromatographic analysis revealed the presence of 11 compounds detected only on the skin of egg-infested berries. Electroantennographic experiments with both sexes of D. suzukii highlighted the importance of six volatile compounds: methyl myristate, methyl palmitate, myristic acid, lauric acid, palmitic acid, and palmitoleic acid. Finally, a synthetic blend composed of the six compounds in a ratio similar to that found on the skin of egg-infested berries increased the oviposition rate of conspecific females. Data from our work suggest that the identified volatiles are cues for reproductive site selection. We discuss how these oviposition cues may affect the fitness of D. suzukii. The knowledge gained from this study may accelerate establishment of control strategies based on the interference and disruption of D. suzukii communication during the oviposition processes.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kyoo Park
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Rachele Nieri
- Department of Horticulture, Oregon State University, Corvallis, OR
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - M Cristina Crava
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
- Eri Biotecmed, Universitat de València, Burjassot, Spain
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Elena Clappa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Gabriella Boyer
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Daniel T Dalton
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Silvia Carlin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Linda Brewer
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
- Center of Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - M Valerio Rossi-Stacconi
- Department of Horticulture, Oregon State University, Corvallis, OR
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
33
|
Kerwin P, Yuan J, von Philipsborn AC. Female copulation song is modulated by seminal fluid. Nat Commun 2020; 11:1430. [PMID: 32188855 PMCID: PMC7080721 DOI: 10.1038/s41467-020-15260-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/29/2020] [Indexed: 01/23/2023] Open
Abstract
In most animal species, males and females communicate during sexual behavior to negotiate reproductive investments. Pre-copulatory courtship may settle if copulation takes place, but often information exchange and decision-making continue beyond that point. Here, we show that female Drosophila sing by wing vibration in copula. This copulation song is distinct from male courtship song and requires neurons expressing the female sex determination factor DoublesexF. Copulation song depends on transfer of seminal fluid components of the male accessory gland. Hearing female copulation song increases the reproductive success of a male when he is challenged by competition, suggesting that auditory cues from the female modulate male ejaculate allocation. Our findings reveal an unexpected fine-tuning of reproductive decisions during a multimodal copulatory dialog. The discovery of a female-specific acoustic behavior sheds new light on Drosophila mating, sexual dimorphisms of neuronal circuits and the impact of seminal fluid molecules on nervous system and behavior.
Collapse
Affiliation(s)
- Peter Kerwin
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Jiasheng Yuan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark.
| |
Collapse
|
34
|
Prieto-Godino LL, Silbering AF, Khallaf MA, Cruchet S, Bojkowska K, Pradervand S, Hansson BS, Knaden M, Benton R. Functional integration of "undead" neurons in the olfactory system. SCIENCE ADVANCES 2020; 6:eaaz7238. [PMID: 32195354 PMCID: PMC7065876 DOI: 10.1126/sciadv.aaz7238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is widespread during neurodevelopment, eliminating the surpluses of neuronal production. Using the Drosophila olfactory system, we examined the potential of cells fated to die to contribute to circuit evolution. Inhibition of PCD is sufficient to generate new cells that express neural markers and exhibit odor-evoked activity. These "undead" neurons express a subset of olfactory receptors that is enriched for relatively recent receptor duplicates and includes some normally found in different chemosensory organs and life stages. Moreover, undead neuron axons integrate into the olfactory circuitry in the brain, forming novel receptor/glomerular couplings. Comparison of homologous olfactory lineages across drosophilids reveals natural examples of fate change from death to a functional neuron. Last, we provide evidence that PCD contributes to evolutionary differences in carbon dioxide-sensing circuit formation in Drosophila and mosquitoes. These results reveal the remarkable potential of alterations in PCD patterning to evolve new neural pathways.
Collapse
Affiliation(s)
- Lucia L. Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- The Francis Crick Institute, London NW1 1BF, UK
| | - Ana F. Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Karolina Bojkowska
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
35
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
36
|
A Feedforward Circuit Regulates Action Selection of Pre-mating Courtship Behavior in Female Drosophila. Curr Biol 2020; 30:396-407.e4. [PMID: 31902724 DOI: 10.1016/j.cub.2019.11.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
In the early phase of courtship, female fruit flies exhibit an acute rejection response to avoid unfavorable mating. This pre-mating rejection response is evolutionarily paralleled across species, but the molecular and neuronal basis of that behavior is unclear. Here, we show that a putative incoherent feedforward circuit comprising ellipsoid body neurons, cholinergic R4d, and its repressor GABAergic R2/R4m neurons regulates the pre-mating rejection response in the virgin female Drosophila melanogaster. Both R4d and R2/R4m are positively regulated, via specific dopamine receptors, by a subset of neurons in the dopaminergic PPM3 cluster. Genetic deprivation of GABAergic signal via GABAA receptor RNA interference in this circuit induces a massive rejection response, whereas activation of GABAergic R2/R4m or suppression of cholinergic R4d increases receptivity. Moreover, glutamatergic signaling via N-methyl-d-aspartate receptors induces NO-mediated retrograde regulation potentially from R4d to R2/R4m, likely providing flexible control of the behavioral switching from rejection to acceptance. Our study elucidates the molecular and neural mechanisms regulating the behavioral selection process of the pre-mating female.
