1
|
Blanchard T, Faridi P, Xu C, Bear AS, Rasool RU, Huang G, Lim TCC, Ayala R, Gabunia K, Ji M, Posey AD, Scholler J, Asangani IA, Purcell AW, Linette GP, June CH, Carreno BM. LOXHD1 is an oncofusion-regulated antigen of ewing sarcoma. Sci Rep 2025; 15:13007. [PMID: 40234527 PMCID: PMC12000433 DOI: 10.1038/s41598-025-96877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Ewing Sarcoma (EwS) is a rare pediatric malignancy characterized by a unique t(11:22) (q24;q12) translocation resulting in the pathognomonic EWSR1::FLI1 fusion. Recent reports indicate that the EWSR1::FLI1 oncofusion drives aberrant expression of numerous transcripts, including Lipoxygenase Homology Domains 1 (LOXHD1). Given its highly restricted protein expression pattern and role in EwS tumorigenesis and metastasis, LOXHD1 may serve as a novel immunotherapeutic target in this malignancy. LOXHD1 immunogenic epitopes restricted to HLA-A*02:01 allowed for the isolation of a high avidity αβTCR. LOXHD1-specific TCR engineered CD8+ T cells conferred cytotoxic activity against a panel of HLA-A*02:01+ EwS tumor cell lines and adoptive transfer led to tumor eradication in a mouse xenograft model of EwS. This study nominates LOXHD1 as an oncofusion regulated, non-mutated tumor associated antigen (TAA) with expression limited to inner hair cells of the cochlea, adult testis, and EwS.
Collapse
MESH Headings
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/therapy
- Sarcoma, Ewing/metabolism
- Humans
- Animals
- Mice
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Oncogene Proteins, Fusion/genetics
- CD8-Positive T-Lymphocytes/immunology
- RNA-Binding Protein EWS/genetics
- Proto-Oncogene Protein c-fli-1/genetics
Collapse
Affiliation(s)
- Tatiana Blanchard
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pouya Faridi
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
- Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, BRBII/III, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Grace Huang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Terry C C Lim
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
- Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Khatuna Gabunia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mei Ji
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, BRBII/III, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gerald P Linette
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Tsedilina TR, Sharova EI, Kanygina AV, Malyugin BE, Antonova OP, Belodedova AV, Tkachenko IS, Gelyastanov AM, Zolotarev AV, Klokov AV, Murashev AO, Fedyushkina IV, Generozov EV, Skorodumova LO. From Genes to Disease: Reassessing LOXHD1 and AGBL1's Contribution to Fuchs' Dystrophy. Int J Mol Sci 2025; 26:3343. [PMID: 40244234 PMCID: PMC11989410 DOI: 10.3390/ijms26073343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a genetically complex eye disease associated with multiple genes. A recent systematic review has raised concerns about the causal role of variants in the LOXHD1 and AGBL1 genes in the development of FECD. Conflicting data have been reported on the expression of the LOXHD1 and AGBL1 genes in the corneal endothelium. Furthermore, only partial segregation of the variants was observed in familial cases. An analysis of published datasets was conducted to examine the expression of LOXHD1 and AGBL1 genes in normal and FECD-affected corneal endothelia and progenitor cells. Neither LOXHD1 nor AGBL1 genes were expressed in normal or FECD corneal endothelia or progenitor cells. In-house cohorts were screened for carriers of previously reported LOXHD1 and AGBL1 variants. Carriers and their first-degree relatives were invited for an ophthalmological examination to reassess the causal relationship of these variants with FECD phenotype. Three carriers of LOXHD1 variants (one carrier of rs200242497 and two carriers of rs192376005) and two carriers of AGBL1 variants (rs181958589 and rs185919705) were recruited. None of the carriers or first-degree relatives over 50 years exhibited phenotypic signs of FECD via ophthalmic examination. The causal role of the AGBL1 and LOXHD1 variants found in the carriers was not confirmed. Taken together, our findings do not support a causal role for AGBL1 and LOXHD1 in the development of FECD.
