1
|
Arsenault J, Kong T, Saghian R, Weng OY, Pathak SS, Yang C, Chao OY, Rakhaminov G, Forman-Kay JD, Ditlev JA, Yang YM, Wang LY. Essential lipids enrich membrane-associated condensates to rescue synaptic morpho-functional deficits in a mouse model of autism. Cell Rep 2025; 44:115573. [PMID: 40232934 DOI: 10.1016/j.celrep.2025.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Synaptic proteins form intracellular condensates with their scaffolds, but it is unknown whether and how essential lipids transform dynamic cytosolic condensates into stable, functional macromolecular assemblies at the membrane. We show that docosahexaenoic acid (DHA), independent of canonical fatty acid receptor 4 signaling, facilitates the re-localization of cytosolic "full-droplet" condensates composed of the key synaptic elements PSD95 and Kv1.2 to the plasma membrane as "half-droplets." To exploit the therapeutic potential of DHA in vivo, we briefly place juvenile wild-type and Fmr1 KO mice, modeling human fragile X syndrome (FXS), under DHA-enriched or -depleted diets. DHA reverses the inhibitory overtone by promoting the re-localization of presynaptic PSD95-Kv1.2 condensates to interneuron terminal membranes and corrects morpho-functional synaptic defects and stereotypic behaviors. These findings reveal an unexpected role of essential lipids in translocating dynamic condensates into stable synaptic condensates, providing long-lasting benefits for rectifying excitation-inhibition imbalance in FXS and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jason Arsenault
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tian Kong
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rayan Saghian
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Octavia Yifang Weng
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Chengye Yang
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Gaddy Rakhaminov
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathon A Ditlev
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Program in Cell Biology, SickKids Research Institute, Toronto, ON M5G 1X8, Canada.
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Ramirez-Franco J, Debreux K, Sangiardi M, Belghazi M, Kim Y, Lee SH, Lévêque C, Seagar M, El Far O. The downregulation of Kv 1 channels in Lgi1 -/-mice is accompanied by a profound modification of its interactome and a parallel decrease in Kv 2 channels. Neurobiol Dis 2024; 196:106513. [PMID: 38663634 DOI: 10.1016/j.nbd.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| | - Kévin Debreux
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Marion Sangiardi
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Maya Belghazi
- Marseille Protéomique (MaP), Plateforme Protéomique IMM, CNRS FR3479, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Yujin Kim
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Suk-Ho Lee
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Christian Lévêque
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Oussama El Far
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
3
|
Ramirez-Navarro A, Lima-Silveira L, Glazebrook PA, Dantzler HA, Kline DD, Kunze DL. Kv2 channels contribute to neuronal activity within the vagal afferent-nTS reflex arc. Am J Physiol Cell Physiol 2024; 326:C74-C88. [PMID: 37982174 PMCID: PMC11192486 DOI: 10.1152/ajpcell.00366.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Diversity in the functional expression of ion channels contributes to the unique patterns of activity generated in visceral sensory A-type myelinated neurons versus C-type unmyelinated neurons in response to their natural stimuli. In the present study, Kv2 channels were identified as underlying a previously uncharacterized delayed rectifying potassium current expressed in both A- and C-type nodose ganglion neurons. Kv2.1 and 2.2 appear confined to the soma and initial segment of these sensory neurons; however, neither was identified in their central presynaptic terminals projecting onto relay neurons in the nucleus of the solitary tract (nTS). Kv2.1 and Kv2.2 were also not detected in the peripheral axons and sensory terminals in the aortic arch. Functionally, in nodose neuron somas, Kv2 currents exhibited frequency-dependent current inactivation and contributed to action potential repolarization in C-type neurons but not A-type neurons. Within the nTS, the block of Kv2 currents does not influence afferent presynaptic calcium influx or glutamate release in response to afferent activation, supporting our immunohistochemical observations. On the other hand, Kv2 channels contribute to membrane hyperpolarization and limit action potential discharge rate in second-order neurons. Together, these data demonstrate that Kv2 channels influence neuronal discharge within the vagal afferent-nTS circuit and indicate they may play a significant role in viscerosensory reflex function.NEW & NOTEWORTHY We demonstrate the expression and function of the voltage-gated delayed rectifier potassium channel Kv2 in vagal nodose neurons. Within sensory neurons, Kv2 channels limit the width of the broader C-type but not narrow A-type action potential. Within the nucleus of the solitary tract (nTS), the location of the vagal terminal field, Kv2 does not influence glutamate release. However, Kv2 limits the action potential discharge of nTS relay neurons. These data suggest a critical role for Kv2 in the vagal-nTS reflex arc.