Collapse
|
37
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Scheuermann EA, Smith DP. Odor-Specific Deactivation Defects in a Drosophila Odorant-Binding Protein Mutant. Genetics 2019; 213:897-909. [PMID: 31492805 PMCID: PMC6827369 DOI: 10.1534/genetics.119.302629] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Insect odorant-binding proteins (OBPs) are a large, diverse group of low-molecular weight proteins secreted into the fluid bathing olfactory and gustatory neuron dendrites. The best-characterized OBP, LUSH (OBP76a) enhances pheromone sensitivity enabling detection of physiological levels of the male-specific pheromone, 11-cis vaccenyl acetate. The role of the other OBPs encoded in the Drosophila genome is largely unknown. Here, using clustered regularly interspaced short palindromic repeats/Cas9, we generated and characterized the loss-of-function phenotype for two genes encoding homologous OBPs, OS-E (OBP83b) and OS-F (OBP83a). Instead of activation defects, these extracellular proteins are required for normal deactivation of odorant responses to a subset of odorants. Remarkably, odorants detected by the same odorant receptor are differentially affected by the loss of the OBPs, revealing an odorant-specific role in deactivation kinetics. In stark contrast to lush mutants, the OS-E/F mutants have normal activation kinetics to the affected odorants, even at low stimulus concentrations, suggesting that these OBPs are not competing for these ligands with the odorant receptors. We also show that OS-E and OS-F are functionally redundant as either is sufficient to revert the mutant phenotype in transgenic rescue experiments. These findings expand our understanding of the roles of OBPs to include the deactivation of odorant responses.
Collapse
Affiliation(s)
- Elizabeth A Scheuermann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Dean P Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
39
|
Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. eLife 2019; 8:51040. [PMID: 31651397 PMCID: PMC6814364 DOI: 10.7554/elife.51040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023] Open
Abstract
Odorant binding proteins (Obps) are expressed at extremely high levels in the antennae of insects, and have long been believed essential for carrying hydrophobic odorants to odor receptors. Previously we found that when one functional type of olfactory sensillum in Drosophila was depleted of its sole abundant Obp, it retained a robust olfactory response (Larter et al., 2016). Here we have deleted all the Obp genes that are abundantly expressed in the antennal basiconic sensilla. All of six tested sensillum types responded robustly to odors of widely diverse chemical or temporal structure. One mutant gave a greater physiological and behavioral response to an odorant that affects oviposition. Our results support a model in which many sensilla can respond to odorants in the absence of Obps, and many Obps are not essential for olfactory response, but that some Obps can modulate olfactory physiology and the behavior that it drives.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
40
|
False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Prog Neurobiol 2019; 181:101661. [DOI: 10.1016/j.pneurobio.2019.101661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/24/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
|
41
|
Zhang L, Guo M, Zhuo F, Xu H, Zheng N, Zhang L. An odorant-binding protein mediates sexually dimorphic behaviors via binding male-specific 2-heptanone in migratory locust. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103933. [PMID: 31449797 DOI: 10.1016/j.jinsphys.2019.103933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/28/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Migratory locusts (Locusta migratoria) frequently aggregate into huge swarms that cause serious economic losses for the agricultural sector. Differential behaviors of male and female insects may contribute to such population explosions. However, the key olfactory mechanisms underlying different behaviors associated with sex-related pheromones are unclear. Here, we report that male-specific odor, 2-heptanone plays different roles in relation to the behavior of migratory locust males and females, and that this sexual dimorphism involves a soluble odorant-binding protein (OBP) in the peripheral olfactory processes. This odor strongly binds to LmigOBP4, a novel OBP, present in antennal trichoid sensilla, and elicits opposite locomotor tendencies between the sexes: attracting females and repelling males. Furthermore, an adult male group mimicked a high dosage of 2-heptanone by promoting their attractiveness to single females. Additionally, RNAi suppression of Lmigobp4 expression reduced the physiological responses to 2-heptanone to levels that were indistinguishable between the sexes. This suppression reversed the adult behavioral responses to 2-heptanone, i.e., females were repelled and males were attracted. We conclude that LmigOBP4 is associated with olfactory recognition of male-specific 2-heptanone, which plays dual roles that differ between adult male and female migratory locusts.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Mei Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Fuyan Zhuo
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Haozhi Xu
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Nan Zheng
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Long Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China.