Collapse
Affiliation(s)
- Tatiana Romanovna Tsedilina
- Medical Genomics Laboratory, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, 119435 Moscow, Russia; (T.R.T.); (E.I.S.)
| | - Elena Ivanovna Sharova
- Medical Genomics Laboratory, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, 119435 Moscow, Russia; (T.R.T.); (E.I.S.)
| | - Alexandra Vasilevna Kanygina
- Medical Genomics Laboratory, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, 119435 Moscow, Russia; (T.R.T.); (E.I.S.)
| | | | - Olga Pavlovna Antonova
- Department of Anterior Segment Transplant and Optical Reconstructive Surgery, S. Fyodorov Eye Microsurgery Complex Federal State Institution, 127486 Moscow, Russia
| | - Alexandra Vladimirovna Belodedova
- Department of Anterior Segment Transplant and Optical Reconstructive Surgery, S. Fyodorov Eye Microsurgery Complex Federal State Institution, 127486 Moscow, Russia
| | - Ivan Sergeevich Tkachenko
- Department of Anterior Segment Transplant and Optical Reconstructive Surgery, S. Fyodorov Eye Microsurgery Complex Federal State Institution, 127486 Moscow, Russia
| | - Aslan Mukhtarovich Gelyastanov
- Department of Anterior Segment Transplant and Optical Reconstructive Surgery, S. Fyodorov Eye Microsurgery Complex Federal State Institution, 127486 Moscow, Russia
| | | | | | | | - Irina Viktorovna Fedyushkina
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Edward Viktorovich Generozov
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Liubov Olegovna Skorodumova
- Medical Genomics Laboratory, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, 119435 Moscow, Russia; (T.R.T.); (E.I.S.)
| |
Collapse
|
3
|
Alves-Simões M, Teege L, Tomni C, Lürkens M, Schmidt A, Iseppon F, Millet Q, Kühs S, Katona I, Weis J, Heinemann SH, Hübner CA, Wood J, Leipold E, Kurth I, Haag N. Na V 1.8/Na V 1.9 double deletion mildly affects acute pain responses in mice. Pain 2025; 166:773-792. [PMID: 39382328 PMCID: PMC11921451 DOI: 10.1097/j.pain.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The 2 tetrodotoxin-resistant (TTXr) voltage-gated sodium channel subtypes Na V 1.8 and Na V 1.9 are important for peripheral pain signaling. As determinants of sensory neuron excitability, they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and the release of neurotransmitters from sensory neuron terminals. Na V 1.8 and Na V 1.9, which are encoded by SCN10A and SCN11A , respectively, are predominantly expressed in pain-sensitive (nociceptive) neurons localized in the dorsal root ganglia (DRG) along the spinal cord and in the trigeminal ganglia. Mutations in these genes cause various pain disorders in humans. Gain-of-function missense variants in SCN10A result in small fiber neuropathy, while distinct SCN11A mutations cause, i. a., congenital insensitivity to pain, episodic pain, painful neuropathy, and cold-induced pain. To determine the impact of loss-of-function of both channels, we generated Na V 1.8/Na V 1.9 double knockout (DKO) mice using clustered regularly interspaced short palindromic repeats/Cas-mediated gene editing to achieve simultaneous gene disruption. Successful knockout of both channels was verified by whole-cell recordings demonstrating the absence of Na V 1.8- and Na V 1.9-mediated Na + currents in Na V 1.8/Na V 1.9 DKO DRG neurons. Global RNA sequencing identified significant deregulation of C-LTMR marker genes as well as of pain-modulating neuropeptides in Na V 1.8/Na V 1.9 DKO DRG neurons, which fits to the overall only moderately impaired acute pain behavior observed in DKO mice. Besides addressing the function of both sodium channels in pain perception, we further demonstrate that the null-background is a very valuable tool for investigations on the functional properties of individual human disease-causing variants in Na V 1.8 or Na V 1.9 in their native physiological environment.
