1
|
Zhou S, Li B, Wu D, Chen Y, Zeng W, Huang J, Tan L, Mao G, Liu F. Mechanisms of fibrinogen trans-activation of the EGFR/Ca2+ signaling axis to regulate mitochondrial transport and energy transfer and inhibit axonal regeneration following cerebral ischemia. J Neuropathol Exp Neurol 2025; 84:210-222. [PMID: 39495964 DOI: 10.1093/jnen/nlae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Ischemic stroke results in inhibition of axonal regeneration but the roles of fibrinogen (Fg) in neuronal signaling and energy crises in experimental stroke are under-investigated. We explored the mechanism of Fg modulation of axonal regeneration and neuronal energy crisis after cerebral ischemia using a permanent middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons under low glucose-low oxygen. Behavioral tests assessed neurological deficits; immunofluorescence, immunohistochemistry, and Western-blot analyzed Fg and protein levels. Fluo-3/AM fluorescence measured free Ca2+ and ATP levels were gauged via specific assays and F560nm/F510nm ratio calculations. Mito-Tracker Green labeled mitochondria and immunoprecipitation studied protein interactions. Our comprehensive study revealed that Fg inhibited axonal regeneration post-MCAO as indicated by reduced GAP43 expression along with elevated free Ca2+, both suggesting an energy crisis. Fg impeded mitochondrial function and mediated impairment through the EGFR/Ca2+ axis by trans-activating EGFR via integrin αvβ3 interaction. These results indicate that the binding of Fg with integrin αvβ3 leads to the trans-activation of the EGFR/Ca2+ signaling axis thereby disrupting mitochondrial energy transport and axonal regeneration and exacerbating the detrimental effects of ischemic neuronal injury.
Collapse
Affiliation(s)
- Shengqiang Zhou
- National TCM Master Liu Zuyi Inheritance Studio, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Bo Li
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Dahua Wu
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Yanjun Chen
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Wen Zeng
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Jia Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Lingjuan Tan
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Guo Mao
- Key Project Office, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Fang Liu
- National TCM Master Liu Zuyi Inheritance Studio, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| |
Collapse
|
2
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
Sauvé R, Morin S, Yam PT, Charron F. β-arrestins Are Scaffolding Proteins Required for Shh-Mediated Axon Guidance. J Neurosci 2024; 44:e0261242024. [PMID: 38886055 PMCID: PMC11270522 DOI: 10.1523/jneurosci.0261-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that β-arrestin1 and β-arrestin2 (β-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that β-arrestins are expressed in rat commissural neurons. We also found that Smo, β-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on β-arrestins. β-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that β-arrestins are required to activate Src kinase downstream of Shh. β-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative β-arrestins, β-arrestin1 V53D which blocks the internalization of Smo and β-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative β-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that β-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.
Collapse
Affiliation(s)
- Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
4
|
Hara M, Ishii K, Hattori M, Kohno T. EphA4 Induces the Phosphorylation of an Intracellular Adaptor Protein Dab1 via Src Family Kinases. Biol Pharm Bull 2024; 47:1314-1320. [PMID: 39019611 DOI: 10.1248/bpb.b24-00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Dab1 is an intracellular adaptor protein essential for brain formation during development. Tyrosine phosphorylation in Dab1 plays important roles in neuronal migration, dendrite development, and synapse formation by affecting several downstream pathways. Reelin is the best-known extracellular protein that induces Dab1 phosphorylation. However, whether other upstream molecule(s) contribute to Dab1 phosphorylation remains largely unknown. Here, we found that EphA4, a member of the Eph family of receptor-type tyrosine kinases, induced Dab1 phosphorylation when co-expressed in cultured cells. Tyrosine residues phosphorylated by EphA4 were the same as those phosphorylated by Reelin in neurons. The autophosphorylation of EphA4 was necessary for Dab1 phosphorylation. We also found that EphA4-induced Dab1 phosphorylation was mediated by the activation of the Src family tyrosine kinases. Interestingly, Dab1 phosphorylation was not observed when EphA4 was activated by ephrin-A5 in cultured cortical neurons, suggesting that Dab1 is localized in a different compartment in them. EphA4-induced Dab1 phosphorylation may occur under limited and/or pathological conditions in the brain.
Collapse
Affiliation(s)
- Mitsuki Hara
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Keisuke Ishii
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
5
|
Souza JADCR, Souza T, Quintans ILADCR, Farias D. Network Toxicology and Molecular Docking to Investigate the Non-AChE Mechanisms of Organophosphate-Induced Neurodevelopmental Toxicity. TOXICS 2023; 11:710. [PMID: 37624215 PMCID: PMC10458981 DOI: 10.3390/toxics11080710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Organophosphate pesticides (OPs) are toxic substances that contaminate aquatic environments, interfere with the development of the nervous system, and induce Neurodevelopmental Toxicity (NDT) in animals and humans. The canonical mechanism of OP neurotoxicity involves the inhibition of acetylcholinesterase (AChE), but other mechanisms non-AChE are also involved and not fully understood. We used network toxicology and molecular docking to identify molecular targets and toxicity mechanisms common to OPs. Targets related to diazinon-oxon, chlorpyrifos oxon, and paraoxon OPs were predicted using the Swiss Target Prediction and PharmMapper databases. Targets related to NDT were compiled from GeneCards and OMIM databases. In order to construct the protein-protein interaction (PPI) network, the common targets between OPs and NDT were imported into the STRING. Network topological analyses identified EGFR, MET, HSP90AA1, and SRC as hub nodes common to the three OPs. Using the Reactome pathway and gene ontology, we found that signal transduction, axon guidance, cellular responses to stress, and glutamatergic signaling activation play key roles in OP-induced NDT.
Collapse
Affiliation(s)
- Juliana Alves da Costa Ribeiro Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | | | - Davi Farias
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
6
|
Zhou ZX, Xu LJ, Wang HN, Cheng S, Li F, Miao Y, Lei B, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling mediated downregulation of glutamate transporter GLAST in Müller cells in an experimental glaucoma model. Glia 2023; 71:720-741. [PMID: 36416239 DOI: 10.1002/glia.24307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.
