1
|
Beaver ML, Evans RC. Muscarinic Receptor Activation Preferentially Inhibits Rebound in Vulnerable Dopaminergic Neurons. J Neurosci 2025; 45:e1443242025. [PMID: 40000233 PMCID: PMC12005241 DOI: 10.1523/jneurosci.1443-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dopaminergic subpopulations of the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson's disease and are characterized by unique electrophysiological properties. The vulnerable population expresses a T-type calcium channel-mediated afterdepolarization (ADP) and shows rebound activity upon release from inhibition, whereas the resilient population does not have an ADP and is slower to fire after hyperpolarization. This rebound activity can trigger dopamine release in the striatum, an important component of basal ganglia function. Using whole-cell patch-clamp electrophysiology on ex vivo slices from adult mice of both sexes, we find that muscarinic activation with the nonselective muscarinic agonist oxotremorine inhibits rebound activity more strongly in vulnerable versus resilient SNc neurons. Here, we show that this effect depends on the direct activation of muscarinic receptors on the SNc dopaminergic neurons. Through a series of pharmacological and transgenic knock-out experiments, we tested whether the muscarinic inhibition of rebound was mediated through the canonical rebound-related ion channels: T-type calcium channels, hyperpolarization-activated cation channels (HCN), and A-type potassium channels. We find that muscarinic receptor activation inhibits HCN-mediated current (I h) in vulnerable SNc neurons but that I h activity is not necessary for the muscarinic inhibition of rebound activity. Similarly, we find that oxotremorine inhibits rebound activity independently of T-type calcium channels and A-type potassium channels. Together these findings reveal new principles governing acetylcholine and dopamine interactions, showing that muscarinic receptors directly affect SNc rebound activity in the midbrain at the somatodendritic level and differentially modify information processing in distinct SNc subpopulations.
Collapse
Affiliation(s)
- Megan L Beaver
- Departments of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Rebekah C Evans
- Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| |
Collapse
|
2
|
Li X, Wu N, Wang C, Pei B, Ma X, Xie J, Yang W. NALCN expression is down-regulated and associated with immune infiltration in gastric cancer. Front Immunol 2025; 16:1512107. [PMID: 40013144 PMCID: PMC11860897 DOI: 10.3389/fimmu.2025.1512107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Background NALCN has been identified as a tumor suppressor gene, and its role in human cancer progression has garnered significant attention. However, there is a paucity of experimental studies specifically addressing the relationship between NALCN and immune cell infiltration in gastric cancer (GC). Methods The expression levels of NALCN in tumor tissues, peripheral blood and gastric cancer cells lines from patients with GC were assessed using RNA sequencing, immunohistochemistry (IHC) staining and RT-qPCR. Data obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were utilized to investigate the correlation between NALCN expression and immune cell infiltration in GC. Subsequently, the relationship between NALCN expression and infiltrating immune cells in GC tissues was examined through immunofluorescence method. Additionally, in vitro experiments were conducted to evaluate the impact of NALCN knockdown on T cells function in GC cell lines. Results RNA sequencing analysis revealed that NALCN expression was significantly downregulated in GC tissues. Specifically, NALCN levels were lower in GC tumor tissues and plasma compared to adjacent non-tumor tissues and healthy controls. Consistent with these findings, the expression trend of NALCN mRNA in the GEO database mirrored the experimental results. Mechanistically, NALCN knockdown markedly enhanced cell proliferation, colony formation and migration while reducing apoptosis rates in AGS and GES-1 cells. Analysis of the TCGA database indicated a positive correlation between NALCN expression and the infiltration of B cells, cytotoxic cells, immature dendritic cells (iDC) cells, CD8+ T cells, and others in GC tissue. Conversely, Th17 and Th2 cells infiltration exhibited a negative correlation with NALCN expression. Immunofluorescence staining confirmed that B cells and CD8 T cells were more abundant in GC tumor tissues with high NALCN expression, whereas Th17 and Th2 cells were less prevalent. Subsequently, we co-cultured GC cells transfected with NALCN knockdown or control vectors along with their supernatants with T cells. The results demonstrated that NALCN knockdown in GC cells or their supernatants inhibited T cell proliferation compared to control conditions. Moreover, NALCN may play a role in glucose and glutamine uptake. Conclusions NALCN facilitates immune cell aggregation in GC and has potential as a biomarker for immune infiltration.