Collapse
Affiliation(s)
- Marta Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Laura Teege
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cecilia Tomni
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martha Lürkens
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Schmidt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Samuel Kühs
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Istvan Katona
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan H. Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - John Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Enrico Leipold
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Bernhard FP, Schütte S, Heidenblut M, Oehme M, Rinné S, Decher N. A novel KCNC3 gene variant in the voltage-dependent Kv3.3 channel in an atypical form of SCA13 with dominant central vertigo. Front Cell Neurosci 2024; 18:1441257. [PMID: 39416683 PMCID: PMC11480015 DOI: 10.3389/fncel.2024.1441257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Potassium channel mutations play an important role in neurological diseases, such as spinocerebellar ataxia (SCA). SCA is a heterogeneous autosomal-dominant neurodegenerative disorder with multiple sub-entities, such as SCA13, which is characterized by mutations in the voltage-gated potassium channel Kv3.3 (KCNC3). In this study, we present a rare and atypical case of SCA13 with a predominant episodic central rotational vertigo, while the patient suffered only from mild progressive cerebellar symptoms, such as dysarthria, ataxia of gait and stand, and recently a cognitive impairment. In this patient, we identified a heterozygous variant in KCNC3 (c.2023G > A, p.Glu675Lys) by next-generation sequencing. This Kv3.3E675K variant was studied using voltage-clamp recordings in Xenopus oocytes. While typical SCA13 variants are dominant-negative, show shifts in the voltage-dependence of activation or an altered TBK1 regulation, the Kv3.3E675K variant caused only a reduction in current amplitude and a more pronounced cumulative inactivation. Thus, the differences to phenotypes observed in patients with classical SCA13 mutations may be related to the mechanism of the observed Kv3.3 loss-of-function. Treatment of our patient with riluzole, a drug that is known to also activate potassium channels, turned out to be partly beneficial. Strikingly, we found that the Kv3.3 and Kv3.3E675K inactivation and the frequency-dependent cumulative inactivation was antagonized by increased extracellular potassium levels. Thus, and most importantly, carefully elevated plasma potassium levels in the physiological range, or novel drugs attenuating Kv3.3 inactivation might provide novel therapeutic approaches to rescue potassium currents of SCA13 variants per se. In addition, our findings broaden the phenotypic spectrum of Kv3.3 variants, expanding it to atypical phenotypes of Kv3.3-associated neurological disorders.
Collapse
Affiliation(s)
- Felix P. Bernhard
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Heidenblut
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Oehme
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Wang P, Miller KK, He E, Dhawan SS, Cunningham CL, Grillet N. LOXHD1 is indispensable for maintaining TMC1 auditory mechanosensitive channels at the site of force transmission. Nat Commun 2024; 15:7865. [PMID: 39256406 PMCID: PMC11387651 DOI: 10.1038/s41467-024-51850-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Hair cell bundles consist of stereocilia arranged in rows of increasing heights, connected by tip links that transmit sound-induced forces to shorter stereocilia tips. Auditory mechanotransduction channel complexes, composed of proteins TMC1/2, TMIE, CIB2, and LHFPL5, are located at the tips of shorter stereocilia. While most components can interact with the tip link in vitro, their ability to maintain the channel complexes at the tip link in vivo is uncertain. Return, using mouse models, we show that an additional component, LOXHD1, is essential for keeping TMC1-pore forming subunits at the tip link but is dispensable for TMC2. Using SUB-immunogold-SEM, we showed that TMC1 localizes near the tip link but mislocalizes without LOXHD1. LOXHD1 selectively interacts with TMC1, CIB2, LHFPL5, and tip-link protein PCDH15. Our results demonstrate that TMC1-driven mature auditory channels require LOXHD1 to stay connected to the tip link and remain functional, while TMC2-driven developmental channels do not.
Collapse
Affiliation(s)
- Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Enqi He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Siddhant S Dhawan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Christopher L Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA.