Collapse
Affiliation(s)
- Zhi-Xin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xu LJ, Wang HN, Zhou H, Li SY, Li F, Miao Y, Lei B, Sun XH, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling induced Müller cell gliosis and production of pro-inflammatory cytokines in experimental glaucoma. Brain Res 2023; 1801:148204. [PMID: 36529265 DOI: 10.1016/j.brainres.2022.148204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous work showed that ephrinA3/EphA4 forward signaling contributed to retinal ganglion cell (RGC) damage in experimental glaucoma. Since up-regulated patterns of ephrinA3 and EphA4 were observed in Müller cells and RGCs, an EphA4/ephrinA3 reverse signaling may exist in Müller cells of chronic ocular hypertension (COH) retina. We investigated effects of EphA4/ephrinA3 reverse signaling activation on Müller cells in COH retina. Intravitreal injection of the ephrinA3 agonist EphA4-Fc increased glial fibrillary acidic protein (GFAP) levels in normal retinas, suggestive of Müller cell gliosis, which was confirmed in purified cultured Müller cells treated with EphA4-Fc. These effects were mediated by intracellular STAT3 signaling pathway as phosphorylated STAT3 (p-STAT3) levels and ratios of p-STAT3/STAT3 were significantly increased in both COH retinas and EphA4-Fc intravitreally injected retinas, as well as in EphA4-Fc treated purified cultured Müller cells. The increase of GFAP protein levels in EphA4-Fc-injected retinas and EphA4-Fc treated purified cultured Müller cells could be partially eliminated by stattic, a selective STAT3 blocker. Co-immunoprecipitation results testified to the presence of interaction between ephrinA3 and STAT3/p-STAT3. In addition, intravitreal injection of EphA4-Fc or EphA4-Fc treatment of cultured Müller cells significantly up-regulated mRNA and protein contents of pro-inflammatory cytokines. Moreover, intravitreal injection of EphA4-Fc increased the number of apoptotic RGCs, which could be reversed by the tyrosine kinase blocker PP2. Overall, EphA4/ephrinA3 reverse signaling may induce Müller cell gliosis and increases release of pro-inflammatory factors, which could contribute to RGC death in glaucoma. Inhibition of EphA4/ephrinA3 signaling may provide an effective neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
9
|
Tuttle AM, Pomaville MB, Delgado KC, Wright KM, Nechiporuk AV. c-Kit Receptor Maintains Sensory Axon Innervation of the Skin through Src Family Kinases. J Neurosci 2022; 42:6835-6847. [PMID: 35882558 PMCID: PMC9464017 DOI: 10.1523/jneurosci.0618-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral somatosensory neurons innervate the skin and sense the environment. Whereas many studies focus on initial axon outgrowth and pathfinding, how signaling pathways contribute to maintenance of the established axon arbors and terminals within the skin is largely unknown. This question is particularly relevant to the many types of neuropathies that affect mature neuronal arbors. We show that a receptor tyrosine kinase (RTK), c-Kit, contributes to maintenance, but not initial development, of cutaneous axons in the larval zebrafish before sex determination. Downregulation of Kit signaling rapidly induced retraction of established axon terminals in the skin and a reduction in axonal density. Conversely, misexpression of c-Kit ligand in the skin in larval zebrafish induced increases in local sensory axon density, suggesting an important role for Kit signaling in cutaneous axon maintenance. We found Src family kinases (SFKs) act directly downstream to mediate Kit's role in regulating cutaneous axon density. Our data demonstrate a requirement for skin-to-axon signaling to maintain axonal networks and elucidate novel roles for Kit and SFK signaling in this context. This Kit-SFK signaling axis offers a potential pathway to therapeutically target in sensory neuropathies and to further explore in other neurobiological processes.SIGNIFICANCE STATEMENT The skin is full of small nerve endings that sense different environmental stimuli. How these nerve endings grow and reach a specific area of the skin during development has been the focus of many studies. In contrast, the cellular and molecular mechanisms required to maintain the function and health of these structures is relatively unknown. We discovered that a specific receptor in sensory neurons, c-Kit, is required to maintain the density of nerve endings in the skin. Furthermore, we found that a molecular target of c-Kit, Src family kinases (SFKs), is necessary for this role. Thus, c-Kit/SFK signaling regulates density and maintenance of sensory nerve endings in the skin and may have important roles in neural disease and regeneration.
Collapse
Affiliation(s)
- Adam M Tuttle
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Matthew B Pomaville
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Katherine C Delgado
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Alex V Nechiporuk
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
10
|
Tsou YS, Wang CY, Chang MY, Hsu TI, Wu MT, Wu YH, Tsai WL, Chuang JY, Kao TJ. Vav2 is required for Netrin-1 receptor-class-specific spinal motor axon guidance. Dev Dyn 2021; 251:444-458. [PMID: 34374463 DOI: 10.1002/dvdy.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.
Collapse
Affiliation(s)
- Yi-Syue Tsou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ting Wu
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan.,Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan
| | - Yi-Hsin Wu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ling Tsai
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Maternal Ethanol Exposure Acutely Elevates Src Family Kinase Activity in the Fetal Cortex. Mol Neurobiol 2021; 58:5210-5223. [PMID: 34272687 PMCID: PMC8497457 DOI: 10.1007/s12035-021-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Fetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.
Collapse
|
12
|
Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb. J Neurosci 2021; 41:3808-3821. [PMID: 33727334 DOI: 10.1523/jneurosci.2863-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.
Collapse
|
13
|
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, Ravaei A, Linde J, Lampert A, Costa IG, Zimmer-Bensch G. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci 2021; 22:1332. [PMID: 33572758 PMCID: PMC7866228 DOI: 10.3390/ijms22031332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
Collapse
Affiliation(s)
- Daniel Pensold
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Gehrmann
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Georg Pitschelatow
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Asa Walberg
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Kai Braunsteffer
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Reichard
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44100 Ferrara, Italy;
| | - Jenice Linde
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Angelika Lampert
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
- RWTH Aachen Medical Faculty, Institute of Physiology, 52074 Aachen, Germany
| | - Ivan G. Costa
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
14
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Ephrin-A5 potentiates netrin-1 axon guidance by enhancing Neogenin availability. Sci Rep 2019; 9:12009. [PMID: 31427645 PMCID: PMC6700147 DOI: 10.1038/s41598-019-48519-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
Axonal growth cones are guided by molecular cues in the extracellular environment. The mechanisms of combinatorial integration of guidance signals at the growth cone cell membrane are still being unravelled. Limb-innervating axons of vertebrate spinal lateral motor column (LMC) neurons are attracted to netrin-1 via its receptor, Neogenin, and are repelled from ephrin-A5 through its receptor EphA4. The presence of both cues elicits synergistic guidance of LMC axons, but the mechanism of this effect remains unknown. Using fluorescence immunohistochemistry, we show that ephrin-A5 increases LMC growth cone Neogenin protein levels and netrin-1 binding. This effect is enhanced by overexpressing EphA4 and is inhibited by blocking ephrin-A5-EphA4 binding. These effects have a functional consequence on LMC growth cone responses since bath addition of ephrin-A5 increases the responsiveness of LMC axons to netrin-1. Surprisingly, the overexpression of EphA4 lacking its cytoplasmic tail, also enhances Neogenin levels at the growth cone and potentiates LMC axon preference for growth on netrin-1. Since netrins and ephrins participate in a wide variety of biological processes, the enhancement of netrin-1 signalling by ephrins may have broad implications.