Collapse
Affiliation(s)
- Angelina Ramirez-Navarro
- Rammelkamp Center for Education and Research, MetroHealth Medical Center Campus, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ludmila Lima-Silveira
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Patricia A Glazebrook
- Rammelkamp Center for Education and Research, MetroHealth Medical Center Campus, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Heather A Dantzler
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - David D Kline
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Diana L Kunze
- Rammelkamp Center for Education and Research, MetroHealth Medical Center Campus, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
4
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
5
|
Jasso KR, Kamba TK, Zimmerman AD, Bansal R, Engle SE, Everett T, Wu CH, Kulaga H, Reed RR, Berbari NF, McIntyre JC. An N-terminal fusion allele to study melanin concentrating hormone receptor 1. Genesis 2021; 59:e23438. [PMID: 34124835 DOI: 10.1002/dvg.23438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
Cilia on neurons play critical roles in both the development and function of the central nervous system (CNS). While it remains challenging to elucidate the precise roles for neuronal cilia, it is clear that a subset of G-protein-coupled receptors (GPCRs) preferentially localize to the cilia membrane. Further, ciliary GPCR signaling has been implicated in regulating a variety of behaviors. Melanin concentrating hormone receptor 1 (MCHR1), is a GPCR expressed centrally in rodents known to be enriched in cilia. Here we have used MCHR1 as a model ciliary GPCR to develop a strategy to fluorescently tag receptors expressed from the endogenous locus in vivo. Using CRISPR/Cas9, we inserted the coding sequence of the fluorescent protein mCherry into the N-terminus of Mchr1. Analysis of the fusion protein (mCherry MCHR1) revealed its localization to neuronal cilia in the CNS, across multiple developmental time points and in various regions of the adult brain. Our approach simultaneously produced fortuitous in/dels altering the Mchr1 start codon resulting in a new MCHR1 knockout line. Functional studies using electrophysiology show a significant alteration of synaptic strength in MCHR1 knockout mice. A reduction in strength is also detected in mice homozygous for the mCherry insertion, suggesting that while the strategy is useful for monitoring the receptor, activity could be altered. However, both lines should aid in studies of MCHR1 function and contribute to our understanding of MCHR1 signaling in the brain. Additionally, this approach could be expanded to aid in the study of other ciliary GPCRs.