| |
Collapse
|
42
|
Oh HW, Jeong SA, Kim J, Park KC. Morphological and functional heterogeneity in olfactory perception between antennae and maxillary palps in the pumpkin fruit fly, Bactrocera depressa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21560. [PMID: 31152462 DOI: 10.1002/arch.21560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High-resolution SEM observation revealed the presence of multiple nanoscale wall-pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin-walled, while the trichoid sensilla are thick-walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.
Collapse
Affiliation(s)
- Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Seon Ah Jeong
- Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
- Department of Biological Sciences, Hannam University, Daejeon, Korea
| | - Jiae Kim
- Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Kye Chung Park
- Bioprotection/Biosecurity, The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| |
Collapse
|
43
|
Chai PC, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat Commun 2019; 10:643. [PMID: 30733440 PMCID: PMC6367400 DOI: 10.1038/s41467-019-08345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Nervous systems exhibit myriad cell types, but understanding how this diversity arises is hampered by the difficulty to visualize and genetically-probe specific lineages, especially at early developmental stages prior to expression of unique molecular markers. Here, we use a genetic immortalization method to analyze the development of sensory neuron lineages in the Drosophila olfactory system, from their origin to terminal differentiation. We apply this approach to define a fate map of nearly all olfactory lineages and refine the model of temporal patterns of lineage divisions. Taking advantage of a selective marker for the lineage that gives rise to Or67d pheromone-sensing neurons and a genome-wide transcription factor RNAi screen, we identify the spatial and temporal requirements for Pointed, an ETS family member, in this developmental pathway. Transcriptomic analysis of wild-type and Pointed-depleted olfactory tissue reveals a universal requirement for this factor as a switch-like determinant of fates in these sensory lineages. Few tools exist to study molecular diversity during neurodevelopment. Here the authors apply a genetic immortalization method in Drosophila to generate a fate map of olfactory sensory lineages, examine the relationships of this map and the neuroanatomical, molecular and evolutionary properties of the mature circuits, and identify a novel factor controlling lineage development.
Collapse
Affiliation(s)
- Phing Chian Chai
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Leonore Wigger
- Lausanne Genomic Technologies Facility, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
44
|
Fleischer J, Krieger J. Insect Pheromone Receptors - Key Elements in Sensing Intraspecific Chemical Signals. Front Cell Neurosci 2018; 12:425. [PMID: 30515079 PMCID: PMC6255830 DOI: 10.3389/fncel.2018.00425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pheromones are chemicals that serve intraspecific communication. In animals, the ability to detect and discriminate pheromones in a complex chemical environment substantially contributes to the survival of the species. Insects widely use pheromones to attract mating partners, to alarm conspecifics or to mark paths to rich food sources. The various functional roles of pheromones for insects are reflected by the chemical diversity of pheromonal compounds. The precise detection of the relevant intraspecific signals is accomplished by specialized chemosensory neurons housed in hair-like sensilla located on the surface of body appendages. Current data indicate that the extraordinary sensitivity and selectivity of the pheromone-responsive neurons (PRNs) is largely based on specific pheromone receptors (PRs) residing in their ciliary membrane. Besides these key elements, proper ligand-induced responses of PR-expressing neurons appear to generally require a putative co-receptor, the so-called "sensory neuron membrane protein 1" (SNMP1). Regarding the PR-mediated chemo-electrical signal transduction processes in insect PRNs, ionotropic as well as metabotropic mechanisms may be involved. In this review, we summarize and discuss current knowledge on the peripheral detection of pheromones in the olfactory system of insects with a focus on PRs and their specific role in the recognition and transduction of volatile intraspecific chemical signals.