Collapse
|
16
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
17
|
Ren Y, He Y, Brown S, Zbornik E, Mlodzianoski MJ, Ma D, Huang F, Mattoo S, Suter DM. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol Biol Cell 2019; 30:1817-1833. [PMID: 31116646 PMCID: PMC6727743 DOI: 10.1091/mbc.e18-04-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cortactin is a Src tyrosine phosphorylation substrate that regulates multiple actin-related cellular processes. While frequently studied in nonneuronal cells, the functions of cortactin in neuronal growth cones are not well understood. We recently reported that cortactin mediates the effects of Src tyrosine kinase in regulating actin organization and dynamics in both lamellipodia and filopodia of Aplysia growth cones. Here, we identified a single cortactin tyrosine phosphorylation site (Y499) to be important for the formation of filopodia. Overexpression of a 499F phospho-deficient cortactin mutant decreased filopodia length and density, whereas overexpression of a 499E phospho-mimetic mutant increased filopodia length. Using an antibody against cortactin pY499, we showed that tyrosine-phosphorylated cortactin is enriched along the leading edge. The leading edge localization of phosphorylated cortactin is Src2-dependent, F-actin-independent, and important for filopodia formation. In vitro kinase assays revealed that Src2 phosphorylates cortactin at Y499, although Y505 is the preferred site in vitro. Finally, we provide evidence that Arp2/3 complex acts downstream of phosphorylated cortactin to regulate density but not length of filopodia. In conclusion, we have characterized a tyrosine phosphorylation site in Aplysia cortactin that plays a major role in the Src/cortactin/Arp2/3 signaling pathway controlling filopodia formation.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Sherlene Brown
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Erica Zbornik
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael J Mlodzianoski
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Donghan Ma
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Fang Huang
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907.,Department of Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907.,Department of Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
18
|
Choi S, Sadra A, Kang J, Ryu JR, Kim JH, Sun W, Huh SO. Farnesylation-defective Rheb Increases Axonal Length Independently of mTORC1 Activity in Embryonic Primary Neurons. Exp Neurobiol 2019; 28:172-182. [PMID: 31138988 PMCID: PMC6526111 DOI: 10.5607/en.2019.28.2.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/01/2023] Open
Abstract
Rheb (Ras homolog enriched in the brain) is a small GTPase protein that plays an important role in cell signaling for development of the neocortex through modulation of mTORC1 (mammalian-target-of-rapamycin-complex-1) activity. mTORC1 is known to control various biological processes including axonal growth in forming complexes at the lysosomal membrane compartment. As such, anchoring of Rheb on the lysosomal membrane via the farnesylation of Rheb at its cysteine residue (C180) is required for its promotion of mTOR activity. To test the significance of Rheb farnesylation, we overexpressed a farnesylation mutant form of Rheb, Rheb C180S, in primary rat hippocampal neurons and also in mouse embryonic neurons using in utero electroporation. Interestingly, we found that Rheb C180S maintained promotional effect of axonal elongation similar to the wild-type Rheb in both test systems. On the other hand, Rheb C180S failed to exhibit the multiple axon-promoting effect which is found in wild-type Rheb. The levels of phospho-4EBP1, a downstream target of mTORC1, were surprisingly increased in Rheb C180S transfected neurons, despite the levels of phosphorylated mTOR being significantly decreased compared to control vector transfectants. A specific mTORC1 inhibitor, rapamycin, also could not completely abolish axon elongation characteristics of Rheb C180S in transfected cells. Our data suggests that Rheb in a non-membrane compartment can promote the axonal elongation via phosphorylation of 4EBP1 and through an mTORC1-independent pathway.
Collapse
Affiliation(s)
- Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - June Hoan Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
19
|
Polarized Dock Activity Drives Shh-Mediated Axon Guidance. Dev Cell 2018; 46:410-425.e7. [PMID: 30078728 DOI: 10.1016/j.devcel.2018.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
In the developing spinal cord, Sonic hedgehog (Shh) attracts commissural axons toward the floorplate. How Shh regulates the cytoskeletal remodeling that underlies growth cone turning is unknown. We found that Shh-mediated growth cone turning requires the activity of Docks, which are unconventional GEFs. Knockdown of Dock3 and 4, or their binding partner ELMO1 and 2, abolished commissural axon attraction by Shh in vitro. Dock3/4 and ELMO1/2 were also required for correct commissural axon guidance in vivo. Polarized Dock activity was sufficient to induce axon turning, indicating that Docks are instructive for axon guidance. Mechanistically, we show that Dock and ELMO interact with Boc, the Shh receptor, and that this interaction is reduced upon Shh stimulation. Furthermore, Shh stimulation translocates ELMO to the growth cone periphery and activates Rac1. This identifies Dock/ELMO as an effector complex of non-canonical Shh signaling and demonstrates the instructive role of GEFs in axon guidance.
Collapse
|
20
|
Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc Natl Acad Sci U S A 2018; 115:E5696-E5705. [PMID: 29866846 DOI: 10.1073/pnas.1719961115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed pronounced effects of the spatial distribution of EphA2 receptors on cellular response to receptor activation. However, little is known about molecular mechanisms underlying this spatial sensitivity, in part due to lack of experimental systems. Here, we introduce a hybrid live-cell patterned supported lipid bilayer experimental platform in which the sites of EphA2 activation and integrin adhesion are spatially controlled. Using a series of live-cell imaging and single-molecule tracking experiments, we map the transmission of signals from ephrinA1:EphA2 complexes. Results show that ligand-dependent EphA2 activation induces localized myosin-dependent contractions while simultaneously increasing focal adhesion dynamics throughout the cell. Mechanistically, Src kinase is activated at sites of ephrinA1:EphA2 clustering and subsequently diffuses on the membrane to focal adhesions, where it up-regulates FAK and paxillin tyrosine phosphorylation. EphrinA1:EphA2 signaling triggers multiple cellular responses with differing spatial dependencies to enable a directed migratory response to spatially resolved contact with ephrinA1 ligands.
Collapse
|
21
|
Ephexin1 Is Required for Eph-Mediated Limb Trajectory of Spinal Motor Axons. J Neurosci 2018; 38:2043-2056. [PMID: 29363583 DOI: 10.1523/jneurosci.2257-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 11/21/2022] Open
Abstract
The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo, suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection.SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been suggested to be involved in neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's disease. To dissect the mechanism of Eph signal relay, we studied ephexin1 gain of function and loss of function and found ephexin1 essential for the development of limb nerves toward their muscle targets, concluding that it functions as an intermediary to relay Eph signaling in this context. Our work could thus shed new light on the molecular mechanisms controlling neuromuscular connectivity during embryonic development.
Collapse
|
22
|
Daoud A, Gopal U, Kaur J, Isaacs JS. Molecular and functional crosstalk between extracellular Hsp90 and ephrin A1 signaling. Oncotarget 2017; 8:106807-106819. [PMID: 29290990 PMCID: PMC5739775 DOI: 10.18632/oncotarget.22370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022] Open
Abstract
The Eph receptor tyrosine kinase family member EphA2 plays a pivotal role in modulating cytoskeletal dynamics to control cancer cell motility and invasion. EphA2 is frequently upregulated in diverse solid tumors and has emerged as a viable druggable target. We previously reported that extracellular Hsp90 (eHsp90), a known pro-motility and invasive factor, collaborates with EphA2 to regulate tumor invasion in the absence of its cognate ephrin ligand. Here, we aimed to further define the molecular and functional relationship between EphA2 and eHsp90. Ligand dependent ephrin A1 signaling promotes RhoA activation and altered cell morphology to favor transient cell rounding, retraction, and diminished adhesion. Exposure of EphA2-expressing cancer cells to ligand herein revealed a unique role for eHsp90 as an effector of cytoskeletal remodeling. Notably, blockade of eHsp90 via either neutralizing antibodies or administration of cell-impermeable Hsp90-targeted small molecules significantly attenuated ligand dependent cell rounding in diverse tumor types. Although eHsp90 blockade did not appear to influence receptor internalization, downstream signaling events were augmented. In particular, eHsp90 activated a Src-RhoA axis to enhance ligand dependent cell rounding, retraction, and ECM detachment. Moreover, eHsp90 signaling via this axis stimulated activation of the myosin pathway, culminating in formation of an EphA2-myosin complex. Inhibition of either eHsp90 or Src was sufficient to impair ephrin A1 mediated Rho activation, activation of myosin intermediates, and EphA2-myosin complex formation. Collectively, our data support a paradigm whereby eHsp90 and EphA2 exhibit molecular crosstalk and functional cooperation within a ligand dependent context to orchestrate cytoskeletal events controlling cell morphology and attachment.