Collapse
Affiliation(s)
- Xuewei Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Na Wu
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Chen Wang
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Beibei Pei
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Ma
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Sansalone L, Evans RC, Twedell E, Zhang R, Khaliq ZM. Corticonigral projections recruit substantia nigra pars lateralis dopaminergic neurons for auditory threat memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621665. [PMID: 39574768 PMCID: PMC11580856 DOI: 10.1101/2024.11.04.621665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Dopaminergic neurons (DANs) in the lateral substantia nigra project to the tail of striatum (TS), which is involved in threat conditioning. Auditory cortex also contributes to threatening behaviors, but whether it directly interacts with midbrain DANs and how these interactions might influence threat conditioning remain unclear. Here, functional mapping revealed robust excitatory input from auditory and temporal association cortexes to substantia nigra pars lateralis (SNL) DANs, but not to pars compacta (SNc) DANs. SNL DANs exhibited unique firing patterns, with irregular pacemaking and higher maximal firing, reflecting different channel complements than SNc DANs. Behaviorally, inhibiting cortex to SNL projections impaired memory retrieval during auditory threat conditioning. Thus, we demonstrate robust corticonigral projections to SNL DANs, contrasting with previous observations of sparse cortical input to substantia nigra DANs. These findings distinguish SNL DANs from other nigral populations, highlighting their role in threatening behaviors and expanding knowledge of cortex to midbrain interactions.
Collapse
Affiliation(s)
- Lorenzo Sansalone
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Rebekah C. Evans
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
| | - Emily Twedell
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
4
|
Bean BP. Mechanisms of pacemaking in mammalian neurons. J Physiol 2024. [PMID: 39303139 PMCID: PMC11922794 DOI: 10.1113/jp284759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Many neurons in the mammalian brain show pacemaking activity: rhythmic generation of action potentials in the absence of sensory or synaptic input. Slow pacemaking of neurons releasing modulatory transmitters is easy to rationalize. More surprisingly, many neurons in the motor system also show pacemaking activity, often rapid, including cerebellar Purkinje neurons that fire spontaneously at 20-100 Hz, as well as key neurons in the basal ganglia, including subthalamic nucleus neurons and globus pallidus neurons. Although the spontaneous rhythmic firing of pacemaking neurons is phenomenologically similar to cardiac pacemaking, the underlying ionic mechanism in most neurons is quite different than for cardiac pacemaking. Few spontaneously active neurons rely on HCN 'pacemaker' channels for their activity. Most commonly, a central element is 'persistent' sodium current, steady-state subthreshold current carried by the same voltage-dependent sodium channels that underlie fast action potentials. Persistent sodium current is a steeply voltage-dependent current with a midpoint near -60 mV, which results in regenerative spontaneous depolarization once it produces a net inward current when summed with all other background currents, often at voltages as negative as -70 mV. This 'engine' of pacemaking is present in almost all neurons and must be held in check in non-pacemaking neurons by sufficiently large competing outward currents from background potassium channels. The intrinsic propensity of neurons to fire spontaneously underlies key normal functions such as respiration and generates the complex background oscillatory circuits revealed in EEGs, but can also produce out-of-control oscillations of overall brain function in epilepsy, ataxia and tremor.