Collapse
Affiliation(s)
- Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
45
|
Miyazaki H, Otake J, Mitsuno H, Ozaki K, Kanzaki R, Chui-Ting Chieng A, Kah-Wei Hee A, Nishida R, Ono H. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:32-46. [PMID: 30026095 DOI: 10.1016/j.ibmb.2018.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive pest of various fruits. The reproductive and host-finding behaviors of this species are affected by several plant semiochemicals that are perceived through chemosensory receptors. However, the chemosensory mechanisms by which this perception occurs have not been fully elucidated. We conducted RNA sequencing analysis of the chemosensory organs of B. dorsalis to identify the genes coding for chemosensory receptors. We identified 60 olfactory receptors (ORs), 17 gustatory receptors and 23 ionotropic receptors-including their homologs and variants-from the transcriptome of male antennae and proboscises. We functionally analyzed ten ORs co-expressed with the obligatory co-receptor ORCO in Xenopus oocytes to identify their ligands. We tested 24 compounds including attractants for several Bactrocera species and volatiles from the host fruits of B. dorsalis. We found that BdorOR13a co-expressed with ORCO responded robustly to 1-octen-3-ol. BdorOR82a co-expressed with ORCO responded significantly to geranyl acetate, but responded weakly to farnesenes (a mixture of isomers) and linalyl acetate. These four compounds were subsequently subjected to behavioral bioassays. When each of the aforementioned compound was presented in combination with a sphere model as a visual cue to adult flies, 1-octen-3-ol, geranyl acetate, and farnesenes significantly enhanced landing behavior in mated females, but not in unmated females or males. These results suggest that the ORs characterized in the present study are involved in the perception of plant volatiles that affect host-finding behavior in B. dorsalis.
Collapse
Affiliation(s)
- Hitomi Miyazaki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Jun Otake
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, Takatsuki Osaka, 569-1125, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | - Alvin Kah-Wei Hee
- Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Ritsuo Nishida
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
46
|
Jeanne JM, Fişek M, Wilson RI. The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons. Neuron 2018; 98:1198-1213.e6. [PMID: 29909998 PMCID: PMC6051339 DOI: 10.1016/j.neuron.2018.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Abstract
Each odorant receptor corresponds to a unique glomerulus in the brain. Projections from different glomeruli then converge in higher brain regions, but we do not understand the logic governing which glomeruli converge and which do not. Here, we use two-photon optogenetics to map glomerular connections onto neurons in the lateral horn, the region of the Drosophila brain that receives the majority of olfactory projections. We identify 39 morphological types of lateral horn neurons (LHNs) and show that different types receive input from different combinations of glomeruli. We find that different LHN types do not have independent inputs; rather, certain combinations of glomeruli converge onto many of the same LHNs and so are over-represented. Notably, many over-represented combinations are composed of glomeruli that prefer chemically dissimilar ligands whose co-occurrence indicates a behaviorally relevant "odor scene." The pattern of glomerulus-LHN connections thus represents a prediction of what ligand combinations will be most salient.
Collapse
Affiliation(s)
- James M Jeanne
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Mehmet Fişek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Bruno D, Grossi G, Salvia R, Scala A, Farina D, Grimaldi A, Zhou JJ, Bufo SA, Vogel H, Grosse-Wilde E, Hansson BS, Falabella P. Sensilla Morphology and Complex Expression Pattern of Odorant Binding Proteins in the Vetch Aphid Megoura viciae (Hemiptera: Aphididae). Front Physiol 2018; 9:777. [PMID: 29988577 PMCID: PMC6027062 DOI: 10.3389/fphys.2018.00777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 12/02/2022] Open
Abstract
Chemoreception in insects is mediated by several components interacting at different levels and including odorant-binding proteins (OBPs). Although recent studies demonstrate that the function of OBPs cannot be restricted to an exclusively olfactory role, and that OBPs have been found also in organs generally not related to chemoreception, their feature of binding molecules remains undisputed. Studying the vetch aphid Megoura viciae (Buckton), we used a transcriptomic approach to identify ten OBPs in the antennae and we examined the ultrastructural morphology of sensilla and their distribution on the antennae, legs, mouthparts and cauda of wingless and winged adults by scanning electron microscopy (SEM). Three types of sensilla, trichoid, coeloconic and placoid, differently localized and distributed on antennae, mouthparts, legs and cauda, were described. The expression analysis of the ten OBPs was performed by RT-qPCR in the antennae and other body parts of the wingless adults and at different developmental stages and morphs. Five of the ten OBPs (MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7, and MvicOBP8), whose antibodies were already available, were selected for experiments of whole-mount immunolocalization on antennae, mouthparts, cornicles and cauda of adult aphids. Most of the ten OBPs were more expressed in antennae than in other body parts; MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7 were also immunolocalized in the sensilla on the antennae, suggesting a possible involvement of these proteins in chemoreception. MvicOBP6, MvicOBP7, MvicOBP8, MvicOBP9 were highly expressed in the heads and three of them (MvicOBP6, MvicOBP7, MvicOBP8) were immunolocalized in the sensilla on the mouthparts, supporting the hypothesis that also mouthparts may be involved in chemoreception. MvicOBP2, MvicOBP3, MvicOBP5, MvicOBP8 were highly expressed in the cornicles-cauda and two of them (MvicOBP3, MvicOBP8) were immunolocalized in cornicles and in cauda, suggesting a possible new function not related to chemoreception. Moreover, the response of M. viciae to different components of the alarm pheromone was assessed by behavioral assays on wingless adult morph; (-)-α-pinene and (+)-limonene were found to be the components mainly eliciting an alarm response. Taken together, our results represent a road map for subsequent in-depth analyses of the OBPs involved in several physiological functions in M. viciae, including chemoreception.