Collapse
Affiliation(s)
- Abdelkader Daoud
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Udhayakumar Gopal
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA.,Current address: Department of Pathology, Duke University School of Medicine, NC, 27708, Durham, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| |
Collapse
|
23
|
Wei W, Wang H, Ji S. Paradoxes of the EphB1 receptor in malignant brain tumors. Cancer Cell Int 2017; 17:21. [PMID: 28194092 PMCID: PMC5299699 DOI: 10.1186/s12935-017-0384-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Eph receptors are a subfamily of receptor tyrosine kinases. Eph receptor-mediated forward and ephrin ligand-mediated reverse signalings are termed bidirectional signaling. Increasing evidence shows that Eph/ephrin signaling regulates cell migration, adhesion, morphological changes, differentiation, proliferation and survival through cell–cell communication. Some recent studies have started to implicate Eph/ephrin signaling in tumorigenesis, metastasis, and angiogenesis. Previous studies have shown that EphB1 receptor and its ephrin ligands are expressed in the central nervous system. EphB1/ephrin signaling plays an important role in the regulation of synapse formation and maturation, migration of neural progenitors, establishment of tissue patterns, and the development of immune organs. Besides, various recent studies have detected the abnormal expression of EphB1 receptor in different brain tumors. However, the underlying molecular mechanisms of EphB1/ephrins signaling in the development of these tumors are not fully understood. This review focuses on EphB1 that has both tumor-suppressing and -promoting roles in some brain tumors. Understanding the intracellular mechanisms of EphB1 in tumorigenesis and metastasis of brain tumors might provide a foundation for the development of EphB1-targeted therapies.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng, 475004 China.,Department of Microbiology, Medical School, Henan University, Kaifeng, 475004 China
| | - Hongju Wang
- Department of Anatomy, Medical School, Henan University, Kaifeng, 475004 China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng, 475004 China.,Department of Oncology, The First Affiliated Hospital, Henan University, Kaifeng, 475001 China
| |
Collapse
|
24
|
Valek L, Häussler A, Dröse S, Eaton P, Schröder K, Tegeder I. Redox-guided axonal regrowth requires cyclic GMP dependent protein kinase 1: Implication for neuropathic pain. Redox Biol 2016; 11:176-191. [PMID: 27978504 PMCID: PMC5156608 DOI: 10.1016/j.redox.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 01/27/2023] Open
Abstract
Cyclic GMP-dependent protein kinase 1 (PKG1) mediates presynaptic nociceptive long-term potentiation (LTP) in the spinal cord and contributes to inflammatory pain in rodents but the present study revealed opposite effects in the context of neuropathic pain. We used a set of loss-of-function models for in vivo and in vitro studies to address this controversy: peripheral neuron specific deletion (SNS-PKG1-/-), inducible deletion in subsets of neurons (SLICK-PKG1-/-) and redox-dead PKG1 mutants. In contrast to inflammatory pain, SNS-PKG1-/- mice developed stronger neuropathic hyperalgesia associated with an impairment of nerve regeneration, suggesting specific repair functions of PKG1. Although PKG1 accumulated at the site of injury, its activity was lost in the proximal nerve due to a reduction of oxidation-dependent dimerization, which was a consequence of mitochondrial damage in injured axons. In vitro, PKG1 deficiency or its redox-insensitivity resulted in enhanced outgrowth and reduction of growth cone collapse in response to redox signals, which presented as oxidative hotspots in growing cones. At the molecular level, PKG1 deficiency caused a depletion of phosphorylated cofilin, which is essential for growth cone collapse and guidance. Hence, redox-mediated guidance required PKG1 and consequently, its deficiency in vivo resulted in defective repair and enhanced neuropathic pain after nerve injury. PKG1-dependent repair functions will outweigh its signaling functions in spinal nociceptive LTP, so that inhibition of PKG1 is no option for neuropathic pain. Axonal injury leads mitochondrial damage. The loss of signaling ROS is associated with a reduction of redox-dependent autoactivation of PKG1. Loss of PKG1 impairs peripheral nerve regeneration and aggravates neuropathic pain in mice. Oxidative hot spots are generated in spiky growth cones and trigger growth cone collapse via PKG1. Malfunctioning of this redox-PKG1 guided growth cone collapse leads to aberrant outgrowth.
Collapse
Affiliation(s)
- Lucie Valek
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Annett Häussler
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Stefan Dröse
- Depts. of Anaesthesiology, Goethe-University Hospital, Frankfurt, Germany
| | - Philipp Eaton
- King's College of London, Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Katrin Schröder
- Depts. of Cardiovascular Physiology, Goethe-University Hospital, Frankfurt, Germany
| | - Irmgard Tegeder
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany.
| |
Collapse
|
25
|
EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia 2016; 31:1779-1787. [PMID: 27922598 DOI: 10.1038/leu.2016.371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/23/2016] [Accepted: 11/28/2016] [Indexed: 01/26/2023]
Abstract
The human EphA3 gene was discovered in a pre-B acute lymphoblastic leukemia (pre-B-ALL) using the EphA3-specific monoclonal antibody (mAb), IIIA4, which binds and activates both human and mouse EphA3. We use two models of human pre-B-ALL to examine EphA3 function, demonstrating effects on pre-B-cell receptor signaling. In therapeutic targeting studies, we demonstrated antitumor effects of the IIIA4 mAb in EphA3-expressing leukemic xenografts and no antitumor effect in the xenografts with no EphA3 expression providing evidence that EphA3 is a functional therapeutic target in pre-B-ALL. Here we show that the therapeutic effect of the anti-EphA3 antibody was greatly enhanced by adding an α-particle-emitting 213Bismuth payload.
Collapse
|
26
|
Morales D, Kania A. Cooperation and crosstalk in axon guidance cue integration: Additivity, synergy, and fine-tuning in combinatorial signaling. Dev Neurobiol 2016; 77:891-904. [PMID: 27739221 DOI: 10.1002/dneu.22463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Neural circuit development involves the coordinated growth and guidance of axons to their targets. Following the identification of many guidance cue molecules, recent experiments have focused on the interactions of their signaling cascades, which can be generally classified as additive or non-additive depending on the signal convergence point. While additive (parallel) signaling suggests limited molecular interaction between the pathways, non-additive signaling involves crosstalk between pathways and includes more complex synergistic, hierarchical, and permissive guidance cue relationships. Here the authors have attempted to classify recent studies that describe axon guidance signal integration according to these divisions. They also discuss the mechanistic implications of such interactions, as well as general ideas relating signal integration to the generation of diversity of axon guidance responses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 891-904, 2017.