Collapse
Affiliation(s)
- Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Beaver ML, Evans RC. Muscarinic receptor activation preferentially inhibits rebound in vulnerable dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605819. [PMID: 39131326 PMCID: PMC11312546 DOI: 10.1101/2024.07.30.605819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Dopaminergic subpopulations of the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson's disease and are characterized by unique electrophysiological properties. The vulnerable population expresses a T-type calcium channel-mediated afterdepolarization (ADP) and shows rebound activity upon release from inhibition, whereas the resilient population does not have an ADP and is slower to fire after hyperpolarization. This rebound activity can trigger dopamine release in the striatum, an important component of basal ganglia function. Using whole-cell patch clamp electrophysiology on ex vivo slices from adult mice of both sexes, we find that muscarinic activation with the non-selective muscarinic agonist Oxotremorine inhibits rebound activity more strongly in vulnerable vs resilient SNc neurons. Here, we show that this effect depends on the direct activation of muscarinic receptors on the SNc dopaminergic neurons. Through a series of pharmacological and transgenic knock-out experiments, we tested whether the muscarinic inhibition of rebound was mediated through the canonical rebound-related ion channels: T-type calcium channels, hyperpolarization-activated cation channels (HCN), and A-type potassium channels. We find that muscarinic receptor activation inhibits HCN-mediated current (Ih) in vulnerable SNc neurons, but that Ih activity is not necessary for the muscarinic inhibition of rebound activity. Similarly, we find that Oxotremorine inhibits rebound activity independently of T-type calcium channels and A-type potassium channels. Together these findings reveal new principles governing acetylcholine and dopamine interactions, showing that muscarinic receptors directly affect SNc rebound activity in the midbrain at the somatodendritic level and differentially modify information processing in distinct SNc subpopulations.
Collapse
Affiliation(s)
- Megan L. Beaver
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Rebekah C. Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| |
Collapse
|
6
|
Higgs MH, Beckstead MJ. Impact of Unitary Synaptic Inhibition on Spike Timing in Ventral Tegmental Area Dopamine Neurons. eNeuro 2024; 11:ENEURO.0203-24.2024. [PMID: 38969500 PMCID: PMC11287791 DOI: 10.1523/eneuro.0203-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents. We next determined the phase resetting curve, the reversal potential for GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs), and the average interspike membrane potential trajectory during pacemaking. We combined these data in a phase oscillator model of a VTA dopamine neuron, simulating the effects of unitary inhibitory postsynaptic conductances (uIPSGs) on spike timing and rate. The effect of a uIPSG on spike timing was predicted to vary according to its timing within the interspike interval or phase. Simulations were performed to predict the pause duration resulting from the synchronous arrival of multiple uIPSGs and the changes in firing rate and regularity produced by asynchronous uIPSGs. The model data suggest that asynchronous inhibition is more effective than synchronous inhibition, because it tends to hold the neuron at membrane potentials well positive to the IPSC reversal potential. Our results indicate that small fluctuations in the inhibitory synaptic input arriving from the many afferents to each dopamine neuron are sufficient to produce highly variable firing patterns, including pauses that have been implicated in reinforcement.
Collapse
Affiliation(s)
- Matthew H Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
7
|
Zhang D, Wei Y. Role of sodium leak channel (NALCN) in sensation and pain: an overview. Front Pharmacol 2024; 14:1349438. [PMID: 38273833 PMCID: PMC10808581 DOI: 10.3389/fphar.2023.1349438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The sodium leak channel (NALCN) is widely expressed in the central nervous system and plays a pivotal role in regulating the resting membrane potential (RMP) by mediating the Na+ leak current. NALCN was first reported in 1999, and since then, increasing evidence has provided insights into the structure and functions of NALCN. As an essential component of neuronal background currents, NALCN has been shown to be involved in many important physiological functions, particularly in the respiratory rhythm, as NALCN mutant mice have a severely disrupted respiratory rhythm and die within 24 h of birth. Many patients with NALCN mutations also develop serious clinical syndromes, such as severe hypotonia, speech impairment, and cognitive delay. Recently, emerging studies have clarified the human NALCN structure and revealed additional properties and functions of NALCN. For instance, accumulating evidence highlights that the NALCN is involved in normal sensation and pain. Here, we review the current literature and summarize the role of the NALCN in sensation and pain.
Collapse
Affiliation(s)
- Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| |
Collapse
|