| |
Collapse
|
6
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Wang P, Miller KK, He E, Dhawan SS, Cunningham CL, Grillet N. LOXHD1 is indispensable for coupling auditory mechanosensitive channels to the site of force transmission. RESEARCH SQUARE 2024:rs.3.rs-3752492. [PMID: 38260480 PMCID: PMC10802736 DOI: 10.21203/rs.3.rs-3752492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hearing is initiated in hair cells by the mechanical activation of ion channels in the hair bundle. The hair bundle is formed by stereocilia organized into rows of increasing heights interconnected by tip links, which convey sound-induced forces to stereocilia tips. The auditory mechanosensitive channels are complexes containing at least four protein-subunits - TMC1/2, TMIE, CIB2, and LHFPL51-16 - and are located at the tips of shorter stereocilia at a yet-undetermined distance from the lower tip link insertion point17. While multiple auditory channel subunits appear to interact with the tip link, it remains unknown whether their combined interaction alone can resist the high-frequency mechanical stimulations owing to sound. Here we show that an unanticipated additional element, LOXHD1, is indispensable for maintaining the TMC1 pore-forming channel subunits coupled to the tip link. We demonstrate that LOXHD1 is a unique element of the auditory mechanotransduction complex that selectively affects the localization of TMC1, but not its close developmental paralogue TMC2. Taking advantage of our novel immunogold scanning electron microscopy method for submembranous epitopes (SUB-immunogold-SEM), we demonstrate that TMC1 normally concentrates within 100-nm of the tip link insertion point. In LOXHD1's absence, TMC1 is instead mislocalized away from this force transmission site. Supporting this finding, we found that LOXHD1 interacts selectively in vitro with TMC1 but not with TMC2 while also binding to channel subunits CIB2 and LHFPL5 and tip-link protein PCDH15. SUB-immunogold-SEM additionally demonstrates that LOXHD1 and TMC1 are physically connected to the lower tip-link complex in situ. Our results show that the TMC1-driven mature channels require LOXHD1 to stay coupled to the tip link and remain functional, but the TMC2-driven developmental channels do not. As both tip links and TMC1 remain present in hair bundles lacking LOXHD1, it opens the possibility to reconnect them and restore hearing for this form of genetic deafness.
Collapse
Affiliation(s)
- Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Katharine K. Miller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Enqi He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Siddhant S. Dhawan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Christopher L. Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
- Lead contact
| |
Collapse
|
9
|
Smith ET, Sun P, Yu SK, Raible DW, Nicolson T. Differential expression of mechanotransduction complex genes in auditory/vestibular hair cells in zebrafish. Front Mol Neurosci 2023; 16:1274822. [PMID: 38035267 PMCID: PMC10682102 DOI: 10.3389/fnmol.2023.1274822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Ciliated sensory cells such as photo- and olfactory receptors employ multiple types of opsins or hundreds of unique olfactory G-protein coupled receptors to respond to various wavelengths of light or odorants. With respect to hearing and balance, the mechanotransduction machinery involves fewer variants; however, emerging evidence suggests that specialization occurs at the molecular level. To address how the mechanotransduction complex varies in the inner ear, we characterized the expression of paralogous genes that encode components required for mechanotransduction in zebrafish hair cells using RNA-FISH and bioinformatic analysis. Our data indicate striking zonal differences in the expression of two components of the mechanotransduction complex which are known to physically interact, the transmembrane channel-like 1 and 2 (tmc1/2) family members and the calcium and integrin binding 2 and 3 (cib2/3) paralogues. tmc1, tmc2b, and cib3 are largely expressed in peripheral or extrastriolar hair cells, whereas tmc2a and cib2 are enriched in central or striolar hair cells. In addition, a gene implicated in deaf-blindness, ush1c, is highly enriched in a subset of extrastriolar hair cells. These results indicate that specific combinations of these components may optimize responses to mechanical stimuli in subtypes of sensory receptors within the inner ear.
Collapse
Affiliation(s)
- Eliot T. Smith
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Peng Sun
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Shengyang Kevin Yu
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Teresa Nicolson
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Jung J, Müller U. Mechanoelectrical transduction-related genetic forms of hearing loss. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100632. [PMID: 36936795 PMCID: PMC10022594 DOI: 10.1016/j.cophys.2023.100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hair cells of the mammalian cochlea are specialized mechanosensory cells that convert mechanical stimuli into electrical signals to initiate the neuronal responses that lead to the perception of sound. The mechanoelectrical transduction (MET) machinery of cochlear hair cells is a multimeric protein complex that consists of the pore forming subunits of the MET channel and several essential accessory subunits that are crucial to regulate channel function and render the channel mechanically sensitive. Mutations have been discovered in the genes that encode all known components of the MET machinery. These mutations cause hearing loss with or without vestibular dysfunction. Some mutations also affect other tissues such as the retina. In this brief review, we will summarize gene mutations that affect the MET machinery of hair cells and how the study of the affected genes has illuminated our understanding of the physiological role of the encoded proteins.