Collapse
Affiliation(s)
- Daniel Morales
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Department of Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
27
|
Averaimo S, Assali A, Ros O, Couvet S, Zagar Y, Genescu I, Rebsam A, Nicol X. A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 2016; 7:12896. [PMID: 27694812 PMCID: PMC5059439 DOI: 10.1038/ncomms12896] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/11/2016] [Indexed: 01/11/2023] Open
Abstract
The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues. Ephrin-A-dependent retraction of retinal ganglion cell axons involves cAMP signalling restricted to the vicinity of lipid rafts and is independent of cAMP modulation outside of this microdomain. cAMP modulation near lipid rafts controls the pruning of ectopic axonal branches of retinal ganglion cells in vivo, a process requiring intact ephrin-A signalling. Together, our findings indicate that lipid rafts structure the subcellular organization of intracellular cAMP signalling shaping axonal arbors during the nervous system development.
Collapse
Affiliation(s)
- Stefania Averaimo
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ahlem Assali
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Oriol Ros
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Sandrine Couvet
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Yvrick Zagar
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ioana Genescu
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Alexandra Rebsam
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Xavier Nicol
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| |
Collapse
|
28
|
Tanasic S, Mattusch C, Wagner EM, Eder M, Rupprecht R, Rammes G, Di Benedetto B. Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling. Neuropharmacology 2016; 105:154-163. [DOI: 10.1016/j.neuropharm.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
29
|
Spring AM, Brusich DJ, Frank CA. C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005886. [PMID: 26901416 PMCID: PMC4764653 DOI: 10.1371/journal.pgen.1005886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/29/2016] [Indexed: 12/02/2022] Open
Abstract
Forms of homeostatic plasticity stabilize neuronal outputs and promote physiologically favorable synapse function. A well-studied homeostatic system operates at the Drosophila melanogaster larval neuromuscular junction (NMJ). At the NMJ, impairment of postsynaptic glutamate receptor activity is offset by a compensatory increase in presynaptic neurotransmitter release. We aim to elucidate how this process operates on a molecular level and is preserved throughout development. In this study, we identified a tyrosine kinase-driven signaling system that sustains homeostatic control of NMJ function. We identified C-terminal Src Kinase (Csk) as a potential regulator of synaptic homeostasis through an RNAi- and electrophysiology-based genetic screen. We found that Csk loss-of-function mutations impaired the sustained expression of homeostatic plasticity at the NMJ, without drastically altering synapse growth or baseline neurotransmission. Muscle-specific overexpression of Src Family Kinase (SFK) substrates that are negatively regulated by Csk also impaired NMJ homeostasis. Surprisingly, we found that transgenic Csk-YFP can support homeostatic plasticity at the NMJ when expressed either in the muscle or in the nerve. However, only muscle-expressed Csk-YFP was able to localize to NMJ structures. By immunostaining, we found that Csk mutant NMJs had dysregulated expression of the Neural Cell Adhesion Molecule homolog Fasciclin II (FasII). By immunoblotting, we found that levels of a specific isoform of FasII were decreased in homeostatically challenged GluRIIA mutant animals–but markedly increased in Csk mutant animals. Additionally, we found that postsynaptic overexpression of FasII from its endogenous locus was sufficient to impair synaptic homeostasis, and genetically reducing FasII levels in Csk mutants fully restored synaptic homeostasis. Based on these data, we propose that Csk and its SFK substrates impinge upon homeostatic control of NMJ function by regulating downstream expression or localization of FasII. Homeostasis is a fundamental topic in biology. Individual cells and systems of cells constantly monitor their environments and adjust their outputs in order to maintain physiological properties within ranges that can support life. The nervous system is no exception. Synapses and circuits are endowed with a capacity to respond to environmental challenges in a homeostatic fashion. As a result, synaptic output stays within an appropriate physiological range. We know that homeostasis is a fundamental form of regulation in animal nervous systems, but we have very little information about how it works. In this study, we examine the fruit fly Drosophila melanogaster and its ability to maintain normal levels of synaptic output over long periods of developmental time. We identify new roles in this process for classical signaling molecules called C-terminal Src kinase, Src family kinases, as well as a neuronal cell adhesion molecule called Fasciclin II, which was previously shown to stabilize synaptic contacts between neurons and muscles. Our work contributes to a broader understanding of how neurons work to maintain stable outputs. Ultimately, this type of knowledge could have important implications for neurological disorders in which stability is lost, such as forms of epilepsy or ataxia.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Douglas J. Brusich
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Programs in Genetics, Neuroscience, and MCB, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Poliak S, Morales D, Croteau LP, Krawchuk D, Palmesino E, Morton S, Cloutier JF, Charron F, Dalva MB, Ackerman SL, Kao TJ, Kania A. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons. eLife 2015; 4. [PMID: 26633881 PMCID: PMC4764565 DOI: 10.7554/elife.10841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/02/2015] [Indexed: 01/09/2023] Open
Abstract
During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. DOI:http://dx.doi.org/10.7554/eLife.10841.001 The ability of animals to walk and perform skilled movements depends on particular groups of muscles contracting in a coordinated manner. Muscles are activated by nerve cells called motor neurons found in the spinal cord. The connections between the motor neurons and muscles are established in the developing embryo. Each motor neuron produces a long projection called an axon whose growth is guided towards the target muscle by signal proteins. The motor neurons are exposed to many such signal proteins at the same time and it is not clear how they integrate all this information so that their axons target the correct muscles. Poliak, Morales et al. used a variety of genetic and biochemical approaches to study the formation of motor neuron and muscle connections in the limbs of mice and chicks. The experiments show that a signal protein called Netrin-1 is produced in the limbs of developing embryos and attracts the axons of some types of motor neurons and repels others. This is due to the motor neurons producing different types of receptor proteins to detect Netrin-1. Further experiments show that individual axons can combine information from attractive or repulsive Netrin-1 signals together with repulsive signals from another family of proteins called ephrins in a 'synergistic' manner. That is, the combined effect of both cues is stronger than their individual effects added together. This synergy involves ligand-dependent interactions between the Netrin-1 and ephrin receptor proteins, and the activation of a common enzyme. Poliak, Morales et al.’s findings reveal a new role for Netrin-1 in guiding the development of motor neurons in the limb. Future work will focus on further understanding the mechanism of synergy between Netrin-1 and ephrins. Netrin-1 and ephrins are also involved in the formation of blood vessels and many other developmental processes, so understanding how they work together would have a wide-reaching impact on research into human health and disease. DOI:http://dx.doi.org/10.7554/eLife.10841.002
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Daniel Morales
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | | | - Dayana Krawchuk
- Institut de recherches cliniques de Montréal, Montréal, Canada.,The Jackson Laboratory, Bar Harbor, United States
| | - Elena Palmesino
- Institut de recherches cliniques de Montréal, Montréal, Canada
| | - Susan Morton
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Jean-François Cloutier
- Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Montréal Neurological Institute, Montréal, Canada
| | - Frederic Charron
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Matthew B Dalva
- Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Susan L Ackerman
- The Jackson Laboratory, Bar Harbor, United States.,Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
| | - Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Artur Kania
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
31
|
Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015; 7:7/5/1759091415602859. [PMID: 26354550 PMCID: PMC4568937 DOI: 10.1177/1759091415602859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| |
Collapse
|
32
|
He Y, Ren Y, Wu B, Decourt B, Lee AC, Taylor A, Suter DM. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol Biol Cell 2015. [PMID: 26224308 PMCID: PMC4569314 DOI: 10.1091/mbc.e15-03-0142] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
How Src tyrosine kinase and cortactin control actin organization and dynamics in neuronal growth cones is not well understood. Using multiple high-resolution imaging techniques, this study shows that Src and cortactin control the persistence of lamellipodial protrusion as well as the formation, stability, and elongation of filopodia in growth cones. Src tyrosine kinases have been implicated in axonal growth and guidance; however, the underlying cellular mechanisms are not well understood. Specifically, it is unclear which aspects of actin organization and dynamics are regulated by Src in neuronal growth cones. Here, we investigated the function of Src2 and one of its substrates, cortactin, in lamellipodia and filopodia of Aplysia growth cones. We found that up-regulation of Src2 activation state or cortactin increased lamellipodial length, protrusion time, and actin network density, whereas down-regulation had opposite effects. Furthermore, Src2 or cortactin up-regulation increased filopodial density, length, and protrusion time, whereas down-regulation promoted lateral movements of filopodia. Fluorescent speckle microscopy revealed that rates of actin assembly and retrograde flow were not affected in either case. In summary, our results support a model in which Src and cortactin regulate growth cone motility by increasing actin network density and protrusion persistence of lamellipodia by controlling the state of actin-driven protrusion versus retraction. In addition, both proteins promote the formation and stability of actin bundles in filopodia.