Collapse
Affiliation(s)
- Kalene R Jasso
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida, USA.,Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida, Gainesville, Florida, USA
| | - Tisianna K Kamba
- Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida, Gainesville, Florida, USA
| | - Arthur D Zimmerman
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Thomas Everett
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Chang-Hung Wu
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Heather Kulaga
- Department of Molecular Genetics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Randal R Reed
- Department of Molecular Genetics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Jeremy C McIntyre
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Xiao Y, Yang J, Ji W, He Q, Mao L, Shu Y. A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology 2021; 185:108399. [PMID: 33400937 DOI: 10.1016/j.neuropharm.2020.108399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Midbrain dopamine neurons (DANs) regulate various brain functions such as motor control and motivation. Alteration of spiking activities of these neurons could contribute to severe brain disorders including Parkinson's disease and depression. Previous studies showed important roles of somatodendritic voltage-gated K+ channels (Kv) of DANs in governing neuronal excitability and dopamine release. However, it remains largely unclear about the biophysical properties and the function of Kv channels distributed at DAN axons. We performed whole-cell recordings from the axons of DANs in acute mouse midbrain and striatal slices. We detected both rapidly activating/inactivating Kv current (i.e. A-current) and rapidly activating but slowly inactivating current (i.e. D-current) in DAN axons. Pharmacological experiments with channel blockers revealed that these currents are predominantly mediated by Kv1.4 and Kv1.2 subunits, respectively. Blocking these currents could substantially prolong axonal action potentials (APs) via a reduction of their repolarization slope. Together, our results show that Kv channels mediating A- and D-currents shape AP waveforms in midbrain DAN axons, through this regulation they may control dopamine release at the axonal terminals. Therefore, these axonal Kv channels could be drug targets for brain disorders with abnormal dopamine release.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Higham J, Sahu G, Wazen RM, Colarusso P, Gregorie A, Harvey BSJ, Goudswaard L, Varley G, Sheppard DN, Turner RW, Marrion NV. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca 2+-Activated Potassium Channels. Mol Pharmacol 2019; 96:115-126. [PMID: 31048549 DOI: 10.1124/mol.118.115634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/27/2019] [Indexed: 01/19/2023] Open
Abstract
Three small conductance calcium-activated potassium channel (SK) subunits have been cloned and found to preferentially form heteromeric channels when expressed in a heterologous expression system. The original cloning of the gene encoding the intermediate conductance calcium-activated potassium channel (IKCa) was termed SK4 because of the high homology between channel subtypes. Recent immunovisualization suggests that IKCa is expressed in the same subcellular compartments of some neurons as SK channel subunits. Stochastic optical reconstruction microscopy super-resolution microscopy revealed that coexpressed IKCa and SK1 channel subunits were closely associated, a finding substantiated by measurement of fluorescence resonance energy transfer between coexpressed fluorophore-tagged subunits. Expression of homomeric SK1 channels produced current that displayed typical sensitivity to SK channel inhibitors, while expressed IKCa channel current was inhibited by known IKCa channel blockers. Expression of both SK1 and IKCa subunits gave a current that displayed no sensitivity to SK channel inhibitors and a decreased sensitivity to IKCa current inhibitors. Single channel recording indicated that coexpression of SK1 and IKCa subunits produced channels with properties intermediate between those observed for homomeric channels. These data indicate that SK1 and IKCa channel subunits preferentially combine to form heteromeric channels that display pharmacological and biophysical properties distinct from those seen with homomeric channels.
Collapse
Affiliation(s)
- James Higham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Giriraj Sahu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rima-Marie Wazen
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alice Gregorie
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bartholomew S J Harvey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lucy Goudswaard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gemma Varley
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ray W Turner
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Bonetto G, Hivert B, Goutebroze L, Karagogeos D, Crépel V, Faivre-Sarrailh C. Selective Axonal Expression of the Kv1 Channel Complex in Pre-myelinated GABAergic Hippocampal Neurons. Front Cell Neurosci 2019; 13:222. [PMID: 31164806 PMCID: PMC6535494 DOI: 10.3389/fncel.2019.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
In myelinated fibers, the voltage-gated sodium channels Nav1 are concentrated at the nodal gap to ensure the saltatory propagation of action potentials. The voltage-gated potassium channels Kv1 are segregated at the juxtaparanodes under the compact myelin sheath and may stabilize axonal conduction. It has been recently reported that hippocampal GABAergic neurons display high density of Nav1 channels remarkably in clusters along the axon before myelination (Freeman et al., 2015). In inhibitory neurons, the Nav1 channels are trapped by the ankyrinG scaffold at the axon initial segment (AIS) as observed in pyramidal and granule neurons, but are also forming “pre-nodes,” which may accelerate conduction velocity in pre-myelinated axons. However, the distribution of the Kv1 channels along the pre-myelinated inhibitory axons is still unknown. In the present study, we show that two subtypes of hippocampal GABAergic neurons, namely the somatostatin and parvalbumin positive cells, display a selective high expression of Kv1 channels at the AIS and all along the unmyelinated axons. These inhibitory axons are also highly enriched in molecules belonging to the juxtaparanodal Kv1 complex, including the cell adhesion molecules (CAMs) TAG-1, Caspr2, and ADAM22 and the scaffolding protein 4.1B. Here, taking advantage of hippocampal cultures from 4.1B and TAG-1 knock-out mice, we observed that 4.1B is required for the proper positioning of Caspr2 and TAG-1 along the distal axon, and that TAG-1 deficiency induces alterations in the axonal distribution of Caspr2. However, the axonal expression of Kv1 channels and clustering of ankyrinG were not modified. In conclusion, this study allowed the analysis of the hierarchy between channels, CAMs and scaffolding proteins for their expression along hippocampal inhibitory axons before myelination. The early steps of channel compartmentalization preceding myelination may be crucial for stabilizing nerve impulses switching from a continuous to saltatory conduction during network development.