Collapse
Affiliation(s)
- Jinsei Jung
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Biallelic mutations in pakistani families with autosomal recessive prelingual nonsyndromic hearing loss. Genes Genomics 2023; 45:145-156. [PMID: 36472766 DOI: 10.1007/s13258-022-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nonsyndromic autosomal recessive hearing loss (DFNB) is an etiologically heterogeneous disorder group showing a wide spectrum of onset ages and severity. DFNB genes are very diverse in their types and functions, making molecular diagnosis difficult. DFNB is particularly frequent in Pakistan, which may be partly due to consanguinity. OBJECTIVE This study was performed to determine the genetic causes in Pakistani DFNB families with prelingual onset and to establish genotype-phenotype correlation. METHODS Whole exome sequencing and subsequent genetic analysis were performed for 11 Pakistani DFNB families including eight consanguineous families. RESULTS We identified eight pathogenic or likely pathogenic mutations in LOXHD1, GJB2, SLC26A4, MYO15A, and TMC1 from six families. The GJB2 mutations were identified in two families each with compound heterozygous mutations and a homozygous mutation. The compound heterozygous mutations in LOXHD1 ([p.D278Y] + [p.D1219E]) and GJB2 [p.M1?] + [p.G12Vfs*2]) were novel. The four missense or start-loss mutations were located at well conserved residues, and most in silico analysis predicted their pathogenicity. In addition to causative mutations, we found compound heterozygous mutations in PTPRQ as variants of uncertain significance. CONCLUSION This study identified biallelic mutations as the underlying cause of early onset DFNB in six Pakistani families. This study will be helpful in providing an exact molecular diagnosis and treatment of prelingual onset deafness patients.
Collapse
|
12
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Wang WQ, Gao X, Huang SS, Kang DY, Xu JC, Yang K, Han MY, Zhang X, Yang SY, Yuan YY, Dai P. Genetic Analysis of the LOXHD1 Gene in Chinese Patients With Non-Syndromic Hearing Loss. Front Genet 2022; 13:825082. [PMID: 35711932 PMCID: PMC9196635 DOI: 10.3389/fgene.2022.825082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is a common neurosensory disease with an extreme genetic heterogeneity which has been linked to variants in over 120 genes. The LOXHD1 gene (DFNB77), encoding lipoxygenase homology domain 1, is a rare hearing loss gene found in several populations. To evaluate the importance of LOXHD1 variants in Chinese patients with NSHL, we performed genetic analysis on LOXHD1 in 2,901 sporadic Chinese patients to identify the aspect and frequency of LOXHD1 causative variants. Next-generation sequencing using a custom gene panel of HL was conducted on 2,641 unrelated patients and whole-exome sequencing on the remaining 260 patients. A total of 33 likely causative variants were identified in 21 patients, including 20 novel variants and 13 previously reported pathogenic variants. Each of the 20 novel variants was evaluated according to ACMG criteria. These findings showed that causative variants in LOXHD1 were found in about 0.72% (21/2,901) of Chinese NSHL patients. This study is by far the largest number of novel variants identified in this gene expanding the range of pathogenic variants in LOXHD1, and suggests that variants in this gene occur relatively commonly in Chinese NSHL patients. This extensive investigation of LOXHD1 in Chinese NSHL patients proposed six recurrent LOXHD1 variants. These findings may assist in both molecular diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Wei-Qian Wang
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China.,Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xue Gao
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China.,Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Sha-Sha Huang
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| | - Dong-Yang Kang
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| | - Jin-Cao Xu
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Kun Yang
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ming-Yu Han
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| | - Xin Zhang
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| | - Su-Yan Yang
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| | - Yong-Yi Yuan
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| | - Pu Dai
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, ChinaNational Clinical Research Center for Otolaryngologic DiseasesState Key Lab of Hearing Science, Chinese PLA General Hospital, Chinese PLA Medical School, Ministry of Education, College of Otolaryngology Head and Neck Surgery, Beijing, China
| |
Collapse
|
14
|
Abstract
High-resolution immunofluorescence imaging of cochlear hair bundles faces many challenges due to the hair bundle’s small dimensions, fragile nature, and complex organization. Here, we describe an optimized protocol for hair-bundle protein immunostaining and localization. We detail the steps and solutions for extracting and fixing the mouse inner ear and for dissecting the organ of Corti. We further emphasize the optimal permeabilization, blocking, staining, and mounting conditions as well as the parameters for high-resolution microscopy imaging. For complete details on the use and execution of this protocol, please refer to Trouillet et al. (2021). Techniques for dissecting the mouse cochlea and the organ of Corti Dissection, permeabilization, blocking parameters to detect hair bundle proteins Mounting method to localize protein in the hair bundles
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Katharine K Miller
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| | - Pei Wang
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| | - Nicolas Grillet
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| |
Collapse
|
15
|
Deng Q, Natesan R, Cidre-Aranaz F, Arif S, Liu Y, Rasool RU, Wang P, Mitchell-Velasquez E, Das CK, Vinca E, Cramer Z, Grohar PJ, Chou M, Kumar-Sinha C, Weber K, Eisinger-Mathason TK, Grillet N, Grünewald T, Asangani IA. Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Rep 2022; 39:110971. [PMID: 35705030 PMCID: PMC9716578 DOI: 10.1016/j.celrep.2022.110971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.