Collapse
Affiliation(s)
- Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Bingbing Wu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Boris Decourt
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Aih Cheun Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Aaron Taylor
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 )
| |
Collapse
|
33
|
Fernandes J. The study of homology between tumor progression genes and members of retroviridae as a tool to predict target-directed therapy failure. Front Pharmacol 2015; 6:92. [PMID: 25983693 PMCID: PMC4416442 DOI: 10.3389/fphar.2015.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Oncogenes are the primary candidates for target-directed therapy, given that they are involved directly in the progression and resistance of tumors. However, the appearance of point mutations can hinder the treatment of patients with these new molecules, raising costs and the need to development new analogs that target the novel mutations. Based on an analysis of homologies, the present study discusses the possibility of predicting the failure of a protein as a pharmacological target, due to its similarities with retrovirus sequences, which have extremely high mutation rates. This analysis was based on the molecular evidence available in the literature, and widely-used and well-established PSI-BLAST, with two iterations and maximum of 500 aligned sequences. The possibility of predicting which newly-discovered genes involved in tumor progression would likely result in the failure of targeted therapy, using free, simple and automated bioinformatics tools, could provide substantial savings in the time and financial resources needed for long-term drug development.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Federal University of Rio de Janeiro, Duque de Caxias , Rio de Janeiro, Brazil ; Institute for Translational Research on Health and Environment in the Amazon Region - INPeTAm, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Salgado IK, Torrado AI, Santiago JM, Miranda JD. Tamoxifen and Src kinase inhibitors as neuroprotective/neuroregenerative drugs after spinal cord injury. Neural Regen Res 2015; 10:385-90. [PMID: 25878585 PMCID: PMC4396099 DOI: 10.4103/1673-5374.153685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that produces significant changes in the lifestyle of patients. Many molecular and cellular events are triggered after the initial physical impact to the cord. Two major phases have been described in the field of SCI: an acute phase and late phase. Most of the therapeutic strategies are focused on the late phase because this provides an opportunity to target cellular events like apoptosis, demyelination, scar formation and axonal outgrowth. In this mini-review, we will focus on two agents (tamoxifen and a Src kinase family inhibitor known as PP2) that have been shown in our laboratory to produce neuroprotective (increase cell survival) and/or regenerative (axonal outgrowth) actions. The animal model used in our laboratory is adult female rat (~250 g) with a moderate contusion (12.5 mm) to the spinal cord at the T10 level, using the MASCIS impactor device. Tamoxifen or PP2 was administered by implantation of a 15 mg pellet (Innovative Research of America, Sarasota, FL, USA) or by intraperitoneal injections (1.5 mg/kg, every 3 days), respectively, to produce a long-term effect (28 days). Tamoxifen and the Src kinase inhibitor, PP2, are drugs that in rats with a moderate spinal cord injury promote functional locomotor recovery, increase spared white matter tissue, and stimulate axonal outgrowth. Moreover, tamoxifen reduces the formation of reactive oxygen species. Therefore, these drugs are possible therapeutic agents that have a neuroprotective/regenerative activity in vertebrates with SCI.
Collapse
Affiliation(s)
- Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Jose M Santiago
- University of Puerto Rico Carolina Campus, Department of Natural Sciences, Carolina, PR 00984, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
35
|
Rosas OR, Torrado AI, Santiago JM, Rodriguez AE, Salgado IK, Miranda JD. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue. Neural Regen Res 2015; 9:2164-73. [PMID: 25657738 PMCID: PMC4316450 DOI: 10.4103/1673-5374.147949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jose M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, PR, USA
| | - Ana E Rodriguez
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
36
|
SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 2015; 40:674-87. [PMID: 25577147 DOI: 10.1007/s11064-015-1514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channel activity is vital for the proper function of excitable cells and has been indicated in nervous system development. Meanwhile, the Src family of non-receptor tyrosine kinases (SFKs) has been implicated in the regulation of Na(+) channel activity. The present investigation tests the hypothesis that Src family kinases influence neuronal differentiation via a chronic regulation of Na(+) channel functionality. In cultured mouse embryonic stem (ES) cells undergoing neural induction and terminal neuronal differentiation, SFKs showed distinct stage-specific expression patterns during the differentiation process. ES cell-derived neuronal cells expressed multiple voltage-gated Na(+) channel proteins (Nav) and underwent a gradual increase in Na(+) channel activity. While acute inhibition of SFKs using the Src family inhibitor PP2 suppressed the Na(+) current, chronic inhibition of SFKs during early neuronal differentiation of ES cells did not change Nav expression. However, a long-lasting block of SFK significantly altered electrophysiological properties of the Na(+) channels, shown as a right shift of the current-voltage relationship of the Na(+) channels, and reduced the amplitude of Na(+) currents recorded in drug-free solutions. Immunocytochemical staining of differentiated cells subjected to the chronic exposure of a SFK inhibitor, or the Na(+) channel blocker tetrodotoxin, showed no changes in the number of NeuN-positive cells; however, both treatments significantly hindered neurite outgrowth. These findings suggest that SFKs not only modulate the Na(+) channel activation acutely, but the tonic activity of SFKs is also critical for normal development of functional Na(+) channels and neuronal differentiation or maturation of ES cells.