Collapse
Affiliation(s)
- Giulia Bonetto
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Bruno Hivert
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Laurence Goutebroze
- INSERM UMR-S 1270, Institut du Fer à Moulin, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Domna Karagogeos
- Department of Basic Sciences, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Crete Medical School - University of Crete, Heraklion, Greece
| | - Valérie Crépel
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Catherine Faivre-Sarrailh
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| |
Collapse
|
9
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
10
|
Cao XJ, Oertel D. Genetic perturbations suggest a role of the resting potential in regulating the expression of the ion channels of the KCNA and HCN families in octopus cells of the ventral cochlear nucleus. Hear Res 2017; 345:57-68. [PMID: 28065805 DOI: 10.1016/j.heares.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
Low-voltage-activated K+ (gKL) and hyperpolarization-activated mixed cation conductances (gh) mediate currents, IKL and Ih, through channels of the Kv1 (KCNA) and HCN families respectively and give auditory neurons the temporal precision required for signaling information about the onset, fine structure, and time of arrival of sounds. Being partially activated at rest, gKL and gh contribute to the resting potential and shape responses to even small subthreshold synaptic currents. Resting gKL and gh also affect the coupling of somatic depolarization with the generation of action potentials. To learn how these important conductances are regulated we have investigated how genetic perturbations affect their expression in octopus cells of the ventral cochlear nucleus (VCN). We report five new findings: First, the magnitude of gh and gKL varied over more than two-fold between wild type strains of mice. Second, average resting potentials are not different in different strains of mice even in the face of large differences in average gKL and gh. Third, IKL has two components, one being α-dendrotoxin (α-DTX)-sensitive and partially inactivating and the other being α-DTX-insensitive, tetraethylammonium (TEA)-sensitive, and non-inactivating. Fourth, the loss of Kv1.1 results in diminution of the α-DTX-sensitive IKL, and compensatory increased expression of an α-DTX-insensitive, tetraethylammonium (TEA)-sensitive IKL. Fifth, Ih and IKL are balanced at the resting potential in all wild type and mutant octopus cells even when resting potentials vary in individual cells over nearly 10 mV, indicating that the resting potential influences the expression of gh and gKL. The independence of resting potentials on gKL and gh shows that gKL and gh do not, over days or weeks, determine the resting potential but rather that the resting potential plays a role in regulating the magnitude of either or both gKL and gh.
Collapse
Affiliation(s)
- Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
11
|
KV1 and KV3 Potassium Channels Identified at Presynaptic Terminals of the Corticostriatal Synapses in Rat. Neural Plast 2016; 2016:8782518. [PMID: 27379187 PMCID: PMC4917754 DOI: 10.1155/2016/8782518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength.