Collapse
Affiliation(s)
- Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
| | - Shehbeel Arif
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Endrit Vinca
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zvi Cramer
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | | | - Margaret Chou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Grünewald
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Lead contact,Correspondence:
| |
Collapse
|
16
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
17
|
Abstract
Scanning electron microscopy (SEM) allows cell surface imaging at a sub-nanometric resolution. However, the sample requires a specific preparation to sustain the high vacuum of the SEM and be electrically conductive. The sample preparation consists of dissection, fixation, dehydration, metal coating, and tissue mounting. Here we provide a comprehensive protocol to perform SEM on the mouse’s inner ear, and image the hair bundles at high resolution. Hair bundles are the force-sensitive organelles located at the apical surface of hair cells. For complete details on the use and execution of this protocol, please refer to Trouillet et al. (2021). Histology and dissection of the mouse’s inner ear sensory epithelium Sample preparation for scanning electron microscopy of the hair cells Allows imaging of the mechanotransduction organelle and the tip links
Collapse
Affiliation(s)
- Nicolas Grillet
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Stanford University, 240 Pasteur Drive, Biomedical Innovation Building, Room 1654, Stanford, CA 94305, USA
- Corresponding author
| |
Collapse
|
18
|
Miller KK, Atkinson P, Mendoza KR, Ó Maoiléidigh D, Grillet N. Dimensions of a Living Cochlear Hair Bundle. Front Cell Dev Biol 2021; 9:742529. [PMID: 34900993 PMCID: PMC8657763 DOI: 10.3389/fcell.2021.742529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
The hair bundle is the mechanosensory organelle of hair cells that detects mechanical stimuli caused by sounds, head motions, and fluid flows. Each hair bundle is an assembly of cellular-protrusions called stereocilia, which differ in height to form a staircase. Stereocilia have different heights, widths, and separations in different species, sensory organs, positions within an organ, hair-cell types, and even within a single hair bundle. The dimensions of the stereociliary assembly dictate how the hair bundle responds to stimuli. These hair-bundle properties have been measured previously only to a limited degree. In particular, mammalian data are either incomplete, lack control for age or position within an organ, or have artifacts owing to fixation or dehydration. Here, we provide a complete set of measurements for postnatal day (P) 11 C57BL/6J mouse apical inner hair cells (IHCs) obtained from living tissue, tissue mildly-fixed for fluorescent imaging, or tissue strongly fixed and dehydrated for scanning electronic microscopy (SEM). We found that hair bundles mildly-fixed for fluorescence had the same dimensions as living hair bundles, whereas SEM-prepared hair bundles shrank uniformly in stereociliary heights, widths, and separations. By determining the shrinkage factors, we imputed live dimensions from SEM that were too small to observe optically. Accordingly, we created the first complete blueprint of a living IHC hair bundle. We show that SEM-prepared measurements strongly affect calculations of a bundle’s mechanical properties – overestimating stereociliary deflection stiffness and underestimating the fluid coupling between stereocilia. The methods of measurement, the data, and the consequences we describe illustrate the high levels of accuracy and precision required to understand hair-bundle mechanotransduction.
Collapse
Affiliation(s)
- Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Patrick Atkinson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Kyssia Ruth Mendoza
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|