Collapse
|
37
|
Mimae T, Ito A. New challenges in pseudopodial proteomics by a laser-assisted cell etching technique. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:538-46. [PMID: 25461796 DOI: 10.1016/j.bbapap.2014.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Pseudopodia are ventral membrane protrusions that extend toward higher concentrations of chemoattractants and play key roles in cell migration and cancer cell invasion. Cancers, including carcinoma and sarcoma, become life threatening when they invade surrounding structures and other organs. Understanding the molecular basis of invasiveness is important for the elimination of cancers. Thus, determining the pseudopodial composition will offer insights into the mechanisms underlying tumor cell invasiveness and provide potential biomarkers and therapeutic targets. Pseudopodial composition has been extensively investigated by using proteomic approaches. A variety of modalities, including gel-based and mass spectrometry-based methods, have been employed for pseudopodial proteomics. Our research group recently established a novel method using excimer laser pulses to selectively harvest pseudopodia, and we successfully identified a number of new pseudopodial constituents. Here, we summarized the conventional proteomic procedures and describe our new excimer laser-assisted method, with a special emphasis on the differences in the methods used to isolate pseudopodia. In addition, we discussed the theoretical background for the use of excimer laser-mediated cell ablation in proteomic applications. Using the excimer laser-assisted method, we showed that alpha-parvin, an actin-binding adaptor protein, is localized to pseudopodia, and is involved in breast cancer invasiveness. Our results clearly indicate that excimer laser-assisted cell etching is a useful technique for pseudopodial proteomics. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka 589-8511, Japan
| |
Collapse
|
38
|
Armendáriz BG, Masdeu MDM, Soriano E, Ureña JM, Burgaya F. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 2014; 40:3573-90. [DOI: 10.1111/ejn.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Beatriz G. Armendáriz
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Maria del Mar Masdeu
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Eduardo Soriano
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Jesús M. Ureña
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Ferran Burgaya
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| |
Collapse
|
39
|
EphA7 signaling guides cortical dendritic development and spine maturation. Proc Natl Acad Sci U S A 2014; 111:4994-9. [PMID: 24707048 DOI: 10.1073/pnas.1323793111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process by which excitatory neurons are generated and mature during the development of the cerebral cortex occurs in a stereotyped manner; coordinated neuronal birth, migration, and differentiation during embryonic and early postnatal life are prerequisites for selective synaptic connections that mediate meaningful neurotransmission in maturity. Normal cortical function depends upon the proper elaboration of neurons, including the initial extension of cellular processes that lead to the formation of axons and dendrites and the subsequent maturation of synapses. Here, we examine the role of cell-based signaling via the receptor tyrosine kinase EphA7 in guiding the extension and maturation of cortical dendrites. EphA7, localized to dendritic shafts and spines of pyramidal cells, is uniquely expressed during cortical neuronal development. On patterned substrates, EphA7 signaling restricts dendritic extent, with Src and Tsc1 serving as downstream mediators. Perturbation of EphA7 signaling in vitro and in vivo alters dendritic elaboration: Dendrites are longer and more complex when EphA7 is absent and are shorter and simpler when EphA7 is ectopically expressed. Later in neuronal maturation, EphA7 influences protrusions from dendritic shafts and the assembling of synaptic components. Indeed, synaptic function relies on EphA7; the electrophysiological maturation of pyramidal neurons is delayed in cultures lacking EphA7, indicating that EphA7 enhances synaptic function. These results provide evidence of roles for Eph signaling, first in limiting the elaboration of cortical neuronal dendrites and then in coordinating the maturation and function of synapses.
Collapse
|
40
|
Lehigh KM, Leonard CE, Baranoski J, Donoghue MJ. Parcellation of the thalamus into distinct nuclei reflects EphA expression and function. Gene Expr Patterns 2013; 13:454-63. [PMID: 24036135 PMCID: PMC3839050 DOI: 10.1016/j.gep.2013.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/09/2023]
Abstract
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.
Collapse
Affiliation(s)
- Kathryn M. Lehigh
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Carrie E. Leonard
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Jacob Baranoski
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Maria J. Donoghue
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| |
Collapse
|
41
|
Gomez TM, Letourneau PC. Actin dynamics in growth cone motility and navigation. J Neurochem 2013; 129:221-34. [PMID: 24164353 DOI: 10.1111/jnc.12506] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
42
|
Grossman EN, Giurumescu CA, Chisholm AD. Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics 2013; 195:899-913. [PMID: 23979582 PMCID: PMC3813872 DOI: 10.1534/genetics.113.154393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 12/30/2022] Open
Abstract
Eph receptors and their ephrin ligands are key conserved regulators of axon guidance and can function in a variety of signaling modes. Here we analyze the genetic and cellular requirements for Eph signaling in a Caenorhabditis elegans axon guidance choice point, the ventral guidance of axons in the amphid commissure. The C. elegans Eph receptor EFN-1 has both kinase-dependent and kinase-independent roles in amphid ventral guidance. Of the four C. elegans ephrins, we find that only EFN-1 has a major role in amphid axon ventral guidance, and signals in both a receptor kinase-dependent and kinase-independent manner. Analysis of EFN-1 and EFN-1 expression and tissue-specific requirements is consistent with a model in which VAB-1 acts in amphid neurons, interacting with EFN-1 expressed on surrounding cells. Unexpectedly, left-hand neurons are more strongly affected than right-hand neurons by loss of Eph signaling, indicating a previously undetected left-right asymmetry in the requirement for Eph signaling. By screening candidate genes involved in Eph signaling, we find that the Eph kinase-independent pathway involves the ABL-1 nonreceptor tyrosine kinase and possibly the phosphatidylinositol 3-kinase pathway. Overexpression of ABL-1 is sufficient to rescue EFN-1 ventral guidance defects cell autonomously. Our results reveal new aspects of Eph signaling in a single axon guidance decision in vivo.