Collapse
|
12
|
Selective Loss of Presynaptic Potassium Channel Clusters at the Cerebellar Basket Cell Terminal Pinceau in Adam11 Mutants Reveals Their Role in Ephaptic Control of Purkinje Cell Firing. J Neurosci 2015; 35:11433-44. [PMID: 26269648 DOI: 10.1523/jneurosci.1346-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED A specialized axonal ending, the basket cell "pinceau," encapsulates the Purkinje cell axon initial segment (AIS), exerting final inhibitory control over the integrated outflow of the cerebellar cortex. This nonconventional axo-axonic contact extends beyond the perisomatic chemical GABAergic synaptic boutons to the distal AIS, lacks both sodium channels and local exocytotic machinery, and yet contains a dense cluster of voltage-gated potassium channels whose functional contribution is unknown. Here, we show that ADAM11, a transmembrane noncatalytic disintegrin, is the first reported Kv1-interacting protein essential for localizing Kv1.1 and Kv1.2 subunit complexes to the distal terminal. Selective absence of these channels at the pinceau due to mutation of ADAM11 spares spontaneous GABA release from basket cells at the perisomatic synapse yet eliminates ultrarapid ephaptic inhibitory synchronization of Purkinje cell firing. Our findings identify a critical role for presynaptic K(+) channels at the pinceau in ephaptic control over the speed and stability of spike rate coding at the Purkinje cell AIS in mice. SIGNIFICANCE STATEMENT This study identifies ADAM11 as the first essential molecule for the proper localization of potassium ion channels at presynaptic nerve terminals, where they modulate excitability and the release of neural transmitters. Genetic truncation of the transmembrane disintegrin and metalloproteinase protein ADAM11 resulted in the absence of Kv1 channels that are normally densely clustered at the terminals of basket cell axons in the cerebellar cortex. These specialized terminals are responsible for the release of the neurotransmitter GABA onto Purkinje cells and also display electrical signaling. In the ADAM11 mutant, GABAergic release was not altered, but the ultrarapid electrical signal was absent, demonstrating that the dense presynaptic cluster of Kv1 ion channels at these terminals mediate electrical transmission. Therefore, ADAM11 plays a critical role at this central synapse.
Collapse
|
13
|
NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons. Neuroscience 2014; 277:610-23. [PMID: 25086314 DOI: 10.1016/j.neuroscience.2014.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
Abstract
Homeostatic plasticity is engaged when neurons need to stabilize their synaptic strength and excitability in response to acute or prolonged destabilizing changes in global activity. Compared to the extensive studies investigating the molecular mechanisms for homeostatic synaptic plasticity, the mechanism underlying homeostatic intrinsic plasticity is largely unknown. Through whole-cell patch-clamp recording in low-density cultures of dissociated hippocampal neurons, we demonstrate here that prolonged activity blockade induced by the sodium channel blocker tetrodotoxin (TTX) leads to increased action potential firing rates. Conversely, prolonged activity enhancement induced by the A-type gamma-aminobutyric acid receptor antagonist bicuculline (BC) results in decreased firing rates. Prolonged activity enhancement also enhanced potassium (K(+)) current through Kv1 channels, suggesting that changes in K(+) current, in part, mediate stabilization of hippocampal neuronal excitability upon prolonged activity elevation. In contrast to the previous reports showing that L-type voltage-gated calcium (Ca(2+)) channels solely mediate homeostatic regulation of excitatory synaptic strength (Ibata et al., 2008; Goold and Nicoll, 2010), inhibition of N-Methyl-d-aspartate (NMDA) receptors alone mimics the elevation in firing frequency driven by prolonged TTX application, while the decrease in firing rates induced by prolonged BC treatment involves the activity of NMDA receptors and L-type voltage-gated Ca(2+) channels. These results collectively provide strong evidence that alterations in Ca(2+) influx through NMDA receptors and L-type voltage-gated Ca(2+) channels mediate homeostatic intrinsic plasticity in hippocampal neurons in response to prolonged activity changes.
Collapse
|
14
|
Abstract
In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.