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gerarda Grossi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Donatella Farina
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
48
|
Ma L, Li Z, Zhang W, Cai X, Luo Z, Zhang Y, Chen Z. The Odorant Binding Protein 6 Expressed in Sensilla Chaetica Displays Preferential Binding Affinity to Host Plants Volatiles in Ectropis obliqua. Front Physiol 2018; 9:534. [PMID: 29867573 PMCID: PMC5967201 DOI: 10.3389/fphys.2018.00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
The monophagous tea geometrid Ectropis obliqua selectively feed on tea plants, requiring the specialized chemosensory system to forage for certain host. A deep insight into the molecular basis would accelerate the design of insect-behavior-modifying stimuli. In the present study, we focused on the odorant-binding protein 6 (EoblOBP6) with the high abundance in legs transcriptome of E. obliqua moths. qRT-PCR coupled with western blot analyses revealed the dual expression pattern of EoblOBP6 in antennae and legs. Cellular immunolocalization indicated that EoblOBP6 was predominantly labeled in the outer sensillum lymph of uniporous sensilla chaetica, which is not innervated by sensory neurons. No specific staining was observed in other sensillum types. The fluorescence competition assay showed a relatively narrow binding spectrum of recombinant EoblOBP6. EoblOBP6 could not only bind with intact tea plant volatiles benzaldehyde but also display high binding ability to nerolidol and α-farnesene which are tea plant volatiles dramatically induced by herbivore infestation. Besides, EoblOBP6 tightly bound to the aversive bitter alkaloid berberine. Taken together, EoblOBP6 displayed an unusual expression in sensilla chaetica, exhibited the potential involvement in olfaction and gustation, and may play a functional role in host location of female E. obliqua moths.
Collapse
Affiliation(s)
- Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
49
|
Zhao Y, Ding J, Zhang Z, Liu F, Zhou C, Mu W. Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae). Front Physiol 2018; 9:107. [PMID: 29666581 PMCID: PMC5891581 DOI: 10.3389/fphys.2018.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga is an agricultural pest insect affecting the production of Chinese chive and other liliaceous vegetables in China, and it is significantly attracted by sex pheromones and the volatiles derived from host plants. Despite verification of this chemosensory behavior, however, it is still unknown how B. odoriphaga recognizes these volatile compounds on the molecular level. Many of odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play crucial roles in olfactory perception. Here, we identified 49 OBP and 5 CSP genes from the antennae and body transcriptomes of female and male adults of B. odoriphaga, respectively. Sequence alignment and phylogenetic analysis among Dipteran OBPs and CSPs were analyzed. The sex- and tissue-specific expression profiles of 54 putative chemosensory genes among different tissues were investigated by quantitative real-time PCR (qRT-PCR). qRT-PCR analysis results suggested that 22 OBP and 3 CSP genes were enriched in the antennae, indicating they might be essential for detection of general odorants and pheromones. Among these antennae-enriched genes, nine OBPs (BodoOBP2/4/6/8/12/13/20/28/33) were enriched in the male antennae and may play crucial roles in the detection of sex pheromones. Moreover, some OBP and CSP genes were enriched in non-antennae tissues, such as in the legs (BodoOBP3/9/19/21/34/35/38/39/45 and BodoCSP1), wings (BodoOBP17/30/32/37/44), abdomens and thoraxes (BodoOBP29/36), and heads (BodoOBP14/23/31 and BodoCSP2), suggesting that these genes might be involved in olfactory, gustatory, or other physiological processes. Our findings provide a starting point to facilitate functional research of these chemosensory genes in B. odoriphaga at the molecular level.
Collapse
Affiliation(s)
- Yunhe Zhao
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| | - Zhengqun Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| | - Chenggang Zhou
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Wei Mu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
50
|
Billeter JC, Wolfner MF. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol 2018; 44:750-769. [PMID: 29557077 DOI: 10.1007/s10886-018-0947-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
Abstract
Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female's chemical profile. These molecules make the female less attractive to other males, thus protecting her mate's sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female's attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female's propensity to re-mate, thus continuing to protect the male's investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual's response to the chemical cues in its environment.
Collapse
Affiliation(s)
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|