Collapse
Affiliation(s)
- Emily N. Grossman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093
| | - Claudiu A. Giurumescu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093
| | - Andrew D. Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
43
|
Cheng C, Ansari MM, Cooper JA, Gong X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 2013; 140:4237-45. [PMID: 24026120 DOI: 10.1242/dev.100727] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2(-/-) mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2(-/-) cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2(-/-) lenses. Src(-/-) equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
44
|
Frank CA. Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 2013; 78:63-74. [PMID: 23806804 DOI: 10.1016/j.neuropharm.2013.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023]
Abstract
In biology, homeostasis refers to how cells maintain appropriate levels of activity. This concept underlies a balancing act in the nervous system. Synapses require flexibility (i.e. plasticity) to adjust to environmental challenges. Yet there must also exist regulatory mechanisms that constrain activity within appropriate physiological ranges. An abundance of evidence suggests that homeostatic regulation is critical in this regard. In recent years, important progress has been made toward identifying molecules and signaling processes required for homeostatic forms of neuroplasticity. The Drosophila melanogaster third instar larval neuromuscular junction (NMJ) has been an important experimental system in this effort. Drosophila neuroscientists combine genetics, pharmacology, electrophysiology, imaging, and a variety of molecular techniques to understand how homeostatic signaling mechanisms take shape at the synapse. At the NMJ, homeostatic signaling mechanisms couple retrograde (muscle-to-nerve) signaling with changes in presynaptic calcium influx, changes in the dynamics of the readily releasable vesicle pool, and ultimately, changes in presynaptic neurotransmitter release. Roles in these processes have been demonstrated for several molecules and signaling systems discussed here. This review focuses primarily on electrophysiological studies or data. In particular, attention is devoted to understanding what happens when NMJ function is challenged (usually through glutamate receptor inhibition) and the resulting homeostatic responses. A significant area of study not covered in this review, for the sake of simplicity, is the homeostatic control of synapse growth, which naturally, could also impinge upon synapse function in myriad ways. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
45
|
Na RH, Zhu GH, Luo JX, Meng XJ, Cui L, Peng HJ, Chen XG, Gomez-Cambronero J. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells. BMC Microbiol 2013; 13:125. [PMID: 23721065 PMCID: PMC3681593 DOI: 10.1186/1471-2180-13-125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background GTPases are the family of hydrolases that bind and hydrolyze guanosine triphosphate. The large Immunity-related GTPases and the small GTPase ADP-ribosylation factor-6 in host cells are known to accumulate on the parasitophorous vacuole membrane (PVM) of Toxoplasma gondii and play critical roles in this parasite infection, but these GTPases cannot explain the full extent of infection. Results In this research, RhoA and Rac1 GTPases from the host cell were found to accumulate on the PVM regardless of the virulence of the T. gondii strains after T. gondii invasion, and this accumulation was dependent on their GTPase activity. The real-time micrography of T. gondii tachyzoites invading COS-7 cells overexpressing CFP-RhoA showed that this GTPase was recruited to the PVM at the very beginning of the invasion through the host cell membrane or from the cytosol. Host cell RhoA and Rac1 were also activated after T. gondii tachyzoites invasion, which was needed for host cell cytoskeleton reorganization to facilitate intracellular pathogens invasion. The decisive domains for the RhoA accumulation on the PVM included the GTP/Mg2+ binding site, the mDia effector interaction site, the G1 box, the G2 box and the G5 box, respectively, which were related to the binding of GTP for enzymatic activity and mDia for the regulation of microtubules. The recruited CFP-RhoA on the PVM could not be activated by epithelial growth factor (EGF) and no translocation was observed, unlike the unassociated RhoA in the host cell cytosol that migrated to the cell membrane towards the EGF activation spot. This result supported the hypothesis that the recruited RhoA or Rac1 on the PVM were in the GTP-bound active form. Wild-type RhoA or Rac1 overexpressed cells had almost the same infection rates by T. gondii as the mock-treated cells, while RhoA-N19 or Rac1-N17 transfected cells and RhoA, Rac1 or RhoA + Rac1 siRNA-treated cells showed significantly diminished infection rates compared to mock cells. Conclusions The accumulation of the RhoA and Rac1 on the PVM and the requisite of their normal GTPase activity for efficient invasion implied their involvement and function in T. gondii invasion.
Collapse
Affiliation(s)
- Ren-Hua Na
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:E507-16. [PMID: 23341629 DOI: 10.1073/pnas.1212655110] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microRNA-183/96/182 cluster is highly expressed in the retina and other sensory organs. To uncover its in vivo functions in the retina, we generated a knockout mouse model, designated "miR-183C(GT/GT)," using a gene-trap embryonic stem cell clone. We provide evidence that inactivation of the cluster results in early-onset and progressive synaptic defects of the photoreceptors, leading to abnormalities of scotopic and photopic electroretinograms with decreased b-wave amplitude as the primary defect and progressive retinal degeneration. In addition, inactivation of the miR-183/96/182 cluster resulted in global changes in retinal gene expression, with enrichment of genes important for synaptogenesis, synaptic transmission, photoreceptor morphogenesis, and phototransduction, suggesting that the miR-183/96/182 cluster plays important roles in postnatal functional differentiation and synaptic connectivity of photoreceptors.
Collapse
|
47
|
Hogerheyde TA, Stephenson SA, Harkin DG, Bray LJ, Madden PW, Woolf MI, Richardson NA. Evaluation of Eph receptor and ephrin expression within the human cornea and limbus. Exp Eye Res 2012; 107:110-20. [PMID: 23247085 DOI: 10.1016/j.exer.2012.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/18/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.
Collapse
Affiliation(s)
- Thomas A Hogerheyde
- School of Biomedical Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Salvucci O, Tosato G. Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 2012; 114:21-57. [PMID: 22588055 DOI: 10.1016/b978-0-12-386503-8.00002-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eph receptor tyrosine kinases and their Ephrin ligands represent an important signaling system with widespread roles in cell physiology and disease. Receptors and ligands in this family are anchored to the cell surface; thus Eph/Ephrin interactions mainly occur at sites of cell-to-cell contact. EphB4 and EphrinB2 are the Eph/Ephrin molecules that play essential roles in vascular development and postnatal angiogenesis. Analysis of expression patterns and function has linked EphB4/EphrinB2 to endothelial cell growth, survival, migration, assembly, and angiogenesis. Signaling from these molecules is complex, with the potential for being bidirectional, emanating both from the Eph receptors (forward signaling) and from the Ephrin ligands (reverse signaling). In this review, we describe recent advances on the roles of EphB/EphrinB protein family in endothelial cell function and outline potential approaches to inhibit pathological angiogenesis based on this understanding.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
49
|
Nievergall E, Lackmann M, Janes PW. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69:1813-42. [PMID: 22204021 PMCID: PMC11114713 DOI: 10.1007/s00018-011-0900-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies attest to essential roles for Eph receptors and their ephrin ligands in controlling cell positioning and tissue patterning during normal and oncogenic development. These studies suggest multiple, sometimes contradictory, functions of Eph-ephrin signalling, which under different conditions can promote either spreading and cell-cell adhesion or cytoskeletal collapse, cell rounding, de-adhesion and cell-cell segregation. A principle determinant of the balance between these two opposing responses is the degree of receptor/ligand clustering and activation. This equilibrium is likely altered in cancers and modulated by somatic mutations of key Eph family members that have emerged as candidate cancer markers in recent profiling studies. In addition, cross-talk amongst Ephs and with other signalling pathways significantly modulates cell-cell adhesion, both between and within Eph- and ephrin-expressing cell populations. This review summarises our current understanding of how Eph receptors control cell adhesion and morphology, and presents examples demonstrating the importance of these events in normal development and cancer.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
- Present Address: Haematology Department, SA Pathology, Frome Road, Adelaide, SA 5000 Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| | - Peter W. Janes
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| |
Collapse
|
50
|
Li J, Liu N, Wang Y, Wang R, Guo D, Zhang C. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons. Neurosci Lett 2012; 518:92-5. [PMID: 22580205 DOI: 10.1016/j.neulet.2012.04.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 12/31/2022]
Abstract
Hippocampal CA1 pyramidal neurons are sensitive to ischemic damage. However, the cellular and molecular mechanisms underlying neuronal cell death caused by ischemia-reperfusion (I/R) are not completely clear. Here, we report that the ephrinA/EphA cell-cell interaction signaling pathway plays an important role in the apoptosis of hippocampal CA1 pyramidal neurons induced by I/R. We found that the expression of ephrinA3 and EphA4 is increased in the CA1 region following transient forebrain ischemia. Blocking ephrinA3/EphA4 interaction by EphA4-Fc, an inhibitor of EphA4, attenuated apoptotic neuronal cell death, likely through the inhibition of caspase-3 activation. These results reveal a novel function of ephrin/Eph signaling in the regulation of apoptosis in CA1 pyramidal neurons after I/R.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | | | |
Collapse
|