Collapse
Affiliation(s)
- Yarimar Carrasquillo
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
15
|
Wang W, Kim HJ, Lv P, Tempel B, Yamoah EN. Association of the Kv1 family of K+ channels and their functional blueprint in the properties of auditory neurons as revealed by genetic and functional analyses. J Neurophysiol 2013; 110:1751-64. [PMID: 23864368 PMCID: PMC3798938 DOI: 10.1152/jn.00290.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/12/2013] [Indexed: 11/22/2022] Open
Abstract
Developmental plasticity in spiral ganglion neurons (SGNs) ensues from profound alterations in the functional properties of the developing hair cell (HC). For example, prehearing HCs are spontaneously active. However, at the posthearing stage, HC membrane properties transition to graded receptor potentials. The dendrotoxin (DTX)-sensitive Kv1 channel subunits (Kv1.1, 1.2, and 1.6) shape the firing properties and membrane potential of SGNs, and the expression of the channel undergoes developmental changes. Because of the stochastic nature of Kv subunit heteromultimerization, it has been difficult to determine physiologically relevant subunit-specific interactions and their functions in the underlying mechanisms of Kv1 channel plasticity in SGNs. Using Kcna2 null mutant mice, we demonstrate a surprising paradox in changes in the membrane properties of SGNs. The resting membrane potential of Kcna2(-/-) SGNs was significantly hyperpolarized compared with that of age-matched wild-type (WT) SGNs. Analyses of outward currents in the mutant SGNs suggest an apparent approximately twofold increase in outward K(+) currents. We show that in vivo and in vitro heteromultimerization of Kv1.2 and Kv1.4 α-subunits underlies the striking and unexpected alterations in the properties of SGNs. The results suggest that heteromeric interactions of Kv1.2 and Kv1.4 dominate the defining features of Kv1 channels in SGNs.
Collapse
Affiliation(s)
- Wenying Wang
- Program in Communication Science, Center for Neuroscience, University of California, Davis, School of Medicine, Davis, California
| | | | | | | | | |
Collapse
|
16
|
Social networking among voltage-activated potassium channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:269-302. [PMID: 23663972 DOI: 10.1016/b978-0-12-386931-9.00010-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-activated potassium channels (Kv channels) are ubiquitously expressed proteins that subserve a wide range of cellular functions. From their birth in the endoplasmic reticulum, Kv channels assemble from multiple subunits in complex ways that determine where they live in the cell, their biophysical characteristics, and their role in enabling different kinds of cells to respond to specific environmental signals to generate appropriate functional responses. This chapter describes the types of protein-protein interactions among pore-forming channel subunits and their auxiliary protein partners, as well as posttranslational protein modifications that occur in various cell types. This complex oligomerization of channel subunits establishes precise cell type-specific Kv channel localization and function, which in turn drives a diverse range of cellular signal transduction mechanisms uniquely suited to the physiological contexts in which they are found.
Collapse
|
17
|
Deutsch E, Weigel AV, Akin EJ, Fox P, Hansen G, Haberkorn CJ, Loftus R, Krapf D, Tamkun MM. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell 2012; 23:2917-29. [PMID: 22648171 PMCID: PMC3408418 DOI: 10.1091/mbc.e12-01-0047] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated K+ (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection–based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.
Collapse
Affiliation(s)
- Emily Deutsch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Aubrey V. Weigel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Elizabeth J. Akin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Phil Fox
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Gentry Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | | | - Rob Loftus
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
18
|
Ahrens KF, Heider B, Lee H, Isacoff EY, Siegel RM. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat. Front Neural Circuits 2012; 6:15. [PMID: 22461770 PMCID: PMC3310150 DOI: 10.3389/fncir.2012.00015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/05/2012] [Indexed: 01/25/2023] Open
Abstract
A fluorescent voltage sensor protein “Flare” was created from a Kv1.4 potassium channel with YFP situated to report voltage-induced conformational changes in vivo. The RNA virus Sindbis introduced Flare into neurons in the binocular region of visual cortex in rat. Injection sites were selected based on intrinsic optical imaging. Expression of Flare occurred in the cell bodies and dendritic processes. Neurons imaged in vivo using two-photon scanning microscopy typically revealed the soma best, discernable against the background labeling of the neuropil. Somatic fluorescence changes were correlated with flashed visual stimuli; however, averaging was essential to observe these changes. This study demonstrates that the genetic modification of single neurons to express a fluorescent voltage sensor can be used to assess neuronal activity in vivo.
Collapse
Affiliation(s)
- Kurt F Ahrens
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark NJ, USA
| | | | | | | | | |
Collapse
|